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Barron’s Essential S

As you review the content in this book to work toward earning that 5 on your AP CALCULUS AB exam, here are five things that
you MUST know above everything else:

1

4 N

Learn the basic facts:

« derivatives and antiderivatives of common functions;

* the product, quotient, and chain rules for finding derivatives;

* the midpoint, left and right rectangle, and trapezoid rules for estimating definite integrals;

* the important theorems: Rolle’s theorem, the Mean Value theorem, and especially the Fundamental Theorem of Calculus.
(Barron’s AP Calculus Flash Cards are a great way to study these!)

. J
2
4 )

Understand that a derivative is an instantaneous rate of change, and be able to apply that concept to:

* find equations of tangent lines;

* determine where a function is increasing/decreasing, concave up/down, or has maxima, minima, or points of inflection;
* analyze the speed, velocity, and acceleration of an object in motion;

* solve related rates problems, using implicit differentiation when necessary.

3

4 N

Understand that integrals represent accumulation functions based on antiderivatives, and be able to apply those
concepts to:

* the average value of a function;

e area and volume;

* position of object in motion and distance traveled;

* total amount when given the rate of accumulation;

« differential equations, including solutions and slope fields.

4

[ Be able to apply any of the above calculus concepts to functions defined algebraically, graphically, or in tables. ]




S
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Be able to maximize your score on the exam by:

* answering a/l the multiple-choice questions;

* knowing how and when to use your calculator, and when not to;

* understanding what work you need to show;

* knowing how to explain, interpret, and justify answers when a question requires that.
(The free-response solutions in this book model such answers.)




Barron’s Essential S

As you review the content in this book to work toward earning that 5 on your AP CALCULUS BC exam, here are five things that
you MUST know above everything else:

1

Master the Essential 5 listed for the AB Calculus Exam. These form the core for questions that determine your AB
subscore, and provide the essential knowledge base you’ll need for questions related to the additional BC topics.

2

-

Understand how to extend AB Calculus concepts to more advanced situations, including:
+ using L Hopital’s rule to find limits of indeterminate forms;

* using limits to analyze improper integrals;

* solving logistic differential equations and estimating solutions using Euler’s method,

* finding antiderivatives using integration by parts or partial fractions;

* finding arc lengths.

Be able to apply calculus concepts to parametrically defined functions and polar functions.

Know how to analyze the position, velocity, speed, acceleration, and distance traveled for an object in motion in two
dimensions by applying calculus concepts to vectors.

Understand infinite series. You must be able to:

* determine whether a series converges or diverges;

* use Taylor’s theorem to represent functions as power series;
* determine the interval of convergence for a power series;

Y A "N T 7 e



k « find bounds on the error for estimates based on series.




Since this is an eBook and may be veiwed on various devices, please adjust accordingly. All
graphs, equations, and other illustrations may appear differently on each device.

This eBook contains hyperlinks that will help you navigate through content, bring you to helpful
resources, and allow you to click between questions and anwers.




Introduction
[ . . . TR . . .

This book is intended for students who are preparing to take either of the two Advanced Placement
Examinations in Mathematics offered by the College Entrance Examination Board, and for their
teachers. It is based on the May 2012 course description published by the College Board, and covers
the topics listed there for both Calculus AB and Calculus BC.

Candidates who are planning to take the CLEP Examination on Calculus with Elementary
Functions are referred to the section of this Introduction on that examination.

THE COURSES

Calculus AB and BC are both full-year courses in the calculus of functions of a single variable. Both
courses emphasize:

(1) student understanding of concepts and applications of calculus over manipulation and
memorization;

(2) developing the student’s ability to express functions, concepts, problems, and conclusions
analytically, graphically, numerically, and verbally, and to understand how these are related; and

(3) using a graphing calculator as a tool for mathematical investigations and for problem-solving.

Both courses are intended for those students who have already studied college-preparatory
mathematics: algebra, geometry, trigonometry, analytic geometry, and elementary functions (linear,
polynomial, rational, exponential, logarithmic, trigonometric, inverse trigonometric, and piecewise).
The AB topical course outline that follows can be covered in a full high-school academic year even if
some time is allotted to studying elementary functions. The BC course assumes that students already
have a thorough knowledge of all the topics noted above.

TOPICS THAT MAY BE TESTED ON THE CALCULUS AB
EXAM

1. Functions and Graphs
Rational, trigonometric, inverse trigonometric, exponential, and logarithmic functions.

2. Limits and Continuity
Intuitive definitions; one-sided limits; functions becoming infinite; asymptotes and graphs;

indeterminate limits of the form%m- = ;im 3% . estimating limits using tables or graphs.
oo B

Definition of continuity; kinds of discontinuities; theorems about continuous functions; Extreme
Value and Intermediate Value Theorems.

3. Differentiation
Definition of derivative as the limit of a difference quotient and as instantaneous rate of change;
derivatives of power, exponential, logarithmic, trig and inverse trig functions; product, quotient,



and chain rules; differentiability and continuity; estimatinga derivative numerically and
graphically; implicit differentiation; derivative ofthe inverse of a function; the Mean Value
Theorem; recognizing a given limit as a derivative.

. Applications of Derivatives

Rates of change; slope; critical points; average velocity; tangents and normals; increasing and
decreasing functions; using the first and second derivatives for the following: local (relative) max
or min, concavity, inflection points, curve sketching, global (absolute) max or min and
optimization problems; relating a function and its derivatives graphically; motion along a line;
local linearization and its use in approximating a function; related rates; differential equations and
slope fields.

. The Definite Integral

Definite integral as the limit of a Riemann sum; area; definition of definite integral; properties of
the definite integral; Riemann sums using rectangles or sums using trapezoids; comparing
approximating sums; average value of a function; Fundamental Theorem of Calculus; graphing a
function from its derivative; estimating definite integrals from tables and graphs; accumulated
change as integral of rate of change.

. Integration
Antiderivatives and basic formulas; antiderivatives by substitution; applications of
antiderivatives; separable differential equations; motion problems.

. Applications of Integration to Geometry
Area of a region, including between two curves; volume of a solid of known cross section,
including a solid of revolution.

. Further Applications of Integration and Riemann Sums

Velocity and distance problems involving motion along a line; other applications involving the
use of integrals of rates as net change or the use of integrals as accumulation functions; average
value of a function over an interval.

. Differential Equations
Basic definitions; geometric interpretations using slope fields; solving first-order separable
differential equations analytically; exponential growth and decay.

TOPICS THAT MAY BE TESTED ON THE CALCULUS BC
EXAM

BC ONLY

Any of the topics listed above for the Calculus AB exam may be tested on the BC exam. The
following additional topics are restricted to the BC exam.

1. Functions and Graphs

Parametrically defined functions; polar functions; vector functions.



2. Limits and Continuity
No additional topics.

3. Differentiation
Derivatives of polar, vector, and parametrically defined functions; indeterminate forms;
L’Hopital’s rule.

4. Applications of Derivatives
Tangents to parametrically defined curves; slopes of polar curves; analysis of curves defined
parametrically or in polar or vector form.

5. The Definite Integral
Integrals involving parametrically defined functions.

6. Integration
By parts; by partial fractions (involving nonrepeating linear factors only); improper integrals.

7. Applications of Integration to Geometry
Area of a region bounded by parametrically defined or polar curves; arc length.

8. Further Applications of Integration and Riemann Sums
Velocity and distance problems involving motion along a planar curve; velocity and acceleration
vectors.

9. Differential Equations
Euler’s method; applications of differential equations, including logistic growth.
10. Sequences and Series

Definition of series as a sequence of partial sums and of its convergence as the limit of that
sequence; harmonic, geometric, and p-series; integral, ratio, and comparison tests for
convergence; alternating series and error bound; power series, including interval and radius of
convergence; Taylor polynomials and graphs; finding a power series for a function; MacLaurin
and Taylor series; Lagrange error bound for Taylor polynomials; computations using series.

THE EXAMINATIONS

The Calculus AB and BC Examinations and the course descriptions are prepared by committees of
teachers from colleges or universities and from secondary schools. The examinations are intended to
determine the extent to which a student has mastered the subject matter of the course.

Each examination is 3 hours and 15 minutes long, as follows:

Section I has two parts. Part A has 28 multiple-choice questions for which 55 minutes are
allowed. The use of calculators is not permitted in Part A.

Part B has 17 multiple-choice questions for which 50 minutes are allowed. Some of the questions
in Part B require the use of a graphing calculator.

Section II, the free-response section, has a total of six questions in two parts:

Part A has two questions, of which some parts require the use of a graphing calculator. After 30
minutes, however, you will no longer be permitted to use a calculator. If you finish Part A early,



you will not be permitted to start work on Part B.

Part B has four questions and you are allotted an additional 60 minutes, but you are not allowed
to use a calculator. You may work further on the Part A questions (without your calculator).

The section that follows gives important information on its use (and misuse!) of the graphing
calculator.

THE GRAPHING CALCULATOR: USING YOUR GRAPHING
CALCULATOR ON THE AP EXAM

The Four Calculator Procedures

Each student is expected to bring a graphing calculator to the AP Exam. Different models of
calculators vary in their features and capabilities; however, there are four procedures you must be
able to perform on your calculator:

C1. Produce the graph of a function within an arbitrary viewing window.

C2. Solve an equation numerically.

C3. Compute the derivative of a function numerically.

C4. Compute definite integrals numerically.

Guidelines for Calculator Use

1. On multiple-choice questions in Section I, Part B, you may use any feature or program on
your calculator. Warning: Don’t rely on it too much! Only a few of these questions require the
calculator, and in some cases using it may be too time-consuming or otherwise disadvantageous.

2. On the free-response questions of Section II Part A:

(a) You may use the calculator to perform any of the four listed procedures. When you do, you
need only write the equation, derivative, or definite integral (called the “setup”) that will produce the
solution, then write the calculator result to the required degree of accuracy (three places after the
decimal point unless otherwise specified). Note especially that a setup must be presented in standard
algebraic or calculus notation, not just in calculator syntax. For example, you must include in your

work the setup |xcn.~w 4r even if you use your calculator to evaluate the integral.
Jo

(b) For a solution for which you use a calculator capability other than the four listed above, you

must write down the mathematical steps that yield the answer. A correct answer alone will not earn
full credit.

(¢) You must provide mathematical reasoning to support your answer. Calculator results alone
will not be sufficient.

The Procedures Explained

Here 1s more detailed guidance for the four allowed procedures.

C1. “Produce the graph of a function within an arbitrary viewing window.” Be sure that you
create the graph in the window specified, then copy it carefully onto your exam paper. If no window
is prescribed in the question, clearly indicate the window dimensions you have used.

C2. “Solve an equation numerically” is equivalent to “Find the zeros of a function” or “Find the



point of intersection of two curves.” Remember: you must first show your setup—write the equation
out algebraically; then it is sufficient just to write down the calculator solution.

C3. “Compute the derivative of a function numerically.” When you seek the value of the derivative
of a function at a specific point, you may use your calculator. First, indicate what you are finding—for
example, f/ (6)—then write the numerical answer obtained from your calculator. Note that if you need
to find the derivative itself, rather than its value at a particular point, you must show how you
obtained it and what it is, even though some calculators are able to perform symbolic operations.

C4. “Compute definite integrals numerically.” If, for example, you need to find the area under a
curve, you must first show your setup. Write the complete integral, including the integrand in terms of
a single variable and with the limits of integration. You may then simply write the calculator answer;
you need not compute an antiderivative.

Sample Solutions of Free-Response Questions

The following set of examples illustrates proper use of your calculator on the examination. In all of
these examples, the function is

for O0=x=4,

) 10 x
flx)=—
T +4

Viewing window [0,4] % [0,3].
1. Graphfin[0,4] % [0,3].
Set the calculator window to the dimensions printed in your exam paper.
Graph y= 1%

¥ +d

Copy your graph carefully into the window on the exam paper.
2. Write the local linearization for f(x) near x = 1.
Note that (1) = 2. Then, using your calculator, evaluate the derivative:
(=12

Then write the tangent-line (or local linear) approximation

Flxy =7+ f(hix=1)

= 241 2{x-1)=12x+08

You need not simplify, as we have, after the last equals sign just above.



3. Find the coordinates of any maxima of /. Justify your answer.

Since finding a maximum 1s not one of the four allowed procedures, you must use calculus and
show your work, writing the derivative algebraically and setting it equal to zero to find any
critical numbers:

(" +4)M0-10x(2x) _ 40-10x"
(x* + 43 (x* +4)%

Fixy=

_10(2 —xX(2 +x)
(x* +4)°

Then f (x) =0 at x =2 and at x =—2; but —2 is not in the specified domain.

We analyze the signs of f/ (which is easier here than it would be to use the second-derivative
test) to assure thatx = 2 does yield a maximum for f. (Note that the signs analysis alone is not
sufficient justification.)

i incr decr

=
(]
£

Since /' is positive to the left of x = 2 and negative to the right of x = 2, f does have a maximum

at
pare)(23)

—but you may leave f'(2) in its unsimplified form, without evaluating to 2

(SR ]

You may use your calculator’s maximum-finder to verify the result you obtain analytically, but
that would not suffice as a solution or justification.

4. Find the x-coordinate of the point where the line tangent to the curve y =f (x) is parallel to the
secant on the interval [0,4].

Since /' (0) = 0 and f'(4) = 2, the secant passes through (0,0) and (4,2) and has slope m= 1.

To find where the tangent 1s parallel to the secant, we find f (x) as in Example 3. We then want
to solve the equation

- 40-10x* 1
Fix)=— e
(x~ +4) 2

The last equality above is the setup; we use the calculator to solve the equation: x = 1.458 is the
desired answer.

5. Estimate the area under the curve y = f (x) using the Trapezoid Rule with four equal subintervals.

fi

T =[O +2f()+2f(2)+2f(3) + f(4)]



You may leave the answer in this form or simplify it to 7.808. If your calculator has a program for
the Trapezoid Rule, you may use it to complete the computation after you have shown the setup as
in the two equations above. If you omit them you will lose credit.

6. Find the volume of the solid generated when the curve y = f'(x) on [0,4] is rotated about the x-axis.

Using disks, we have

AV = nR°H = my*Ax |

4

V=mn vl

<0

Note that the equation above is not yet the setup: the definite integral must be in terms of x alone:

d 3
[ .l.{}.l ] d
S0 g = ¥ "1

Now we have shown the setup. Using the calculator we can evaluate V-
V'=55.539

V=m

A Note About Solutions in This Book

Students should be aware that in this book we sometimes do not observe the restrictions cited above
on the use of the calculator. In providing explanations for solutions to illustrative examples or to
exercises we often exploit the capabilities of the calculator to the fullest. Indeed, students are
encouraged to do just that on any question of Section I, Part B, of the AP examination for which they
use a calculator. However, to avoid losing credit, you must carefully observe the restrictions imposed
on when and how the calculator may be used in answering questions in Section II of the examination.

Additional Notes and Reminders

* SYNTAX. Learn the proper syntax for your calculator: the correct way to enter operations, functions,
and other commands. Parentheses, commas, variables, or parameters that are missing or entered in the
wrong order can produce error messages, waste time, or (worst of all) yield wrong answers.

* RabpiIANS. Keep your calculator set in radian mode. Almost all questions about angles and
trigonometric functions use radians. If you ever need to change to degrees for a specific calculation,
return the calculator to radian mode as soon as that calculation is complete.

* TRIGONOMETRIC FUNCTIONS. Many calculators do not have keys for the secant, cosecant, or
cotangent function. To obtain these functions, use their reciprocals.

For example, sec i%| Lo feig l%:’ |

Evaluate inverse functions such as arcsin, arccos, and arctan on your calculator. Those function
keys are usually denoted as sin” !, cos™!, and tan™".

Don’t confuse reciprocal functions with inverse functions. For example:



cos ™ I:%] = arccos I:%] = %:

l

cos2

cos2™ =cos I:%:I =878

; v —l
(cos2) = =sec2 = -2 403

cos™ (2 =arcoos 2, which does not exist.

e NUMERICAL DERIVATIVES. You may be misled by your calculator if you ask for the derivative of a
function at a point where the function is not differentiable, because the calculator evaluates numerical
derivatives using the difference quotient (or the symmetric difference quotient). For example, if f (x)
= x|, then / (0) does not exist. Yet the calculator may find the value of the derivative as

flx+0001)— f(0) | Flx+0.001)— fix—-0001)
0001 . 2B 0.002

0.

Remember: always be sure fis differentiable at a before asking for f '(a).

* IMPROPER INTEGRALS. Most calculators can compute only definite integrals. Avoid using yours to
obtain an improper integral, such as

(= 1 dx
—dx or i
h x Jo X — |.J

* ROUNDING-OFF ERRORS. To achieve three-place accuracy in a final answer, do not round off
numbers at intermediate steps, since this is likely to produce error-accumulations. If necessary, store
longer intermediate answers internally in the calculator; do not copy them down on paper (storing is
faster and avoids transcription errors). Round off only after your calculator produces the final
answer.

* ROUNDING THE FINAL ANSWER: UP OR DOWN? In rounding to three decimal places, remember that
whether one rounds down or up depends on the nature of the problem. The mechanical rule followed
in accounting (anything less than 0.0005 is rounded down, anything equal to or greater than 0.0005 is
rounded up) does not apply.

Suppose, for example, that a problem seeks the largest &, to three decimal places, for which a
condition is met, and the unrounded answer is 0.1239 .... Then 0.124 is too large: it does not meet the
condition. The rounded answer must be 0.123. However, suppose that an otherwise identical problem
seeks the smallest k£ for which a condition is met. In this case 0.1239 meets the condition but 0.1238
does not, so the rounding must be up, to 0.124.

* FINAL ANSWERS TO SECTION II QUESTIONS. Although we usually express a final answer in this
book in simplest form (often evaluating it on the calculator), this is hardly ever necessary on Section
IT questions of the AP Examination. According to the directions printed on the exam, ‘“unless
otherwise specified” (1) you need not simplify algebraic or numerical answers; (2) answers
involving decimals should be correct to three places after the decimal point. However, be aware that
if you try to simplify, you must do so correctly or you will lose credit.

* USE YOUR CALCULATOR WISELY. Bear in mind that you will not be allowed to use your calculator
at all on Part A of Section I. In Part B of Section I and part of Section Il only a few questions will
require one. As repeated often in this section, the questions that require a calculator will not be



identified. You will have to be sensitive not only to when it is necessary to use the calculator but also
to when it is efficient to do so.

The calculator is a marvelous tool, capable of illustrating complicated concepts with detailed
pictures and of performing tasks that would otherwise be excessively time-consuming—or even
impossible. But the completion of calculations and the displaying of graphs on the calculator can be
slow. Sometimes it is faster to find an answer using arithmetic, algebra, and analysis without recourse
to the calculator. Before you start pushing buttons, take a few seconds to decide on the best way to
attack a problem.

GRADING THE EXAMINATIONS

Each completed AP examination paper receives a grade according to the following five-point scale:
5. Extremely well qualified

4. Well qualified

3. Qualified

2. Possibly qualified

1. No recommendation
SCORING CHANGE

In 2011 The College Board changed how the AP Calculus exams are scored. There is no penalty
for wrong answers in the multiple-choice section.

Many colleges and universities accept a grade of 3 or better for credit or advanced placement or
both; some also consider a grade of 2, while others require a grade of 4. (Students may check AP
credit policies at individual colleges’ websites.) More than 59 percent of the candidates who took the
2012 Calculus AB Examination earned grades of 3, 4, or 5. More than 82 percent of the 2012 BC
candidates earned 3 or better. More than 356,000 students altogether took the 2012 mathematics
examination.

The multiple-choice questions in Section I are scored by machine. Students should note that the
score will be the number of questions answered correctly. Since no points can be earned if answers
are left blank and there is no deduction for wrong answers, students should answer every question.
For questions they cannot do, students should try to eliminate as many of the choices as possible and
then pick the best remaining answer.

The problems in Section II are graded by college and high-school teachers called “readers.” The
answers in any one examination booklet are evaluated by different readers, and for each reader all
scores given by preceding readers are concealed, as are the student’s name and school. Readers are
provided sample solutions for each problem, with detailed scoring scales and point distributions that
allow partial credit for correct portions of a student’s answer. Problems in Section II are all counted
equally.

In the determination of the overall grade for each examination, the two sections are given equal
weight. The total raw score is then converted into one of the five grades listed above. Students should
not think of these raw scores as percents in the usual sense of testing and grading. A student who
averages 6 out of 9 points on the Section Il questions and performs similarly well on Section I’s
multiple-choice questions will typically earn a 5. Many colleges offer credit for a score of 3,



historically awarded for earning over 40 of 108 possible points.

Students who take the BC examination are given not only a Calculus-BC grade but also a
Calculus-AB subscore grade. The latter i1s based on the part of the BC examination dealing with
topics in the AB syllabus.

In general, students will not be expected to answer all the questions correctly in either Section I or
I

Great care 1s taken by all involved in the scoring and reading of papers to make certain that they
are graded consistently and fairly so that a student’s overall AP grade reflects as accurately as
possible his or her achievement in calculus.

THE CLEP CALCULUS EXAMINATION

Many colleges grant credit to students who perform acceptably on tests offered by the College Level
Examination Program (CLEP). The CLEP calculus examination is one such test.

The College Board’s CLEP Official Study Guide: 16th Edition provides descriptions of all
CLEP examinations, test-taking tips, and suggestions on reference and supplementary materials.
According to the Guide, the calculus examination covers topics usually taught in a one-semester
college calculus course. It is assumed that students taking the exam will have studied college-
preparatory mathematics (algebra, plane and solid geometry, analytic geometry, and trigonometry).

There are 45 multiple-choice questions on the CLEP calculus exam, for which 90 minutes are
allowed. A calculator may not be used during the examination.

Approximately 60 percent of the questions are on limits and differential calculus and about 40
percent on integral calculus. The specific topics that may be tested on the CLEP calculus exam are
essentially those under the heading “Topics That May Be Tested on the Calculus AB Exam.”
(I”Hopital’s Rule is listed as a CLEP calculus topic but only as a BC topic for the AP exam. Also,
the only topics listed as applications of the definite integral for the CLEP calculus test are “average
value of a function on an interval” and “area.”

Since any topic that may be tested on the CLEP calculus exam is included in this book on the AP
Exam, a candidate who plans to take the CLEP exam will benefit from a review of the AB topics
covered here. The multiple-choice questions in Part A of Chapter 11 and in Part A of Section I of
each of the four AB Practice Examinations will provide good models for questions on the CLEP
calculus test.

A complete description of the knowledge and skills required and of the specific topics that may be
tested on the CLEP exam can be downloaded from the College Board’s web site at
www.collegeboard.com/clep.

THIS REVIEW BOOK

This book consists of the following parts:

Diagnostic tests for both AB and BC Calculus are practice AP exams. They are followed by
solutions keyed to the corresponding topical review chapter.

Topical Review and Practice includes 10 chapters with notes on the main topics of the Calculus

AB and BC syllabi and with numerous carefully worked-out examples. Each chapter concludes with a
set of multiple-choice questions, usually divided into calculator and no-calculator sections, followed


http://www.collegeboard.com/clep

immediately by answers and solutions.

This review 1is followed by further practice: (1) Chapter 11, which includes a set of multiple-
choice questions on miscellaneous topics and an answer key; (2) Chapter 12, a set of miscellaneous
free-response problems that are intended to be similar to those in Section II of the AP examinations.
They are followed by solutions.

The next part of the book, titled Practice Examinations: Sections I and II, has three AB and three
BC practice exams that simulate the actual AP examinations. Each is followed by answers and
explanations.

In this book, review material on topics covered only in Calculus BC is preceded by an asterisk
(*), as are both multiple-choice questions and free-response-type problems that are likely to occur
only on a BC Examination.

THE TEACHER WHO USES THIS BOOK WITH A CLASS may profitably do so in any of several ways. If
the book is used throughout a year’s course, the teacher can assign all or part of each set of multiple-
choice questions and some miscellaneous exercises after the topic has been covered. These sets can
also be used for review purposes shortly before examination time. The Practice Examinations will
also be very helpful in reviewing toward the end of the year. Teachers may also assemble
examinations by choosing appropriate problems from the sample Miscellaneous Practice Questions in
Chapters 11 and 12.

STUDENTS WHO USE THIS BOOK INDEPENDENTLY will improve their performance by studying the
illustrative examples carefully and trying to complete practice problems before referring to the
solution keys.

Since many FIRST-YEAR MATHEMATICS COURSES IN COLLEGES follow syllabi much like that proposed
by the College Board for high-school Advanced Placement courses, college students and teachers
may also find the book useful.

FLASH CARDS

Being able to answer AP exam questions quickly and correctly depends in part on knowing many
fundamental facts, such as

» common math formulas (e.g., area, volume, trig identities);

* definitions of key terms (e.g., continuous, differentiable, integrable);

 important theorems (e.g., Mean Value Theorem, Fundamental Theorem of Calculus); and
* derivatives and antiderivatives of common functions.

Barron's AP Calculus Flash Cards (ISBN 9780764194214) provide a great way to study these facts
and more. Over 300 cards will help you learn the most important information you’ll need to know for
the AP Calculus examination.



DIAGNOSTIC
TESTS
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All directions on the Diagnostic Tests reflect those seen on the actual exams. Please record all
answers separately.




*Answer Sheets Are For Reference Only.
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Dlagnostlc Test Calculus AB

All questions are linked to their individual answers. Simply click on the question numbers to move
back and forth.

SECTION I
Part A TIME: 5s MINUTES

The use of calculators is not permitted for this part of the examination. There are 28 questions
in Part A, for which 55 minutes are allowed. Because there is no deduction for wrong answers,
you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question.

'2
1. ]:m 1,_, is

—_."1—1

(A)3

(B) 1
(O
(D) ©
(E)O

Lm(—+h)

2. lim
(A) 1
(B) nonexistent
(©)0
(D) -1
(E) none of these

is

3.1If, for all x, £ '(x) = (x — 2)* (x — 1)3, it follows that the function f has
(A) a relative minimum at x = 1
(B) a relative maximum at x = 1
(C) both a relative minimum at x = 1 and a relative maximum at x = 2

(D) neither a relative maximum nor a relative minimum



(E) relative minima atx =1 and atx =2

4. Let (= | % a. Which of the following statements is (are) true?

[+¢
LF'0)=5
IL F(2) < F(6)

IIL. F is concave upward.

(A) T only

(B) I only

(C) 1 only

(D) I and II only

(E) I and IIT only

5.1f £ (x) = 10* and 101-%4 —~ 10.96, which is closest to f(1)?
(A) 0.24
(B) 0.92
(C) 0.96
(D) 10.5
(E) 24

6. If / 1s differentiable, we can use the line tangent to f'at x = a to approximate values of f near x =
a. Suppose this method always underestimates the correct values. If so, then at x = a, the graph
of f must be

(A) positive

(B) increasing

(C) decreasing

(D) concave upward

(E) concave downward

7. If f (x) = cos x sin 3x, then y[ §| is equal to
(A) 2
(B) 3

(C) 0
(D) 1



8. [ 24 is equal to

0T +1

(A) X

(B) In 55

O Li(n2-1)
(D) i

(E) {n 2

9. The graph of /" is shown below. If /(1) =0, then f (x) =0 atx =

(A) 0
(B) 2
(O3
(D) 4
(E) 7

Questions 10 and 11. Use the following table, which shows the values of differentiable functions f
and g.

]
b —

g
Lad

014

4 /(6| 4 3

T

10. If P(x) = g2 (x), then P (3) equals
(A) 4
(B) 6
9



(D) 12
(E) 18

11. If H(x) = f "'(x), then H (3) equals
(A) - L

16
(B) -
© -
(D) L
(E) 1

3
8

td | —

12. The total area of the region bounded by the graph of , - ./j—* and the x-axis is
(A) L
(B) L:2
(OF
(D) 2
(E) 1

13. The graph of y = l‘-}q 1s concave upward when

(A)x>3
B)1<x<3
O)x>1
D) x<1
(E) x<3

14. As an ice block melts, the rate at which its mass, M, decreases is directly proportional to the
square root of the mass. Which equation describes this relationship?

(A) pmy=ii
B) M=k
© D
dr
(D) ﬂ= k \"'H
dr
ad &
(E) T_ \.'I'F

15. The average (mean) value of tan x on the interval fromx = 0 to « =% 18



(A) InL
(B) 2 In2
(C) In2
(D) 5

(E) 2

16. jgin[ ) de=
(A) —cos (x*) + C
(B) cos (x?) + C
(C) -2

2x

(D) 2x cos x>+ C
(E) none of these

17. Water 1s poured at a constant rate into the conical reservoir shown in the figure. If the depth of
the water, 4, is graphed as a function of time, the graph is

(A) decreasing

(B) constant

(O) linear

(D) concave upward

(E) concave downward

18. If )= J.fz forx =1 then

2x—1 forx >1
(A) f(x) is not continuous at x = 1
(B) f(x) 1s continuous at x = 1 but / /(1) does not exist
(C) f'(1) exists and equals 1
D) f1(1)=2

(E) lim fi) does not exist



19. lim i) is

=" X — 2

(A) —oo

(B) -1

O 1

(D) oo

(E) nonexistent

Questions 20 and 21. The graph below consists of a quarter-circle and two line segments, and
represents the velocity of an object during a 6-second interval.

! 1 | = [{zcc)

....
wa—
=

20. The object’s average speed (in units/sec) during the 6-second interval is

AmM+3
(A) =

(B) 4 ﬂﬁ._ 3
(C) -1
(D) -3

(E) 1

21. The object’s acceleration (in units/sec?) at t = 4.5 is
(A)O
(B) -1
(C) 2
(D) 1
(E) an- -

4
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22. Which of the following equations can be a solution of the differential equation whose slope
field is shown above?

(A) 2xy=1

(B) 2x+y=1
(C) 2x*+y*=1
(D) 2x* —y*=1
(E) y=2x*+1

23.If y is a differentiable function of x, then the slope of the curve of xy? — 2y + 4y = 6 at the point
where y =1 1s

(A)-L
(B) __L

26
©) =
(D)1t
(E) 2

24. In the following, L(n), R(n), M(n), and T(n) denote, respectively, left, right, midpoint, and
trapezoidal sums with n subdivisions. Which of the following is not equal exactly to E|_1| dx?

(A) L(2)
(B) M(2)
(O 7(3)
(D) M(4)
(E) R(6)



25. The table shows some values of a differentiable function f'and its derivative f "

fin |3 4

—_— g ]
# ]

flo|4 =1

Find L“_;‘tﬂdx.
(A) 5

(B) 6
©)11.5
(D) 14

(E) 17

26. The solution of the differential equation £ _ 2y for whichy =—1 whenx =1 is

lx

(A) y=—L forx#0
(B) y=—L forx>0

(C)Iny?=x>—1forall x
(D) y=_Lforx#0

(E) y=—Lforx>0

27. The base of a solid is the region bounded by the parabola y? = 4x and the line x = 2. Each plane
section perpendicular to the x-axis is a square. The volume of the solid 1s

(A)6
(B) 8
(C) 10
(D) 16
(E) 32

28. Which of the following could be the graph of = ‘— ?

=

(A

i




(C) {D}\I
{E}T f

END OF PART A, SECTION |



Part B TIME: 50 MINUTES

Some questions in this part of the examination require the use of a graphing calculator. There
are 17 questions in Part B, for which 50 minutes are allowed. Because there is no deduction for
wrong answers, you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question. If the exact numerical value of the correct
answer 1s not listed as a choice, select the choice that 1s closest to the exact numerical answer.

29. If F(3) =8 and F '(3) = —4 then F(3.02) 1s approximately
(A) —8.08
(B) 7.92
(C) 7.98
(D) 8.02
(E) 8.08

30. An object moving along a line has velocity v(¢) =¢ cos ¢ — In (¢ + 2), where 0 <¢ < 10. How
many times does the object reverse direction?

(A) none
(B) one
(C) two
(D) three
(E) four

Questions 31 and 32. Refer to the graph of /' below.

31. f has a local minimum at x =
(A) 0 only



(B) 4 only
(C)0and 4
(D)0 and 5
(E)0,4,and 5

32. The graph of f has a point of inflection at x =
(A) 2 only
(B) 3 only
(C) 4 only
(D) 2 and 3 only
(E) 2, 3,and 4

33. For what value of ¢ on 0 <x < 1 is the tangent to the graph of / (x) =e* — x? parallel to the
secant line on the interval [0,1]?

(A) —0.248
(B) 0.351
(C) 0.500
(D) 0.693
(E) 0.718

34. Find the volume of the solid generated when the region bounded by the y-axis, y = e*, and y =2
is rotated around the y-axis.

(A) 0.296
(B) 0.592
(C) 2.427
(D) 3.998
(E) 27.577

35. The table below shows the “hit rate” for an Internet site, measured at various intervals during a
day. Use a trapezoid approximation to estimate the total number of people who visited that site.

Time Midnight 6 AM. 8 AM. Noon SPM 8 PM. Midnight
People per 5 2 3 8 10 16 5
minute

(A) 5280

(B) 10,080



(C) 10,440
(D) 10,560
(E) 15,840

36. The acceleration of a particle moving along a straight line is given by a = 6¢. If, when ¢ = 0, its
velocity, v, 1s 1 and its position, s, is 3, then at any time ¢

(A)s=£+3
B)s=1+3t+1
(O s=+t+3
(D).-=“_Tl+r+3

(E) & =%+%+3

37. Ify :f(xZ) and Fixy= J3x—1 then dy 18 equal to

dx
(A) 55201

(B) 5o

(O) 2051

(D) F5x=1

Fl s

(E) none of these

38. Find the area of the first quadrant region bounded by y = x?, y = cos (x), and the y-axis.
(A) 0.292
(B) 0.508
(C) 0.547
(D) 0.667
(E) 0.921

39. If the substitution x = 2¢ + 1 is used, which of the following is equivalent to |4/ 11 a4
(A) }: v dx
(B) %j: %“..."1_ i
(C) ,H']] {T il
a Sel-
(D) J‘]T%;t-": il
(E) Zf t-"? il



40. At noon, an experimenter has 50 grams of a radioactive isotope. At noon 9 days later only 45
grams remain. To the nearest day, how many days after the experiment started will there be only

20 grams?
(A) 54
(B) 59
(C) 60
D) 75
(E) 78

41. A 26-foot ladder leans against a building so that its foot moves away from the building at the
rate of 3 feet per second. When the foot of the ladder is 10 feet from the building, the top is

moving down at the rate of  feet per second, where r 1s
(A) %

(B) 2

©3

3

() &

42. Ifr[.u:-]'“ L. then F '(x) =

1 -r

(A) -
(B) L
(©) —
(D) ——
(E) —

A alttise n:""J

¥i{Eoc)

43. The graph above shows an object’s acceleration (in ft/sec?). It consists of a quarter-circle and
two line segments. If the object was at rest at # = 5 seconds, what was its initial velocity?



(A) —2 fi/sec
(B) 3 —m ft/sec
(O) 0 fi/sec
(D) © — 3 fi/sec
(E) n + 3 ft/sec

44, Water is leaking from a tank at the rate of R(¢) = 5 arc wun HJ gallons per hour, where ¢ is the
number of hours since the leak began. How many gallons will leak out during the first day?
(A) 7
(B) 82
(C) 124
(D) 141
(E) 164

45. Find the y-intercept of the line tangent to y = (x> — 4x? + 8)e®° 2 atx=2.
(A) —21.032
(B) —2.081
OO0
(D) 4.161
(E) 21.746

i,
@
R a8

END OF SECTION |



SECTION II

Part A TIME. ;0 MINUTES
: PROBLEMS

A graphing calculator is required for some of these problems.
See instructions.

1. When a faulty seam opened at the bottom of an elevated hopper, grain began leaking out onto the
ground. After a while, a worker spotted the growing pile below and began making repairs. The
following table shows how fast the grain was leaking (in cubic feet per minute) at various times
during the 20 minutes it took to repair the hopper.

¢ (min) oll4]s5)7)10]12]18]20

L) (f3/min) |4 | 798| 6| 5| 21| 0

(a) Estimate L (15).
(b) Explain in this context what your answer to part a means.

(c) The falling grain forms a conical pile that the worker estimates to be 5 times as far across as it
is deep. The pile was 3 feet deep when the repairs had been half completed. How fast was the
depth increasing then?

(d) Estimate the total amount of grain that leaked out while the repairs were underway.

2. An object in motion along the x-axis has velocity v(¢) = (¢ + ¢ )sin ¢ for 1 <t < 3.
(a) Sketch the graph of velocity as a function of time in the window [1,3] x [—15,20].
(b) When is the object moving to the left?
(c) Give one value of ¢ from the interval in part (b) at which the speed of the object is increasing.



Justify your answer.
(d) Atz =1 this object’s position was x = 10. Where is the object when ¢ = 3?

@

Part B TIME. 0o MINUTES
4+ PROBLEMS

END OF PART A, SECTION 11

No calculator is allowed for any of these problems.
If you finish Part B before time has expired, you may return to work on Part A, but you may not
use a calculator.

3. Let & be a function that is even and continuous on the closed interval [-4,4]. The function 4 and
its derivatives have the properties indicated in the table below. Use this information to sketch a
possible graph of 4 on [—4,4].

X h(x) h '(x) h "(x)
0 - 0 +
0<x<Il1 — + +

1 0 + 0

I <x<2 + + _

2 + 0 0
2<x<3 + + +

3 + undefined undefined



I3I<x<4 + — —

4. Let C represent the curve determined by f(=—"_ for -2 <x < 11.

W20 +3
(a) Let R represent the region between C and the x-axis. Find the area of R.

(b) Set up, but do not solve, an equation to find the value of & such that the line x = & divides R into
two regions of equal area.

(c) Set up an integral for the volume of the solid generated when R is rotated around the x-axis.

5. Let y = f (x) be the function that has an x-intercept at (2,0) and satisfies the differential equation

P 4
et —=4,

il

(a) Solve the differential equation, expressing y as a function of x and specifying the domain of the
function.

(b) Find the equation of each horizontal asymptote to the graph of y = f'(x).

6. The graph of function f consists of the semicircle and line segment shown in the figure. Define
the area function c=['fndr for0<x<18.

61+ (18,6)

(a) Find A(6) and A(18).

(b) What is the average value of f on the interval 0 <x < 18?

(c) Write the equation of the line tangent to the graph of 4 at x = 6.

(d) Use this line to estimate the area between f and the x-axis on [0,7].

(e) Give the coordinates of any points of inflection on the graph of 4. Justify your answer.



END OF TEST



*Answer Sheets Are For Reference Only.
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Diagnostic Test Calculus BC

| % . .. " . b " . b " . . b b |

All questions are linked to their individual answers. Simply click on the question numbers to move
back and forth.

SECTION I

Part A TIME: 55 MINUTES

The use of calculators is not permitted for this part of the examination.

There are 28 questions in Part A, for which 55 minutes are allowed. Because there is no
deduction for wrong answers, you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question.

(A) 1

(B) nonexistent
(©)0

(D) -1

(E) none of these

3.1If, for all x, £ '(x) = (x — 2)* (x — 1)?, it follows that the function f has
(A) a relative minimum at x = 1
(B) a relative maximum at x = 1
(C) both a relative minimum at x = 1 and a relative maximum at x = 1

(D) neither a relative maximum nor a relative minimum



(E) relative minima atx =1 and atx =2

4. Let (= | % a. Which of the following statements is (are) true?

[+¢
LF'0)=5
IL. F(2) < F(6)
IIL. F is concave upward.
(A) T only
(B) I only
(C) 1T only
(D) I and II only
(E) I .and IIT only

5.1f £ (x) = 10* and 101-%% — 10.96, which is closest to f(1)?
(A) 0.24
(B) 0.92
(C) 0.96
(D) 10.5
(E) 24

6. If / 1s differentiable, we can use the line tangent to f'at x = a to approximate values of f near x =
a. Suppose this method always underestimates the correct values. If so, then at x = a, the graph
of f must be

(A) positive

(B) increasing

(C) decreasing

(D) concave upward

(E) concave downward

7. The region in the first quadrant bounded by the x-axis, the y-axis, and the curve of y =e™ * is
rotated about the x-axis. The volume of the solid obtained is equal to

(A)
(B) 21
©) .
D)2

(E) none of these



8. ['£4C is equal to
x4+

(A) X

(B) In 5
(©) Lanz )
(D) 2

(E) {n 2

9. lim x*

(A)=0
(B) =1
(O =e
(D) =0

(E) does not exist

Questions 10 and 11. Use the table below, which shows the values of differentiable functions f and g.

| | I

-
| =

I
fad

0|4

4 /(6] 4 3

b3 | —

10. If P(x) = g (x), then P (3) equals
(A) 4
(B) 6
(©) 9
(D) 12
(E) 18

11. If H(x) = f "'(x), then H (3) equals
(A) -
(B) -5
(=

-



(D) 1
®) 1

12. J'ci xe*dx equals
(A) 1
(B) -1
(C)2-e
D).

(E)e—1

13. The graph of y = 1= is concave upward when

=3
(A)x>3
B) 1 <x<3
OC)x>1
M)x<1
(E)x<3

14. As an ice block melts, the rate at which its mass, M, decreases is directly proportional to the
square root of the mass. Which equation describes this relationship?

(A) my=ii
B) M=k

© D _;

(D) %= kM
ad &
(E) <-= T

15. The length of the curve y = 2x>? between x = 0 and x = 1 is equal to
(A) 55(10)
® 2o
©
(D)

(E) none of these



16. If & = kx, and if x =2 when ¢ = 0 and x = 6 when ¢ = 1, then k equals

d
(A)In4
(B) 8
(oX
(D)3
(E) none of these

17. Ify = x? Inx (x > 0), then y " is equal to
(A)3+Inx
(B)3+2Inx
(C)31nx
M)3+3Inx
(E)2+x+Inx

18. A particle moves along the curve given parametrically by x = tan ¢ and y = 2 sin ¢. At the instant
when ;= % the particle’s speed equals

(A) ;3

(B) ;5

© s

(D) yi7

(E) none of these

19. Suppose & - 10

de x+y
1.

(A) 1

(B) 2

©3

(D) 4

(E) st

and y = 2 when x = 0. Use Euler’s method with two steps to estimate y atx =

Questions 20 and 21. The graph below consists of a quarter-circle and two line segments, and
represents the velocity of an object during a 6-second interval.




= [ (52C)

20. The object’s average speed (in units/sec) during the 6-second interval is

4m 43
(A) =2

4m—3
(B) ==

(C) -1

(E) 1

21. The object’s acceleration (in units/sec?) at t = 4.5 is

(A)0

(B) -1

(O 2

(D) _L

4
l

(E) 4n-L
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22. Which of the following equations can be a solution of the differential equation whose slope



field is shown above?

(A) 2xy =1

(B) 2x+y=1
(C) 2x2+y%=1
(D) 2x* —y*=1
(E) y=2x*>+1

23. If y is a differentiable function of x, then the slope of the curve of xy?> — 2y + 4y = 6 at the point
where y=11s

)L
(B)_L
© 3
(D) 1t
(E) 2

24. For the function f shown in the graph, which has the smallest value on the interval 2 <x < 6?

—=x

(A) _[" flayde

(B) The left Riemann sum with 8 subintervals.

(C) The right Riemann sum with 8 subintervals.

(D) The midpoint Riemann sum with 8 subintervals.

(E) The trapezoidal approximation with 8 subintervals

25. The table shows some values of a differentiable function f'and its derivative f "



e |0 123
fin |3 4|2 8
fio|4|-1[1]10

Find _f: Fldr.
(A)5

(B) 6
(©)11.5
(D) 14

(E) 17

26. The solution of the differential equation % _»,,2 for which y =—1 whenx =1 is

dlx
(A) y= ——l, for x=10
X

(B) y= —LE for x>0

X

(C) Iny?>=x>—1forall x
(D) ;-:_% for x 20

(E) y= ~Liorx>0
X

27. The base of a solid is the region bounded by the parabola y? = 4x and the line x = 2. Each plane
section perpendicular to the x-axis is a square. The volume of the solid is

(A)6
(B) 8
(C) 10
(D) 16
(E) 32

28. Which of the following could be the graph of y - ‘_ ?

(A) (B

T~

-



(E)

A
@

Part B TIME. 50 MINUTES

END OF PART A, SECTION |

Some questions in this part of the examination require the use of a graphing calculator. There
are 17 questions in Part B, for which 50 minutes are allowed. Because there is no deduction for
wrong answers, you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question. If the exact numerical value of the correct
answer 1s not listed as a choice, select the choice that is closest to the exact numerical answer.

29. When partial fractions are used, the decomposition of % 1s equal to
X" +3x+<

A)_2 3
( ) i+l x+2
B) 2,3

i+l x42

i+l x42

(D) ——s—
x+1 x+2
(E)__2___3

x+l x+2



30. The region S in the figure above is bounded by y = sec x and y = 4. What is the volume of the
solid formed when S is rotated about the x-axis?

(A) 0.304
(B) 39.867
(C) 53.126
(D) 54.088
(E) 108.177

31. The series

. . (x=1" (x-1¥" (x-1)*
U—U—[I,,,J (x=1y (x-1}
2l 3! 41

converges
(A) for all real x
B)if0=x<2
O)if0<x=2

(D) onlyifx=1

(E) for all x except 0 <x <2

32. If f (x) is continuous at the point where x = a, which of the following statements may be false?
(A) lim f(x)exists.

X—a

(B) lim f(x) = fla).

(C) f (a) exists.
(D) f (a) 1s defined.
(E) lim f(x)= lim f(x).

x—a

33. A Maclaurin polynomial is to be used to approximate y = sinx on the interval — n= x = 7.
What is the least number of terms needed to guarantee no error greater than 0.1?



(A)3
(B) 4
©)5
(D) 6
(E) none of these

34. Find the area bounded by the y-axis and the curve defined parametrically by x(¢) =4 — 12, y(f) =
2!,
(A) 6.328
(B) 8.916
(C) 10.667
(D) 12.190
(E) 74.529

35. Which series diverges?
(A) 30
n=1 -
B 3=

n=1 B

(C) Z[ )"

=1 '\.H

(D) z[ )"

‘1u+l

(E er. 1) n

=1 dn+1

36.Ifx=2t—1andy=3—4¢, then% is

(A) 4t
(B) —4¢
© —i

(D) 2(x + 1)
(E) ~4(x + 1)

37. For the substitution x = sin 0, which integral is equivalent to ' Meas
0 X

(A) i[]_ oot 6468
(B) ] -:.m Sy



©) J[:” atl o

sinf

+1cos” B
(D) ' 2 g
<0 sin B

(E) none of these

38. The coefficient of x> in the Taylor series of In (1 — x) about x = 0 (the Maclaurin series) is
(A) -3
B)_1L

2

(C)_L

3

D)o
(E)L

39. The rate at which a rumor spreads across a campus of college students is given by
4P _ g 161200 - p), where P(T) represents the number of students who have heard the rumor after ¢

ciays. If 200 students heard the rumor today (¢ = 0), how many will have heard it by midnight the
day after tomorrow (¢ =2)?

(A) 320

(B) 474

(C) 494

(D) 520

(E) 726
g
S

40. Water 1s poured at a constant rate into the conical reservoir shown above. If the depth of the
water, £, is graphed as a function of time, the graph is

(A) decreasing

(B) constant

(O) linear

(D) concave upward

(E) concave downward



41. A 26-foot ladder leans against a building so that its foot moves away from the building at the
rate of 3 feet per second. When the foot of the ladder is 10 feet from the building, the top is
moving down at the rate of » feet per second, where 7 is

(A) %ﬁ
3
(B) 3
© 3
O
(E)2

2.1 = [*toar  then F(x) =

I

(A) L,
(B) L
© 2
D) L
(E) 2,

43. The graph above shows an object’s acceleration (in ft/sec?). It consists of a quarter-circle and
two line segments. If the object was at rest at # = 5 seconds, what was its initial velocity?

(A) -2 ft/sec
(B) 3 —m ft/sec
(O) 0 fi/sec
(D) T — 3 fi/sec
(E) n + 3 ft/sec

44. Water 1s leaking from a tank at the rate of R(#) = 5 arctan |%) gallons per hour, where ¢ is the

number of hours since the leak began. How many gallons will leak out during the first day?



(A) 7
(B) 82

(C) 124
(D) 141
(E) 164

45. The first-quandrant area inside the rose » = 3 sin 20 is approximately
(A) 0.59
(B) 1.50
©) 1.77
(D) 3.00
(E) 3.53

.
@
3 -

END OF SECTION |

Section I1

Part A TIME. ;0 MINUTES
2 PROBLEMS

A graphing calculator is required for some of these problems.
See instructions.

m

converge?

1. (a) For what positive values of x does f(x)= i(—l )
= In(n+1)

(b) How many terms are needed to estimate f(0.5) to within 0.01?

(c) Would an estimate for /' (—0.5) using the same number of terms be more accurate, less accurate,
or the same? Explain.

2. An object in motion along the x-axis has velocity v(¢) = (¢ + €’ )sin #* for 1 < ¢ < 3.
(a) Sketch the graph of velocity as a function of time in the window [1,3] % [—15,20].



(b) When is the object moving to the left?

(c) Give one value of 7 from the interval in part (b) at which the speed of the object is increasing.
Justify your answer.

(d) Atz =1 this object’s position was x = 10. Where 1s the object when ¢ = 3?

Part B TIME. o MINUTES

4 PROBLEMS

END OF PART A, SECTION 1I

No calculator is allowed for any of these problems.
If you finish Part B before time has expired, you may return to work on Part A, but you may not
use a calculator.

3. When a faulty seam opened at the bottom of an elevated hopper, grain began leaking out onto the
ground. After a while, a worker spotted the growing pile below and began making repairs. The
following table shows how fast the grain was leaking (in cubic feet per minute) at various times
during the 20 minutes it took to repair the hopper.

¢ (min)




wo@mn | 47| s e [s ]2
(a) Estimate L (15).

(b) Explain in this context what your answer to part a means.

(c) The falling grain forms a conical pile that the worker estimates to be 5 times as far across as it
is deep. The pile was 3 feet deep when the repairs had been half completed. How fast was the
depth increasing then?

(d) Estimate the total amount of grain that leaked out while the repairs were underway.

. Let f'be the function satisfying the differential equation %: 2¢(y? +1) and passing through (0, —1).

(a) Sketch the slope field for this differential equation at the points shown.

.‘l !

-1,1)  (0,1) (1,1)

» L]
L0y {0,0) (1.0}

- 2 = X
(-1-1) (0,.-1) (11}

» L]

(b) Use Euler’s method with a step size of 0.5 to estimate f'(1).

(c) Solve the differential equation, expressing f as a function of x.

. Let C represent the arc of the curve determined by P(¢) = (9 — #2, 2 /) between its y-intercepts.
Let R represent the region bounded by C and the y-axis. Set up, but do not evaluate, an integral
in terms of a single variable for:

(a) the area of R;
(b) the length of C;

(c) the volume of the solid generated when R is rotated around the y-axis.

. The graph of function f consists of the semicircle and line segment shown in the figure. Define
the area function . ;:_[;"__rr_a;.m for0<x<18.



(18,6)

(a) Find A(6) and A(18).

(b) What 1s the average value of f on the interval 0 <x < 18?

(c) Write the equation of the line tangent to the graph of 4 at x = 6.

(d) Use this line to estimate the area between f and the x-axis on [0,7].

(e) Give the coordinates of any points of inflection on the graph of 4. Justify your answer.

END OF TEST
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CHAPTER 1 Functions

Concepts and Skills

In this chapter you will review precalculus topics. Although these topics are not directly tested on
the AP exam, reviewing them will reinforce some basic principles:

« general properties of functions: domain, range, composition, inverse;

» special functions: absolute value, greatest integer; polynomial, rational, trigonometric,
exponential, and logarithmic;

and the BC topics,

* parametrically defined curves * polar curves

Function
Domain

Range

A. DEFINITIONS

Al. A function f is a correspondence that associates with each element a of a set called the
domain one and only one element b of a set called the range. We write

fla)=»b

to indicate that b is the value of f at a. The elements in the domain are called inputs, and those in the
range are called outputs.

A function is often represented by an equation, a graph, or a table.

A vertical line cuts the graph of a function in at most one point.

EXAMPLE 1

The domain of f (x) = x? — 2 is the set of all real numbers; its range is the set of all reals greater
than or equal to —2. Note that

fO)=F-2=-2, fi-1)=(-1F-2=-
i) =(Br-2=1, floo=c-2,
fix+ h)—flx)y =[x+ h)?-2]-[x*-2]

=x2+2hx+ R -2-2+2=2Ix+ I~

EXAMPLE 2



Find the domains of: () f(x) = =2 B ew= o5 (@ h) = i ks,

-9 X
SOLUTIONS:
(a) The domain of f(x) = 2 1s the set of all reals except x = 1 (which we shorten to “x # 17).
(b) The domain of gx)= —*— isx=3,-3.

x*-9
(¢) The domain of ;) ¥4 —x is x = 4, x # 0 (which is a short way of writing {x [x is real, x <0
or 0 <x =4}).

A2. Two functions f and g with the same domain may be combined to yield their sum and
difference: f (x) + g(x) and f (x) — g(x), also written as (f + g) (x) and (f —g) (x), respectively; or
their product and quotient: f'(x)g(x) and f (x)/g(x), also written as (fg)(x) and (f/g) (x), respectively.
The quotient is defined for all x in the shared domain except those values for which g(x), the
denominator, equals zero.

EXAMPLE 3
If £ (x) = x2 — 4x and g(x) =x + 1, then find L2 ;g £90
1..;

zix) fix)
flx) _ x* —dx

SOLUTIONS: & x+l

glx} x+1 x4+l
Ffix) x*-dx x(x-4)

and has domain x 2 —1;

and has domain x# 0, 4.

Composition

A3. The composition (or composite) of f with g, written as f (g(x)) and read as “f of g of x,” 1s the
function obtained by replacing x wherever it occurs in f (x) by g(x). We also write (f ¢ g) (x) forf

(g(x)). The domain of (f o g) (x) is the set of all x in the domain of g for which g(x) i1s in the domain
of f.

EXAMPLE 4A
If £ (x) = 2x — 1 and g(x) = x%, then does f (g(x)) = g(f (x))?
SOLUTION:  f(g(x)) = 2() — 1 =22 — |
f{fON=2x-1P=4"—-4x+ 1.
In general, f(g(x)) # g(f (x)).
EXAMPLE 4B

Iff (x) = 4x* — 1 and g(x) = ; find / (g(x)) and g(f (x)).
SOLUTIONS: f(g(x)) =4x = 1 (x 2 0); g0 = 45" -1 (/= 3.

Symmetry




Ad. A function fis @44 if, for all x in the domain of f, /L) =-/(x).

EVEN fl=x)1=fix)
The graph of an odd function is symmetric about the origin; the graph of an even function is symmetric
about the y-axis.

EXAMPLE 5
The graphs of fx) = i_x3 and g(x) = 3x%> — 1 are shown in Figure N1—1; £ (x) is odd, g(x) even.

=iy
JFix) = 2.1.

fi-a) = ér—.wz‘ =—fx)

e o Fix) iz add iT

gix)=3x"-1
Bl=x)=3(—=xy-1 =32~ 1 = g(x)
gix) is even

FIGURE N1-1

AS. If a function f yields a single output for each input and also yields a single input for every
output, then f is said to be one-to-one. Geometrically, this means that any horizontal line cuts the
graph of / in at most one point. The function sketched at the left in Figure N1-1 is one-to-one; the
function sketched at the right is not. A function that 1s increasing (or decreasing) on an interval / is
one-to-one on that interval.

A6. If f is one-to-one with domain X and range Y, then there is a function f !, with domain Y and
range X, such that

Yy =xo ifandonlyif f(xy) =y,

The function /! is the inverse of f. It can be shown that f ! is also one-to-one and that its inverse is
f. The graphs of a function and its inverse are symmetric with respect to the line y = x.

To find the inverse of y = f(x),
interchange x and y,
then solve for y.

EXAMPLE 6
Find the inverse of the one-to-one function f'(x) = x> — 1.
Interchange x and y: =y -1
Solve for y: y= e+l =¥},

SOLUTION:



¥

& /J.' =X

s
s
?‘“‘—u y=fix)=x*—]
y=fY=3%+1 s
|
il -
7]
s
Py
s
&
&
#
£
#
s

7 =

FIGURE N1-2

Note that the graphs of f and f ! in Figure N1-2 are mirror images, with the line y =x as the
MITTOor.

A7. The zeros of a function f are the values of x for which /' (x) = 0; they are the x-intercepts of the
graph of y = f (x).

EXAMPLE 7

Find zeros of f'(x) = x* — 2x°.

SOLUTION: The zeros are the x’s for which x* — 2x2 = 0. The function has three zeros, since x*
— 2x% = x? (x? — 2) equals zero if x = 0, +2, or —+2.

B. SPECIAL FUNCTIONS

The absolute-value function f (x) = x| and the greatest-integer function g(x) = [x] are sketched in
Figure N1-3.

rifx =0 \ :
. gix) = [x] is the
flxy=]x|= [ u:[ 1is
erel :
; sl integer
nol greater than x

—xifxr =i

Absolute-value lunction Cireatest-integer unction

FIGURE N1-3

EXAMPLE 8
A function f'is defined on the interval [—2, 2] and has the graph shown in Figure N1-4.



(a) Sketch the graph of y = [f'(x)|.
(b) Sketch the graph of y = f'([x|).
(c) Sketch the graph of y = — f (x).
(d) Sketch the graph of y = f (—x).

T
= AR | 2

FIGURE N1-4
SOLUTIONS: The graphs are shown in Figures N1—4a through N1-4d.

T
=5 =

FIGURE N1-4a

\
i

y=1(lx])

FIGURE N1-4b



¥=—flx)

FIGURE N1-4c¢

P b

L

a1

FIGURE N1-4d

Note that graph (¢) of y = — f(x) is the reflection of y = f'(x) in the x-axis, whereas graph (d) of y
= f(—x) 1s the reflection of y = f (x) in the y-axis. How do the graphs of |f (x)| and f ([x|) compare
with the graph of f (x)?

EXAMPLE 9

Let /' (x) = x> — 3 x* + 2. Graph the following functions on your calculator in the window [—3,3] x
[F331:(@y=f(x); ®)y=f& ()y=sf(k).
SOLUTIONS:
(@ y=/x)
See Figure N1-5a.
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FIGURE N1-5a

(b) y =f ()|
See Figure N1-5b.

FIGURE N1-5b

(©) y =/ (k)
See Figure N1-5c.

3 U| 0 v x
= 58
<y el

FIGURE N1-5¢
Note how the graphs for (b) and (c) compare with the graph for (a).

C. POLYNOMIAL AND OTHER RATIONAL FUNCTIONS

C1. Polynomial Functions.
A polynomial function is of the form
X)=agx"+a, x" '+ta,x" " 2+---+a, _,x+a,,
0 1 2 n—1 n

where 7 1s a positive integer or zero, and the a;’s, the coefficients, are constants. If ay # 0, the degree



of the polynomial is 7.
A linear function, f'(x) = mx + b, 1s of the first degree; its graph is a straight line with slope m, the
constant rate of change of f (x) (or y) with respect to x, and b is the line’s y-intercept.

A quadratic function, f(x) = ax®> + bx + ¢, has degree 2; its graph is a parabola that opens up if
>0, down if a <0, and whose axis is the line , = _ &

2a
A cubic, f(x) =agx> +a; x> +a, x +a;, has degree 3; calculus enables us to sketch its graph
easily; and so on. The domain of every polynomial is the set of all reals.

C2. Rational Functions.
A rational function is of the form

Pix)

flxy= .
Ol x)

where P(x) and Q(x) are polynomials. The domain of f'is the set of all reals for which QO(x) # 0.

D. TRIGONOMETRIC FUNCTIONS

The fundamental trigonometric identities, graphs, and reduction formulas are given in the Appendix.

D1. Periodicity and Amplitude.

The trigonometric functions are periodic. A function f'is periodic if there is a positive number p such
that f (x + p) =f (x) for each x in the domain of /. The smallest such p is called the period of . The
graph of f repeats every p units along the x-axis. The functions sinx, cos x, csc x, and sec x have
period 2m; tan x and cot x have period .

The function f'(x) = 4 sin bx has amplitude 4 and period 2%: g(x) = tan cx has period 1.

EXAMPLE 10
Consider the function f(x) =L cos (kx).
(a) For what value of k£ does f'have period 2?
(b) What 1s the amplitude of f for this £ ?
SOLUTIONS:
(a) Function f has period = since this must equal 2, we solve the equation i, getting k = 7.

(b) It follows that the amplitude of /'that equals 1 has a value of 1.

EXAMPLE 11
Consider the function fx) =3 - sin =
Find (a) the period and (b) the maximum value of /.

(c) What is the smallest positive x for which f'1s a maximum?
(d) Sketch the graph.



SOLUTIONS:
(a) The period of fis 27+

=

,or 6.
(b) Since the maximum value of —sin x is —(—1) or +1, the maximum value of f'is 3 + 1 or 4.
(¢) - (sinZ*) equals +1 when sin Z* = -1, that is, when = = 2= Solving yields »= 3

(d) We graph y =3 -sin 2 in [-5,8] x [0,5]:

A
il (2.4)
Al 7
2__
14
1 U rdldn fi e S
SR e T IR T I G A S -
T
fix) =3 - sin(ma/'3) e ‘
FIGURE N1-6

D2. Inverses.

Inverse trig functions

We obtain inverses of the trigonometric functions by limiting the domains of the latter so each
trigonometric function is one-to-one over its restricted domain. For example, we restrict

H
1A

. n _
SENXtO —— =.
3

t | A

cos xto O0=x=m,
T m

tan xtp ——<X<—,
1 3

L

The graphs of /' (x) = sinx on [_$ %] and of its inverse f!(x) = sin”! x are shown in Figure N1-7. The

inverse trigonometric function sin”! x is also commonly denoted by arcsin x, which denotes the angle
whose sine is x. The graph of sin”! x is, of course, the reflection of the graph of sin x in the line y = x.



|a|-,=|
L
I

Y

|
=
[ o

|¢|H—-
a1

I
|_-,|:=|
L
I

¥ =sin x ¥ = sin~'x = arcsin x
s Ko = I : i &
domain: - 3 = x = 2 domain: -1 =Ex = |
: : L ar o=, =T
range: -l =y =1 range: -5 Ey =y

2

FIGURE N1-7
Also, for other inverse trigonometric functions,

y =cos ! x (or arccos x) has domain—1 =x =1 and range 0 = y = m;

y = tan"! x (or arctan x) has domain the set of reals and range -g-: ¥ c:% _

Note also that

po o
s e | o R -1 L o et e | L P ] L — Far-ti 1
seC (X)) = 00s <l CSCT(X) = sIn o and cot?(x) = tan—(x).

X
2

E. EXPONENTIAL AND LOGARITHMIC FUNCTIONS

E1. Exponential Functions.

The following laws of exponents hold for all rational m and n, provided that a > 0, a # 1:

a=1; a' =, - = e A+ a'=a"

l
(a™® = aqa™; at= ==y

[

The exponential function /' (x) = a* (a >0, a # 1) is thus defined for all real x; its domain is the set
of positive reals. The graph of y = a*, when a = 2, is shown in Figure N1-8.

Of special interest and importance in the calculus is the exponential function f'(x) = e*, where e is
an irrational number whose decimal approximation to five decimal places is 2.71828.
E2. Logarithmic Functions.

Since f(x) = a* is one-to-one, it has an inverse, f !(x) = log , x, called the logarithmic function with
base a. We note that

y=log, x if and only if & = x.
The domain of log , x is the set of positive reals; its range is the set of all reals. It follows that the

graphs of the pair of mutually inverse functions y = 2* and y = log, x are symmetric to the line y = x,



as can be seen in Figure N1-8.

FIGURE N1-8

The logarithmic function log , x (@ > 0, a # 1) has the following properties:

log, 1 =1 log.a=1; log, mn = log, m + log, n;

L
log, — =log, m—log, n; log, x™ = mlog, x.
H

The logarithmic base e is so important and convenient in calculus that we use a special symbol:
log ,x =Inx.

Logarithms with base e are called natural logarithms. The domain of In x is the set of positive reals;

its range is the set of all reals. The graphs of the mutually inverse functions In x and ¢* are given in the
Appendix.

F. PARAMETRICALLY DEFINED FUNCTIONS

BC ONLY

If the x- and y-coordinates of a point on a graph are given as functions f and g of a third variable, say
t, then

x=f(@), y=g@)
are called parametric equations and t is called the parameter. When ¢ represents time, as it often
does, then we can view the curve as that followed by a moving particle as the time varies.

Examples 12—18 are BC ONLY.

EXAMPLE 12
Find the Cartesian equation of, and sketch, the curve defined by the parametric equations
x=4sint, y=5cost (0=¢=2n).
SOLUTION: We can eliminate the parameter ¢ as follows:



Z x
sin f= —, cos =
4

|

Since sin® ¢ + cos? ¢t = 1, we have

) 2

1Jj+{ } | or —+;—5=1

The curve is the ellipse shown in Figure N1-9.

FIGURE N1-9

Note that, as 7 increases from 0 to 27, a particle moving in accordance with the given parametric
equations starts at point (0, 5) (when ¢ = 0) and travels in a clockwise direction along the ellipse,
returning to (0, 5) when ¢ = 2.

EXAMPLE 13
Given the pair of parametric equations,
x=1—-¢t y=, (=0),
write an equation of the curve in terms of x and y, and sketch the graph.

SOLUTION: We can eliminate ¢ by squaring the second equation and substituting for ¢ in the
first; then we have
y»=t and x=1—)%

We see the graph of the equation x = 1 — )2 on the left in Figure N1-10. At the right we see only
the upper part of this graph, the part defined by the parametric equations for which ¢ and y are
both restricted to nonnegative numbers.



Lo z=l1-¢y=Jt,t =0

FIGURE N1-10

The function defined by the parametric equations here 1s y = F(x) = ,j— whose graph is at the
right above; its domain is x = 1 and its range is the set of nonnegative reals.

EXAMPLE 14

A satellite is in orbit around a planet that is orbiting around a star. The satellite makes 12 orbits
each year. Graph its path given by the parametric equations

x=4cost+cos 12¢,
y=4sint +sin 12¢.

SOLUTION: Shown below is the graph of the satellite’s path using the calculator’s parametric
mode for 0 <7< 2m.

FIGURE N1-11

EXAMPLE 15
Graphx =)? — 6y + 8.
SOLUTION: We encounter a difficulty here. The calculator is constructed to graph y as a function
ofx: it accomplishes this by scanning horizontally across the window and plotting points in

varying vertical positions. Ideally, we want the calculator to scan down the window and plot
points at appropriate horizontal positions. But it won’t do that.

One alternative is to interchange variables, entering x as Y, and y as X, thus entering Y, = X* —
6X + 8. But then, during all subsequent processing we must remember that we have made this



interchange.
Less risky and more satisfying is to switch to parametric mode: Enter x = 1> — 6¢ + 8 and y =¢.

Then graph these equations in [—10,10] x [-10,10], for # in [-10,10], See Figure N1-12.

(UL

o Illr/-\-.-?

FIGURE N1-12

EXAMPLE 16

Let f (x) = x> + x; graph f ~1(x).
SOLUTION: Recalling that f ! interchanges x and y, we use parametric mode to graph

fx=ty=£+t¢
andfhx=~r+1y=t

Figure N1-13 shows both f'(x) and £ !(x).

FIGURE N1-13

Parametric equations give rise to vector functions, which will be discussed in connection with

motion along a curve in Chapter 4.

G. POLAR FUNCTIONS

Polar coordinates of the form (r, g) identify the location of a point by specifying g, an angle of rotation
from the positive x-axis, and r, a distance from the origin, as shown in Figure N1-14.



FIGURE N1-14

A polar function defines a curve with an equation of the form » = f'(g). Some common polar functions
include:

Spiral Rose Cardioid Limacon

1{ 0 i
| o .. """h!" ||_1,A"'||||-| i3

.f"‘\‘.'./""“'l

At 1)

e ||||||||x.
PN

5 5 ]
3 3 5

= r=4 5126 r=2(1+sin &) r=1+3cos 8

EXAMPLE 17
Consider the polar function » =2 + 4 sin g.

(a) For what values of g in the interval [0,27t] does the curve pass through the origin?
(b) For what value of g in the interval [0,/2] does the curve intersect the circle » = 3?
SOLUTION:

(a) At the origin» =0, so we want 2 + 4 sin g = 0. Solving for g yields g, ¢ = _%__ which occurs at

(bl e
6 6

(b) The curves » =2 + 4 sing and » = 3 intersect when 2 + 4 sing = 3, Or sing= % From the
calculator we find g = arcsin Il ~0.253.

FIGURE N1-15



A polar function may also be expressed parametrically:
X=rcosg y=sing
In this form, the curve r =2 + 4 sin g from Example 17 would be defined by:
X(g) =(2+4sing)cos g V(g) =(2+4sing) sing
EXAMPLE 18
Find the (x, y) coordinates of the point on 7 =1 + cos g where ¢ = %

SOLUTION: ﬁt&z%,rz |l +cos @=1+cos %: I +

. 3 3
Since x=rcos 8 = — cos E:'E.

3 ~|."I'§ - = 3 '.-'Ili
. the pointis | =— = |,
1 point 1 (4 4 ]

3 g
L='—zmu:l‘,rzrﬂm45F= .
2 4 :

had

Chapter Summary

This chapter has reviewed some important precalculus topics. These topics are not directly tested on
the AP exam; rather, they represent basic principles important in calculus. These include finding the
domain, range and inverse of a function; and understanding the properties of polynomial and rational
functions, trigonometric and inverse trig functions, and exponential and logarithmic functions.

For BC students, this chapter also reviewed parametrically defined functions.
Practice Exercises
Directions: Answer these questions without using your calculator.

1.Iff(x) =x>—2x— 1, then f (-2) =
(A) —17
(B) 13
(C) -5
(D) -1
(E) 3

2. The domain of fj = 2=L is

x?+1
(A) all x # 1
B)allx#1,-1

(C) all x # —1

D)x=1



(E) all reals

3. The domain of ) - 2222 is

e -

(A)allx#0,1
B)x=2,x#0,1
Ox=2
M)x=2
(E)x>2

4.1 f (x) =x> — 3x%> — 2x + 5 and g(x) = 2, then g(f (x)) =
(A) 2x3 —6x2 —2x + 10
(B) 2x2—6x+ 1
(©) -6
(D) -3
(E) 2

5. With the functions and choices as in Question 4, which choice is correct for /' (g(x))?

6. Iff (x) = x>+ Ax> + Bx — 3 and if /(1) =4 and f (—1) = —6, what is the value of 24 + B ?
(A) 12
(B) 8
(C) 0
(D) 2

(E) It cannot be determined from the given information.

7. Which of the following equations has a graph that is symmetric with respect to the origin?
(A)u- _ x—1

(B)y=2x*+1
(C)y=x>+2x
D) y=x>+2
(E) y= —

41

8. Let g be a function defined for all reals. Which of the following conditions is not sufficient to
guarantee that g has an inverse function?

(A) g(x)=ax+b,a+0.
(B) g is strictly decreasing.



(C) g is symmetric to the origin.
(D) g is strictly increasing.

(E) g is one-to-one.

9. Let y = f (x) = sin (arctan x). Then the range of f'1s
(A) y[0<y=1;
B) y|-1I<y<lj
© {yl—li—'— =1}
® -2

®pi-£=4

10. Let g(x) = |cos x — 1|. The maximum value attained by g on the closed interval [0, 2mx] 1s for x
equal to

(A) -1
B)0
(O
D)2
(E)

11. Which of the following functions is not odd?
(A) f(x) =sinx
(B) f(x) =sin 2x
O f () =x+1
(D) fin = e

(E) jy= 122

12. The roots of the equation f'(x) = 0 are 1 and —2. The roots of f (2x) = 0 are
(A) 1 and -2
(B) % and —1
(C) —% and 1

(D) 2 and 4
(E) -2 and 4

13. The set of zeros of £ (x) = x> + 4x? + 4x is



(A) {2}
(B) 10,72}
() 10,2}
(D) {2}
(E) {2,72}

14. The values of x for which the graphs of y =x + 2 and 3> = 4x intersect are
(A) -2 and 2
(B) 2
©)2
D)o
(E) none of these

15. The function whose graph is a reflection in the y-axis of the graph of /' (x) =1 — 3" is
(A)glx)=1-37
(B) g(x) =1+3"
(O) glx)=3"—1
(D) g(x) =logy (x — 1)
(E) g(x) =log; (1 —x)

16. Let /' (x) have an inverse function g(x). Then f (g(x)) =
Al
(B) x
©!

(D) f(x) - g(x)
(E) none of these

17. The function f (x) = 2x> + x — 5 has exactly one real zero. It is between
(A) -2 and —1
(B) -1 and 0
(O 0and 1
(D) 1 and 2
(E) 2 and 3



18. The period of /(x) = sin ’T’H is
(A) %
(B) =
©-2
(D) 3
(E) 6

19. The range of y = f (x) = In (cos x) is
(A) {y|-oo<y=0}
(B) {y|0<y=1;}
O y|-1<y<lj
(D) fy|-Z<)<Z]

¥ ¥

Fl Fl

(E) y[0=y=1j

20. If log, (3" = ii : then b =
l
(a1
l
®)
© 1

(D) 3
(E) 9

21. Let /! be the inverse function of £ (x) = x> + 2. Then f " !(x) =
(A) -

(B) (x +2)°
(©) (x -2y
(D) Nx+2
(E) 32

22. The set of x-intercepts of the graph of ' (x) =x> — 2x> —x + 2 is
(A) {1}
(B) {~1,1}
(O {1.2}



(D) {~1,1,2§
(E) {—1,72,2}

23. If the domain of f is restricted to the open interval (-3.5). then the range of /' (x) = e ¥ ig
(A) the set of all reals
(B) the set of positive reals
(C) the set of nonnegative reals

(D) y[0<y=1}
(E) none of these

24. Which of the following is a reflection of the graph of y = f'(x) in the x-axis?
A)y=-(x)
(B) y =71 (=x)
O y=f)
(D) y =71 (k)
(E) y = (=)

25. The smallest positive x for which the function ) = sin (3) -1 1S @ maximum is
Al
(B) m
(€) &
(D) 3n
(E) 67

26. tan |:;EI.E'L‘L‘1'}'R [—%:l:l =
A) -1
(B) 3
3
1

(C

N’

~

(D) 22

() 1

27.If £ ~1(x) is the inverse of /' (x) = 2e ™, thenf ~(x) =
(A) In (%]



®) ()
(C) (EL\J In x

(D) JIn x
(E)In(2 —x)

28. Which of the following functions does not have an inverse function?
(A) y=sinx (—11 =4 él\]

(B) y=x>+2 |
(©)y= —+

i +1

(D) y- Lo

(E) y=1In(x —2) (where x >2)

29. Suppose that f (x) = Inx for all positive x and g(x) = 9 —x? for all real x. The domain of f
(g(x)) 1s
(A) {x|x=3]
(B) {x [K[=3}
(O {x|k[>3}
(D) {x | <3}
(E) {x|0<x<3}

30. Suppose (as in Question 29) that f (x) = Inx for all positive x and g(x) = 9 — x? for all real x.
The range of y = f'(g(x)) is

(A) {y|y>0}
B) y[0<y=In9}
O {yly=n9}

D) {y |y <0;
(E) none of these

31. The curve defined parametrically by x(¢) = ¢> + 3 and y(¢) = ¢> + 4 is part of a(n)
(A) line
(B) circle
(C) parabola
(D) ellipse
(E) hyperbola




BC ONLY

32. Which equation includes the curve defined parametrically by x(¢) = cos? (¢) and y(¢) = 2 sin (¢)?

(A) x*+)* =4

(B) x* +? =1

(C) 4x* +)* =4

(D) 4x +)> =4

(B)x+4y°=1
BC ONLY

33. Find the smallest value of g in the interval [0,2n] for which the rose » = 2 cos(5g) passes
through the origin.
(A)0

(B)

©Z

(D) =

(E) 2

BC ONLY

34. For what value of g in the interval [0,7] do the polar curves » =3 and » = 2 + 2 cos g intersect?
(A) 2
(B)
Ok
D) 2
(E) ETT

BC ONLY

35. On the interval [0,2x] there is one point on the curve » =g — 2 cos g whose x-coordinate is 2.
Find the y-coordinate there.

(A) —4.594
(B) —3.764
(C) 1.979



(D) 4.263
(E) 5.201

BC ONLY




CHAPTER 2 Limits and Continuity

Concepts and Skills
In this chapter, you will review
» general properties of limits;
* how to find limits using algebraic expressions, tables, and graphs;
* horizontal and vertical asymptotes;
* continuity;
 removable, jump, and infinite discontinuities;

« and some important theorems, including the Squeeze Theorem, the Extreme Value Theorem,
and the Intermediate Value Theorem.

A. DEFINITIONS AND EXAMPLES

The number L is the limit of the function f (x) as x approaches c if, as the values of x get arbitrarily
close (but not equal) to ¢, the values of /' (x) approach (or equal) L. We write

lim f{x)= L.

Kt

In order for lim f(x) to exist, the values of f must tend to the same number L as x approaches ¢ from
either the left or the right. We write

One-sided limits

lim f(x)

A=t

for the left-hand limit of f at ¢ (as x approaches c through values /ess than c), and

lim f(x)

for the right-hand limit of f at c (as x approaches c through values greater than c).

EXAMPLE 1

The greatest-integer function g(x) = [x], shown in Figure N2—1, has different left-hand and right-
hand limits at every integer. For example,

lim[x]=0 but |||'[1[_1| 1

x—l

This function, therefore, does not have a limit atx = 1 or, by the same reasoning, at any other
integer.



p(x)=[x] is the

— 2
greatest integer
r, not greater than x
FIGURE N2-1

However, [x] does have a limit at every nonintegral real number. For example,

i Fl=ill: i =1 i (] =2 i 1=72
Il 0P RS dy = B e = 2 i =2

i [ = —&}: i (] = —3: i (| =—1: i fl=—
I]_{:_&__[ x] 4: x!::;}_g[ x]=-3; ,,i"“_.;.[ x] 1; ,,lm};. __[ x] I

EXAMPLE 2
Suppose the function y = f'(x), graphed in Figure N2—2, is defined as follows:

i+1 (2<x<0)

2 (x=0)
fa=1 _ (D=x<2)
0 (x=2)

x—4 (Z=x=4)

Determine whether limits of £, if any, exist at

(a) x =2,
(b) x=0,
(c)x=2,

(d)x=4.



ka2

FIGURE N2-2

SOLUTIONS:
(a) lim f(x) =-1.so the right-hand limit exists at x = —2, even though f'is not defined at x = —2.

(b) lim f(x) does not exist. Although /' is defined atx = 0 (f (0) = 2), we observe that lim f(x) =1
whereas lim f(x) =0. For the limit to exist at a point, the left-hand and right-hand limits must be
the same.

(c) lim f(x) = —2. This limit exists because lim f(x) = lim f(x) = -2. Indeed, the limit exists atx = 2
even though it is different from the value of fat 2 (f(2) = 0).

(d) lim f(x) =0, so the left-hand limit exists atx = 4.

EXAMPLE 3

Prove that lim|+| =0.
x—

SOLUTION: The graph of |x| is shown in Figure N2-3.

We examine both left- and right-hand limits of the absolute-value function as x — 0. Since

. [~ if x<0
il

it follows that lim |x| = lim(-x)=0 and lim |x|=lim x =0.

= X0 X =1
Since the left-hand and right-hand limits both equal 0, lim|x|=0.
Note that lim|v|=¢ 1f ¢ > 0 but equals —c if ¢ < 0.



FIGURE N2-3

DEFINITION

The function f (x) is said to become infinite (positively or negatively) as x approaches c if f (x) can
be made arbitrarily large (positively or negatively) by taking x sufficiently close to c. We write

lim f{x)=4e= (or lim fi{x)=—ee).

A=

Since for the limit to exist it must be a finite number, neither of the preceding limits exists.

This definition can be extended to include x approaching ¢ from the left or from the right. The
following examples illustrate these definitions.

EXAMPLE 4
Describe the behavior of f,) - L near x = 0 using limits.
SOLUTION: The graph (Figure N2—4) shows that:

li

=)

= —oo

L

l
X
l

]lt'tl—= +ea,

X

L

lim— does not exist.
=l

|t

FIGURE N2-4



EXAMPLE 5
Describe the behavior of () = ﬁ near x = 1 using limits.

SOLUTION: The graph (Figure N2—5) shows that:

limgix)=limg{x)===
=" =17

]'11}] 2(x)= e

]'11]] £(X) = o

lip g(x) = ==

FIGURE N2-5

Remember that none of the limits in Examples 4 and 5 exists!
DEFINITION

We write

limfix)=L (or lim fix)=L)

A A=

if the difference between f (x) and L can be made arbitrarily small by making x sufficiently large
positively (or negatively).

In Examples 4 and 5, note that lim f(x)=lim f(x) =0 and limg(x) = lim g(x)=0 .

K=l

EXAMPLE 6
From the graph of sy = 1 + ——=2*L (Figure N2-6), describe the behavior of / using limits.

SOLUTION:

lim & x) = lim A(x) =1
T

=

lim A x) = —=,
I

lim A x) = +o=.
T



FIGURE N2-6

DEFINITION

The theorems that follow in §C of this chapter confirm the conjectures made about limits of functions
from their graphs.

Finally, if the function f (x) becomes infinite as x becomes infinite, then one or more of the
following may hold:

lim fix)=+4=0r —= or lim f(x)=+4ec0r —eo,
H—rid

A=

END BEHAVIOR OF POLYNOMIALS

Every polynomial whose degree is greater than or equal to 1 becomes infinite as x does. It becomes
positively or negatively infinite, depending only on the sign of the leading coefficient and the degree
of the polynomual.
EXAMPLE 7
For each function given below, describe Jim and Jim.
(@) f(x)=x>—3x2+7x+2
SOLUTION: lim f() =4,  lim f(x)=—==.

(b) g(x) =—4x*+ 1,000,000x> + 100
SOLUTION: lim g(x) =—==,  lim g(x) =—=-.
(c) h(x) =—5x3 + 3x> —4n + 8
SOLUTION: lim h(x)=—==,  lim h(x) = +==.
(d) k&(x) =m—0.001x

SOLUTION: lim k(x)=—=,  lim k(x)=+=.

It’s easy to write rules for the behavior of a polynomial as x becomes infinite!

B. ASYMPTOTES




Horizontal asymptote

The line y = b 1s a horizontal asymptote of the graph of y = f'(x) if

lim fix)y=F or lim f(x)=h
x X

f s

The graph of fix = L (Figure N2—4) has the x-axis (y = 0) as the horizontal asymptote.
So does the graph of gy = —— (Figure N2-5).
The graph of 4y = :_fi has the line y =1 as the horizontal asymptote, as shown at the right.

¥

L

Vertical asymptote

The line x =a 1s a vertical asymptote of the graph of y =f (x) if one or more of the following
holds:

lim f(x)=+4e= or lim f(x)=—ee
or

lim f{x)=+4e= or lim f(x)=—e=.

The graph of fx= L (Figure N2-4) has x = 0 (the y-axis) as the vertical asymptote.
The graph of 4y = ﬁ (Figure N2-5) has x = 1 as the vertical asymptote.
The graph of ) =

:] (Figure N2—-6) has the line x = 2 as the vertical asymptote.

EXAMPLE 8
From the graph of jy) = 2= :* in Figure N2-7, describe the asymptotes of k using limits.

X

SOLUTION: We see that y = 2 is a horizontal asymptote, since

lim k(x)= lir_n k(x)y=2.

E—ptea

Also, x = 3 1s a vertical asymptote; the graph shows that

]irg_1k{.r}=—-=-o and 11r;r1k{.t}=+m.
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FIGURE N2-7

C. THEOREMS ON LIMITS
If lim £ (x) and lim g(x) are finite numbers, then:
(1) im &f (x) = k lim f (x).
(2) lim[f (x) + g(x)] = lim f (x) + lim g(x).
(3) limf (x)g(x) = (lim f (x))(lim g(x)).

) lim f(x) /:01:
(4) tim o A (iflim g(x) #0).

(5) limk=k

(6) THE SQUEEZE OR SANDWICH THEOREM. Iff (x) <g(x) <h(x) and if
lim f(x)=limh(x)= L, then limg(x)= L.

Figure N2-8 illustrates this theorem.

#
f\\hxh__ H—uﬁﬁf#/M“
L

I

I

I

I

I

I ;

| fix)
|

|

2

FIGURE N2-8

Squeezing function g between functions f and / forces g to have the same limit L atx =c as do f
and g.

EXAMPLE 9



lim(5x* =3x+1)=51limx* =3limx +lim 1
X2 x=F =k x—x

=5+4 —_dnT 4]
=

EXAMPLE 10

lim x cos 2x) = lim x«lim{cos 2x)
x=i x= x=il

=0 1
=1

EXAMPLE 11

P e T il S . i

lim = =lim(3x —2x 1)+ lim{x"+1)

=1 - ] o o | x==1
=3+2-1) +(1+1)
=3

EXAMPLE 12

L oXE-9 (x-x+DH !
lim———=lim — = lim(x—3)=6
= 3 T—3

—% 33 -

since, by the definition of lim f(x) in §A, x must be different from 3 as x — 3, the factor x — 3

=L

may be removed before taking the limit.

EXAMPLE 13
I X +8 _ 1 (x+2Mx2-2x+4) i 2-2x+4 44444
s O S B £ S T W e S, Do s i
EXAMPLE 14

lim= = ;ﬂ% - =, As v — 0, the numerator approaches 1 while the denominator approaches 0; the

=0

limit does not exist.

EXAMPLE 15
pan S
L T e

EXAMPLE 16



(3+AxP - . BAr+ A

e e L e L i
EXAMPLE 17

I a1 1 1 — 1 E—|'2+Pz'r_!_ it

i 3+h_3}_§_‘5]2m2+m_E_[L‘Ehfum

|

i . ] —_—
= lim—57"pe=—7.

D. LIMIT OF A QUOTIENT OF POLYNOMIALS

To find lim ; 3 where P(x) and Q(x) are polynomials inx, we can divide both numerator and

denominator by the highest power of x that occurs and use the fact that 1im 1 = 0.

EXAMPLE 18

Mremell . B TERE L
seudbx+x® peed 1, 0+0+] )
R

&
X T

,ooAxt LS5z T
lim =lim—

g 37X =9 X

I P—4x+7 I - ; 1
ShE TR T o F e B e L

THE RATIONAL FUNCTION THEOREM

We see from Examples 18, 19, and 20 that: if the degree of P(x) is less than that of O(x), then

lim S‘I-: =0 if the degree of P(x) is higher than that of O(x), then ]mlﬁﬂa or — (1.€., does not exist);
w0 LA a—son N X) )

and if the degrees of P(x) and Q(x) are the same, then ]5[11%=% _where a,, and b, are the coefficients

of the highest powers of x in P(x) and Q(x), respectively.
This theorem holds also when we replace “x — o0” by “x — —00.” Note also that:

Pix)
N x)’

P(x)

(i) when im et then y = 0 is a horizontal asymptote of the graph of y=




Pix)

(ii) when lim PO _ 4 or —e , then the graph of y = = has no horizontal asymptotes;

e (N X}
(iii) when lip 22 P(x) _e; then v = t;‘_ 1s a horizontal asymptote of the graph of y = g.l_: |
x—skee (O ) T | 5 _
EXAMPLE 21
100 x2 —19 . B=5 = s
!T’_I-,N ,'3_'_5 l? +32 _{}' jﬂjiw— =g inn ii['l'l:ﬂ_]_ i]xiE 575z = E'
lirrs 4+.1'1—3.¥3__i. iin_rﬂ-+] e -y
e TR R P i e T {no limit).

E. OTHER BASIC LIMITS

E1. The basic trigonometric limit is:
1 m“'i'e;t ( 1f 0 1s measured in radians.
—0

EXAMPLE 22

SiNX _
= = 0.

SOLUTION Since, for all x, =1 < sinx < 1, it follows that, ifx > 0, then__ ﬂ.-:]_ But as x
— o, _L 44 L both approach 0; therefore by the Squeeze theorem, *"* must also approach 0. To

obtain graphlcal confirmation of this fact, and of the additional fact that lim ““_* also equals 0,
graph

I
, and ¥, =——
GiE X

: I
h= ity
X X

n [—4n, 4n] x [-1, 1]. Observe, as x — +oo, that y, and y3, approach 0 and that y; 1s squeezed
between them.

EXAMPLE 23

Find 1im Lf* :
x—0 S

SOLUTION h[_ﬂull:ﬂ. S ]““ Jsindy _ 3]jm S03x sindx = B

= 3x

Limit definition of e

E2. The number e can be defined as follows:

c’=]im[l +l) :
miel g



The value of e can be approximated on a graphing calculator to a large number of decimal places by
evaluating

for large values of x.

F. CONTINUITY

If a function 1s continuous over an interval, we can draw its graph without lifting pencil from paper.
The graph has no holes, breaks, or jumps on the interval.

Conceptually, if /' (x) is continuous at a point x = ¢, then the closer x is to ¢, the closer f(x) gets to
f(c). This is made precise by the following definition:
DEFINITION

The function y = f'(x) is continuous at x = ¢ if

(1) £ (c) exists; (that is, ¢ is in the domain of f);

(2) lim f(x) exists;

3) lim f(x) = f(c).

A function is continuous over the closed interval [a, b] 1f it 1s continuous at each x such thata <x
<b.

A function that is not continuous at x = ¢ is said to be discontinuous at that point. We then call x =
c a point of discontinuity.
CONTINUOUS FUNCTIONS

Polynomials are continuous everywhere; namely, at every real number.
Pix)

Rational functions, s

0. The function (-

The absolute value function f (x) = [x| (sketched in Figure N2—3) is continuous everywhere.

The trigonometric, inverse trigonometric, exponential, and logarithmic functions are continuous at
each point in their domains.

Functions of the type », (Where n is a positive integer > 2) are continuous at each x for which s,
is defined.

The greatest-integer function f (x) = [x] (Figure N2—-1) is discontinuous at each integer, since it
does not have a limit at any integer.

KINDS OF DISCONTINUITIES
In Example 2, y = f (x) is defined as follows:

are continuous at each point in their domain; that is, except where Q(x) =

X s

1 for example, is continuous except at x = 0, where f'is not defined.



(v +1 (-2<x<0)
(x=0)

g

fixy=4 —x (0 =<x<2)
0 (x=2)

x—4 (2<x=4)

The graph of f'is shown above.

We observe that f'is not continuous at x = —2, x =0, or x = 2.

Atx =-2, fis not defined.

Atx =0, fis defined; in fact, / (0) = 2. However, since lim f(x) = 1 and lim f(x) = 0, lim f(x) does not
exist. Where the left- and right-hand limits exist, but are different, the function has a Jjump
discontinuity. The greatest-integer (or step) function, y = [x], has a jump discontinuity at every
Integer.

Atx =2, f'is defined; in fact, /' (2) = 0. Also, lim f(x) = -2; the limit exists. However, lim f(x)# f(2).
This discontinuity is called removable. If we were to redefine the function atx = 2 to be f(2)=-2,
the new function would no longer have a discontinuity there. We cannot, however, “remove” a jump
discontinuity by any redefinition whatsoever.

Whenever the graph of a functionf (x) has the linex =a as a vertical asymptote, then f (x)
becomes positively or negatively infinite as x — a* or as x — a . The function is then said to have an
infinite discontinuity. See, for example, Figure N2-4 for f(y) = L Figure N2-5 for g(x) = l _

x (x—1)

X

4 Each of these functions exhibits an infinite discontinuity.

x-3

2

or Figure N2-7 for k(x) =

EXAMPLE 24

i, *~1 s not continuous at x = 0 or = —1, since the function is not defined for either of

f{’t} “X+x x(x+1)
these numbers. Note also that neither li_rg f(x) nor liml f(x) exists.

EXAMPLE 25
Discuss the continuity of £, as graphed in Figure N2-9.

SOLUTION: f (x) is continuous on [(0,1), (1,3), and (3,5)]. The discontinuity atx = 1 1s
removable; the one at x = 3 is not. (Note that f 1s continuous from the right at x = 0 and from the



leftatx =35.)

FIGURE N2-9

In Examples 26 through 31, we determine whether the functions are continuous at the points
specified:

EXAMPLE 26
Is f(x) = —,x, — 4/3x* + 7 continuous atx =—1?
SOLUTION: Since f is a polynomial, it is continuous everywhere, including, of course, at x =
—1.

EXAMPLE 27
Is g(x) = contlnuous (a) atx=3;(b) atx=0?

SOLUTION. This function is continuous except where the denominator equals 0 (where g has
an infinite discontinuity). It is not continuous at x = 3, but is continuous at x = 0.

EXAMPLE 28
3 x#2
Is h(x)={*—2 continuous
1 ifx=2
(a) atx =2;(b) atx =3?

SOLUTIONS:
(a) h(x) has an infinite discontinuity at x = 2; this discontinuity is not removable.

(b) A(x) 1s continuous at x = 3 and at every other point different from 2. See Figure N2—-10.
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FIGURE N2-10

EXAMPLE 29

IS k() = '1__;' (x # 2) continuous at x = 27

SOLUTION: Note that k&(x) =x + 2 for all x # 2. The function is continuous everywhere except
at x = 2, where k is not defined. The discontinuity at 2 is removable. If we redefine f'(2) to equal
4, the new function will be continuous everywhere. See Figure N2—11.

v

FIGURE N2-11

EXAMPLE 30

Is f(x)= Jl: +2 1‘ ; ll continuous at x = 1?

SOLUTION: f(x) is not continuous at x = 1 since lim Flx)=3=> lim f(x)=4 . This function has a
jump discontinuity at x = 1 (which cannot be removed). See Figure N2—-12.



FIGURE N2-12

EXAMPLE 31

a0 _
Is g(x) = Jl* *#2 continuous at x = 2?
1 x=2

SOLUTION: g(x) is not continuous atx = 2 since +2 & =4=82=1. Thig discontinuity can be
removed by redefining g(2) to equal 4. See Figure N2—13.

=

FIGURE N2-13

THEOREMS ON CONTINUOUS FUNCTIONS

(1) The Extreme Value Theorem. Iff is continuous on the closed interval [a,b], then f attains a
minimum value and a maximum value somewhere in that interval.

(2) The Intermediate Value Theorem. Iff is continuous on the closed interval [a,b], and M is a

number such that f'(a) < M < f(b), then there is at least one number, ¢, between a and b such that f (c)
=M.



Note an important special case of the Intermediate Value Theorem:

If f1s continuous on the closed interval [a,b], and f (a) and f (b) have opposite signs, then f has a
zero in that interval (there is a value, ¢, in [a,b] where f'(c) = 0).
(3) The Continuous Functions Theorem. If functions /'and g are both continuous at x = ¢, then so are
the following functions:

(a) kf, where k is a constant;

(b)f+g;
©f- &
(d) L. provided that g(c) # 0.
g
EXAMPLE 32
Show that fix) = —3 has a root between x = 2 and x = 3.

X+l
SOLUTION: The rational functionf is discontinuous only at y — 1 f2) = _l__ and f (3) = 1.
3

Since f'is continuous on the interval [2,3] and f(2) and f (3) have opposite signs, there is a value,
¢, in the interval where f (c) = 0, by the Intermediate Value Theorem.

Chapter Summary

In this chapter, we have reviewed the concept of a limit. We’ve practiced finding limits using
algebraic expressions, graphs, and the Squeeze (Sandwich) Theorem. We have used limits to find
horizontal and vertical asymptotes and to assess the continuity of a function. We have reviewed
removable, jump, and infinite discontinuities. We have also looked at the very important Extreme
Value Theorem and Intermediate Value Theorem.

Practice Exercises

Part A. Directions: Answer these questions without using your calculator.

2_4

L. lim 15

=2 X+ 4
(A) 1
(B) 0

©

(D) i
(E) ©



2. lim 4_:_12 is
Fea X° 1
(A) 1
(B) 0
(C) 4
(D) -1

(E) o

3 I xr—3 )
M —————5 18
x—3 .T? = 2.1' =i 3

(A) 0
(B) 1

© L
4

(D) oo
(E) none of these

4. lim < 18
(A) 1
(B) O
(O)
(D) -1

(E) nonexistent

g xt=
S. 11]"11,,—1 15

(A) 4
(B) 0
(O1
(D)3
(E) o

6. 1: &t
* IMese————sijg

X—peo X — X — 2

(A) =2
@B)_1L
4

(C) 1
(D) 2



(E) nonexistent

.3 -
7. 1 ax*+27
Im s ox+9

(A) —oo
(B) —1
©0
(D)3
(E) o

15

8. 1 3a2+27

11T -7 15

X—mo .

(A)3
(B) o
O1
(D) -1
(E) 0

9. lim 3,: is
(A) -1
(B) 1
OO0
(D) oo

(E) none of these

10. 1im £~ is
K=oz jl’

(A) -1

(B) 1

(OXL

(D) oo

(E) none of these

11. 1im SInSX
X

(A)=0
|
(B) = 5

O=1



(D) =5

(E) does not exist

. &in2x

=0 3x
(A) =0
(B) = =
©)=1
D)= 2

(E) does not exist

13. The graph of y = arctan x has
(A) vertical asymptotes atx =0 and x =7
(B) horizontal asymptotes at y = i%
(C) horizontal asymptotes aty=0and y ==

L
2

(D) vertical asymptotes at x = +

(E) none of these

14. The graphof , _ x* =9 has
' 3x-9

(A) a vertical asymptote at x =3
(B) a horizontal asymptote at y = %
(C) a removable discontinuity at x = 3
(D) an infinite discontinuity at x = 3
(E) none of these

15 I; sinx .
e 11IM 5
x—s) 2+3x '

(A) 1
B) L

3
(0) 3
(D) o
E®) L

4




16. 11113 SIn % 18
(A) o0
(B) 1
(C) nonexistent
(D) -1
(E) none of these

17. Which statement is true about the curve ,, _ R 4
- 2+7x—4dx2

(A) The line | = _% is a vertical asymptote.
(B) The line x =1 is a vertical asymptote.
(C) The line = _% 1s a horizontal asymptote.

(D) The graph has no vertical or horizontal asymptote.
(E) The line y = 2 is a horizontal asymptote.

23241
18. g 22 e
11-1_]32[2—.1'J[2 +x) i

(A) 4

(B) 2

O 1

(D)2

(E) nonexistent

19. lim # 15

o O
(A) 0
(B) nonexistent
o1
(D) —1
(E) none of these
20. 11_1_1111&-;111 % 18
(A)0
(B) o
(C) nonexistent
(D) -1



(E) 1

sin(m—x)
21. . sl L
im———5— 18

(A) 1

(B) 0

(C)

(D) nonexistent
(E) none of these

=1
22. Let f{I} = fx=1
4 ifx=-1,

Which of the following statements is (are) true?
L. lliﬂla f(x) exists

IL £ (1) exists

I1I. fis continuous at x = 1

(A) I only

(B) I only

(Oland I

(D) none of them

(E) all of them

=X
23.1f F(x) = 2x forx#0,
flO)y=k,

and 1f /'1s continuous at x = 0, then k =
(A) -1

B) -1
2
©0
(D) -
2
(E) 1
fx) = Ih_r:rz forx # 1,2,

24. Suppose 1 f(1) = -3.

f(2) = 4.




Then f'(x) 1s continuous
(A) exceptatx =1

(B) exceptatx =2

(C) exceptatx=1or 2
(D) exceptatx =0, 1, or 2

(E) at each real number

25. The graph of f(x) =% has
! it —
(A) one vertical asymptote, at x = 1
(B) the y-axis as vertical asymptote
(C) the x-axis as horizontal asymptote and x = =1 as vertical asymptotes
(D) two vertical asymptotes, at x = %1, but no horizontal asymptote
(E) no asymptote
26. The graph of y _ 2°+25+3 hag

4x2_dx

(A) a horizontal asymptote at y= +,l,— but no vertical asymptote

(B) no horizontal asymptote but two vertical asymptotes, at x =0 and x = 1
(C) a horizontal asymptote at y = qL and two vertical asymptotes, atx =0 and x = 1

(D) a horizontal asymptote at x = 2 but no vertical asymptote
(E) a horizontal asymptote at y = ?l and two vertical asymptotes, at x = +1

24 x

1 ifx=0

Which of the following statements is (are) true?
L. £(0) exists

I1. 111_113 f(x) exists

I1I. f'1s continuous atx =0

(A) T only

(B) I only

(C) I and II only

(D) all of them

(E) none of them

Part B. Directions: Some of the following questions require the use of a graphing calculator.



28. If [x] is the greatest integer not greater than x, then lim[x]is
|
(A) -
2

(B) 1

(C) nonexistent
D)0

(E) none of these

29. (With the same notation) 11_1}2 [x]1S
(A) -3
(B) -2
(O) -1
(D) 0
(E) none of these

30. ll_i_l;g sin X
(A)is—1
(B) is infinity
(C) oscillates between —1 and 1
(D) 1s zero
(E) does not exist
31. The function f(x) = {"':-’:‘r (x=0)
0 (x=0)
(A) 1s continuous everywhere
(B) is continuous except at x =0
(C) has a removable discontinuity at x =0
(D) has an infinite discontinuity at x = 0
(E) has x = 0 as a vertical asymptote
Questions 3236 are based on the function f'shown in the graph and defined below:



32. 1}23 f(x)

(A) equals 0

(B) equals 1

(C) equals 2

(D) does not exist
(E) none of these

(A) ifx#£0
(B) ifx # 1
(C)ifx#2
(D) ifx #3

f(x)=4—x+2 (1<x<?2)

0

33. The function f'1s defined on [—1,3]

(E) ateach x in [—1,3]

34. The function f has a removable discontinuity at
(A)x=0



B)x=1
C)x=2
MD)x=3
(E) none of these

35. On which of the following intervals is f continuous?
(A)-1<x<0
B)0<x<l1
O 1<x=52
MD)2<x<3
(E) none of these

36. The function f has a jump discontinuity at

(A)x=-1
B)x=1
C)x=2
(D)x=3

(E) none of these

CHALLENGE

. -
37. lim |/ 3+zu'{:lamT 15

x—l) ‘I'r
(A) —o
B) /3-1
© /3+%
(D) o

(E) none of these

38. Suppose lim f(x)=-1. lim f(x)=-1, andf (—3) is not defined. Which of the following
statements is _(3are) true? -
L. 11_1111 flx)y=-1.
II.lfi.s continuous everywhere except at x = —3.
I1I. f'has a removable discontinuity at x = —3.

(A) None of them



(B) I only

(C) III only

(D) I and III only
(E) All of them

CHALLENGE

39.If v= l - then lim y 1s

2 +10% =0

(A) 0
(B) IL

© L

’J'

oL
3

(E) nonexistent
Questions 40—42 are based on the function f'shown in the graph.

K : : ) : =X
7 2

> 0 5

40. For what value(s) of @ is it true thatlim f(x) exists and f (a) exists, butlim fix) #f(a)? It is
possible that a =

(A) —1 only

(B) 1 only

(C) 2 only

(D) —1 or 1 only
(E) —1 or 2 only

41. 1jm fix) does not exist for a =
(A) —1 only



(B) 1 only
(C) 2 only
(D) 1 and 2 only
(E)-1,1,and 2

42. Which statements about limits at x = 1 are true?
L. lim f(x) exists.
H.Ti]n]} fix) exists.
I ﬂ_]p (x) exists.
(A) none of I, I, or III
(B) I only
(C) I only
(D) [ and II only
(E) 1, 11, and IIT



CHAPTER 3 Differentiation

Concepts and Skills
In this chapter, you will review
* derivatives as instantaneous rates of change;
» estimating derivatives using graphs and tables;
« derivatives of basic functions;
» the product, quotient, and chain rules;
« implicit differentiation;
* derivatives of inverse functions;
* Rolle’s Theorem and the Mean Value Theorem.
In addition, BC Calculus students will review
* derivatives of parametrically defined functions;

» L’Hopital’s Rule for evaluating limits of indeterminate forms.

A. DEFINITION OF DERIVATIVE

At any x in the domain of the function y = f'(x), the derivative is defined as

Flr+ ArY— fix Av
li]n“’['\k-kjl'“I J(x) or limi. (1
Ar—0 Ax £|.x—;lili||l_-|l-

The function is said to be differentiable at every x for which this limit exists, and its derivative may
be denoted by £ (x), y ', 2 _or D, y. Frequently Ax is replaced by / or some other symbol.
%

The derivative of y = f (x) at x = a, denoted by f (a) or y (a), may be defined as follows:

fla+h)y—f(a) (2)
h '

f(a)= !Iil'ﬂ

* Difference quotient
* Average rate of change

* Instantaneous rate of change

* Slope of a curve

The fractlonM is called the difference quotient for f at a and represents the average

rate of change of from a to a + h. Geometrically, it is the slope of the secant PQ to the curve y =f
(x) through the points P(a, f (a)) and Q(a + h, f (a + h)). The limit, f '(a), of the difference quotient is



the (instantaneous) rate of change of f at point a. Geometrically, the derivative f (@) is the limit of
the slope of secant PQ as Q approaches P; that is, as /& approaches zero. This limit is the slope of the
curve at P. The tangent to the curve at P is the line through P with this slope.

a + k, fila y_____

y

A

FIGURE N3-1a

In Figure N3—1a, PQ is the secant line through (a, f (a)) and (a + &, f (a + h)). The average rate of
change froma to a + 4 equals %. which is the slope of secant PQ.

PT is the tangent to the curve at P. As h approaches zero, point Q approaches point P along the
curve, PQ approaches PT, and the slope of PQ approaches the slope of PT, which equals f (a).

If we replace (a + h) by x, in (2) above, so that 7 = x — a, we get the equivalent expression

Flxy—fila)
X—da

f(a)=Ilim (3)

See Figure N3—1b.

O, fix)) K__




FIGURE N3-1b
The second derivative, denoted by f "(x) or ? or y ", 1s the (first) derivative of f (x). Also, f "(a)
is the second derivative of f (x) atx = a. |

B. FORMULAS

The formulas in this section for finding derivatives are so important that familiarity with them is
essential. If @ and »n are constants and » and v are differentiable functions of x, then:

da
—=0 (1
dx )
d du
—au=a— (2)
dx dx

d s . g0 N O
—iu =au” ——  (the Power Rule); —x" =nx (3)
dx dx dx
Ir—f{M+1r‘_||=if.--4-'r—fu': ii:i-l'}=iz:-il' (4)
dx dx dx dx dx dx

d dv du
—(uv)=u —+v — (the Product Rule) (5)
dx dx dx

1 (u ‘-'ﬂ s !-fﬂ
ot [—] =& & (,:0) (the Quotient Rule) (6)
dx \ v v
—-Sian:L‘DSHﬁE (7
dx dx
iu::»:}:ﬂ'.u=—:-‘.ir'n!:ﬁ (8)
dx dx

tan u = sec” u ke (9)

dx dx
ia:m.u:—aL::-'.r.::r.iﬂ (10)

dx dx




du
—secu=secu lanu — (11)
dx dx
icscu:—csuu cmni (12)
dx dx
i Inu= lﬁ (13)
dx u dx
i & =g ﬁ (14)
dx dx
ia"zﬂ'” lnciﬂ (15)
dx dx
i:;irl'I u=i arcsin i = — ! ﬂ (—l<u<l) (16)
dx dx - 0
iﬂmg'].'.': a arccos u = — : di (-l<u<l) (17)
dx dx Vv1—u® dx
| { 1 d

2 tan~ u= bt arctan u = - e (18)
dx dx 1+ u” dx
d 5 1 du
— cot™ u=— arccot u=- e 19)
dx dx | +u dx (
d % ¢ 1 du

sec” u= arcsec U = ———— {|u| = 1) (20)
dx dx |t u =1 dx
i csc M=i ArCCsc i = —;ﬂrj {|u|::~ 1) 21
dx dx ulyus =1 dx

C. THE CHAIN RULE; THE DERIVATIVE OF A COMPOSITE
FUNCTION

Formula (3) says that

d it
e LR - s
dx dx

This formula is an application of the Chain Rule. For example, if we use formula (3) to find the
derivative of (x* —x + 2)% we get

i[.\': —x+2Y =4(x" —x+2) . (2x-1).
dx

In this last equation, if we lety = (x> —x + 2)* and letu =x?> —x + 2, theny = u* The preceding
derivative now suggests one form of the Chain Rule:

;=;+—=4HJ+—£=4I[.1'?—.1.'+2]1+[3.1'—]]
dy  du dx dx



as before. Formula (3) the previous page gives the general case where y = " and u is a differentiable
function of x.

Now suppose we think of y as the composite function /' (g(x)), where y =f (#) and u = g(x) are
differentiable functions. Then

Chain rule

(flg(x))" = f'{g(x)) - g"(x)
= fllu)- g'(x)
_dv  du

du dx’

as we obtained above. The Chain Rule tells us how to differentiate the composite function: “Find the
derivative of the ‘outside’ function first, then multiply by the derivative of the ‘inside’ one.”

For example:

ilf +1M =10(x +1)% - 3x2 = 30x%(x° +1)°,
dx

i?t 2= i (Tx =2y = Ll Tx—_2y%.7,
dx dx 2

d 3 d , .
— = — 32— 4x) = 3. (A2 —4x")7 - (—Bx),
dx (2 —4x*Y  dx ) ) )

d (. ) T
——sin| ——x |=cos| ——x |-(-1),

dx 2 J

d i 3 3
— cos” 2Xx = —(cos 2.1'}3 =3(cos 2x) «(—sin 2x+2).
dx dx

Many of the formulas listed above in §B and most of the illustrative examples that follow use the
Chain Rule. Often the chain rule is used more than once in finding a derivative.

Note that the algebraic simplifications that follow are included only for completeness.

EXAMPLE 1
Ify=4x>—5x+7,findy (1) and y "(1).
SOLUTION: v = 12x* -5 and ¥” :d—: =24x.

dx dx*

Theny (1)=12-12-5=7and y (1) =24 - | =24,

EXAMPLE 2
Iff (x) = (3x + 2)°, find f (x).
SOLUTION: f '(x) = 5(3x +2)*- 3 =15(3x + 2)*.

EXAMPLE 3

, / = o o Y
If y=+3—x—x7, find —.
dlx



Y3 =x=2¥ 0, L B e T Ly

SOLUTION: e

1 +2x

243 —x— x*

EXAMPLE 4
Ifv= —-T'fl—.r find F
y=5(1-x*)* s0 %-_— (1 =22y #(=2x)
SOLUTION: :
T —-.1.-33’-5‘
EXAMPLE 5

Ifs(t) = (2 + 1)(1 — £)%, find 5 ().
SOLUTION: SO =0+ D21 =011+ (1 =%+ 2t (Product Rule)
’ =21 —1)-1 +1 -2F).
EXAMPLE 6
If £ (£) = e? sin 3¢, find £ (0).
SOLUTION: = e*(cos 3t+3) + sin 3t(e™ +2) (Product Eule)

= ¢™(3 cos 3t + 2 sin 3r)

Then, £(0) = 1(3- 1 +2-0) = 3.

EXAMPLE 7
If f(v) =
SOLUTION: i }=" =2v) u-_.h-lu 'Llul = _‘L‘Hf:_.._. (Quotient Ruls)

2y = £
e . find f7(v).

Note that neither f (v) nor f '(v) exists where the denominator equals zero, namely, where 1 — 2v?
=0 or where v equals 42

2
EXAMPLE 8
If fy = S92 x #0, find f(x).

SOLUTION: /(- x cosx —:‘{111 x+2x _ xcos l‘—lisin X
| F .

EXAMPLE 9
Ify=tan (2x*>+ 1), find y "
SOLUTION: y "= 4x sec? (2x% + 1).

EXAMPLE 10



Ifx = cos’ (1 — 30), find %_

dx

2 = 3 cos® (1—360)sin (1—3)(-3
SOLUTION: 75 " = 8nd=ai=q)
=0cos’ (1—30)sin (1-238).

EXAMPLE 11
Ify — e(sinx) 4 1’ find ﬂ
dx
SOLUTION: % = oo s gAET
elx
EXAMPLE 12

Ify = (x + )In?(x + 1), find fﬁ

dy . 2ln(x+1)
= S L
SOLUTION: ¢ x1

=21n(x+1)+In’(x+ 1)

+In*(x + 1) (Product and Chain Rules)

EXAMPLE 13
If g(x) = (1 + sin 3x)*, find (%)
SOLUTION: gxy=4 (1+ sin® 3x)°(2 =in 3x cos 3x)- (3)
= 24 (1+sin® 3x)’(sin 3x cos 3x).

Then g*['g):ﬂ.;] +(=1)?)(=1-0)=24-8-0 =0,

EXAMPLE 14
Ify=sin!x+ wi_e findy"
r l xi(—2x) | Fr—T
A e e |
SOLUTION: V=% =2vi=x
P—x 1 T
= T = 1-._‘-] —
Vl—x
EXAMPLE 15
Ifu=1In Vvt +2v -1, find i,—‘:
H= El]n (v:+ 2y — 1) 50
SOLUTION:
da 1 JpsZ vl
e 2VEEEREL i Eed
EXAMPLE 16

If s =e !(sint —cos t), find s ".



SOLUTION: ' =e'(cost +sint)+ (sint —cost)—e™")

=¢'(2cost)=2e" cost.

EXAMPLE 17
Lety =2u® —4u?>+5u—3 and u = x> — x. Find &

dx

dy ,
—=(6u —Bu+5)12x -1

SOLUTION: dx

=f6ly = xf =80 = x) L S2a=1).

EXAMPLE 18

If y = sin (ax + b), with a and b constants, find %
ax

SOLUTION: ? = [cos(ax + b)] - a = a cos(ax + b).
ax

EXAMPLE 19

If £ (x) = ae*™ (with a and k constants), find /"and f".
SOLUTION: f (x) = kae*™ and f " = k? aek*.

EXAMPLE 20

If y = In (kx), where k is a constant, find %
ax

SOLUTION: We can use both formula (13), and the Chain Rule to get

i—f}. = L * k l
dx kx X

Alternatively, we can rewrite the given function using a property of logarithms: In (kx) = Ink +
In x. Then

dx xr x

EXAMPLE 21
Given f (1) = u> — u and u = g(x) =x> — 5 and F(x) = f (g(x)), evaluate F '(2).
SOLUTION: F'(2)=f"g(2))g '2)=f"'3) - (12) =5 - 12 = 60.
Now, since g (x) = 3x2, g (2) = 12, and since f (1) = 2u — 1, 1 (3) = 5. Of course, we get
exactly the same answer as follows.
Since Flx) = (x?—5)*— (x* - 5),

F'(x)=2(x" = 5)-3x" - 3",
Fi(2)=2+(3-12-12=060.



D. DIFFERENTIABILITY AND CONTINUITY

If a function f 'has a derivative at x = ¢, then f'is continuous at x = c.
This statement is an immediate consequence of the definition of the derivative of f (¢) in the form

flc)= “mM_

A= _'t' -

If f (c) exists, then it follows that lim 7(x)= f(c). which guarantees that f'is continuous at x = c.

Iff 1s differentiable at ¢, its graph cannot have a hole or jump at ¢, nor canx =c be a vertical
asymptote of the graph. The tangent to the graph of / cannot be vertical atx = c; there cannot be a
corner or cusp atx = c.

Each of the “prohibitions™ in the preceding paragraph (each “cannot”) tells how a function may
fail to have a derivative at c. These cases are illustrated in Figures N3-2 (a) through ().

fix) fix)
A A

=
-

\:
\

\
|

() 1] ()
The graph of fhasa hok The graph of f has a jump x=¢is a vertical asym ptote
{a removable discontinuity ) at c. (disoontinwity ) at c. of the graph of f.
fix)
& fix) fix)

L — =
& i [

(d) e} ()
The graph of f has a vertical There isa comer atx =¢. There isa cusp atx = ¢
tangent at .

FIGURE N3-2
The graph in (e) is for the absolute function, / (x) = [x|. Since f (x) = —1 for all negative x but / (x)
=+ 1 for all positive x, f (0) does not exist.

We may conclude from the preceding discussion that, although differentiability implies continuity,
the converse is false. The functions in (d), (e), and (f) in Figure N3-2 are all continuous at x = 0, but
not one of them is differentiable at the origin.



E. ESTIMATING A DERIVATIVE

E1. Numerically.
EXAMPLE 22

The table shown gives the temperatures of a polar bear on a very cold arctic day (¢ = minutes; T’
= degrees Fahrenheit):

t‘0|1|2|3‘4‘5‘6‘7‘8
T | 98 |94.95]93.06|91.90 | 91.17] 90.73 | 90.45 | 90.28 | 90.17

Our task is to estimate the derivative of T numerically at various times. A possible graph of 7(¢)
is sketched in Figure N3-3, but we shall use only the data from the table.

T'("F

&
ug

Ut

i {min}

a

FIGURE N3-3

Using the difference quotient M with 4 equal to 1, we see that

T’[D} = w =—3.05"/ min.
Also,
, T(2y= Tyl .
) ,;#: ~1.89° / min,
v =
Tr{g] F__w =—1.16°/min,
Ay — 3
T’{B] F_—M: —D_?FD |'r miﬂ.
and so on.

The following table shows the approximate values of T (¢) obtained from the difference
quotients above:

¢ | o | v ] 2| 3 | 4 | 5 | 6 | 7



T') ‘ ~3.05 | ~1.89 | ~1.16 ‘ —0.73 ‘ —0.47 ‘ —0.28 ‘ —0.17 ‘ —0.11

Note that the entries for 7" (¢) also represent the approximate slopes of the 7" curve at times 0.5,
1.5, 2.5, and so on.

From a Symmetric Difference Quotient

In Example 22 we approximated a derivative numerically from a table of values. We can also
estimate f (@) numerically using the symmetric difference quotient, which is defined as follows:

f.,lmr___fl.’{!+."i'J—_,i’l-f-!—F'H.
2h

Note that the symmetric difference quotient is equal to

-

L[ﬂr’f_a +h)—fla) i fla)- fla —m} _
h h

We see that it is just the average of two difference quotients. Many calculators use the symmetric
difference quotient in finding derivatives.

EXAMPLE 23

For the function f (x) =x* approximate f (1) using the symmetric difference quotient with /# =
0.01.

SOLUTION: g~ L0 = 09" _ g0,
2(0001)

The exact value of 1 (1), of course, is 4.

The use of the symmetric difference quotient is particularly convenient when, as is often the
case, obtaining a derivative precisely (with formulas) is cumbersome and an approximation is all
that 1s needed for practical purposes.

A word of caution is in order. Sometimes a wrong result is obtained using the symmetric
difference quotient. We noted that f'(x) = [x| does not have a derivative at x = 0, since f (x) = —1 for
all x <0 butf (x) =1 for all x > 0. Our calculator (which uses the symmetric difference quotient)
tells us (incorrectly!) that / (0) = 0. Note that, if f (x) = x|, the symmetric difference quotient gives
0 for £ '(0) for every i # 0. If, for example, 7 =0.01, then we get

,r"m;r_-|{}'m|_|_“'{”|= 0
' 0.02 0.02

which, as previously noted, is incorrect. The graph of the derivative of /' (x) = [x|, which we see in
Figure N3—4, shows that f(0) does not exist.



Y
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FIGURE N3-4

E2. Graphically.

If we have the graph of a function f (x), we can use it to graph f '(x). We accomplish this by estimating
the slope of the graph of /' (x) at enough points to assure a smooth curve for f (x). In Figure N3-5 we
see the graph of y = f'(x). Below it is a table of the approximate slopes estimated from the graph.

v =/fx)

FIGURE N3-5
x | 3 |2s| 2 |as| 1] o fos| 1| us| o2 |2s
f’(x)‘ —6‘—3‘—0.5‘ 1 | 2 ‘ 2 ‘1.5‘0.5‘—2|—4‘ —7
Figure N3-6 was obtained by plotting the points from the table of slopes above and drawing a
smooth curve through these points. The result is the graph of y = £ '(x).




From the graphs above we can make the following observations:

(1) At the points where the slope of /' (in Figure N3-5) equals 0, the graph of / (Figure N3—6) has
x-intercepts: approximately x =—1.8 and x = 1.1. We’ve drawn horizontal broken lines at these points

FIGURE N3-6

on the curve in Figure N3-5.

(2) On intervals where f decreases the derivative is "23live We see here that f decreases for x <

—1.8 (approximately) and forx > 1.1 (approximately), and thatf increases for —1.8 <x < 1.1
(approximately). In Chapter 4 we discuss other behaviors of f that are reflected in the graph of /.

BC ONLY

F. DERIVATIVES OF PARAMETRICALLY DEFINED
FUNCTIONS

InCreases postive

Parametric equations were defined previously in Chapter 1.
Ifx =f(¢) and y = g(¢) are differentiable functions of ¢, then

b e
& bt and f*'_‘._‘_'z-f_f[ﬂjzm )
dy  4x dx*  dv\ dx dx
ai dt
EXAMPLE 24

Ifx =2 sin 0 and y = cos 20, find & ang 4V |

dy

dx dx*

SOLUTION: ﬂ = E = —2sin 28 = 2sinBeos B = pasn:

dx

Also,

dx

dt

2o0s0 cos 0

(s
dy _ do\dx _—Emﬁﬁ__l

2cos O

dx’ d

dt



EXAMPLE 25
Find the equation of the tangent to the curve in Example 24 for e = %

SOLUTION:

Whene= 2. the slope of the tangent, % equals -2 sin [5 = —1. Since
X A

x=2sin [%} =landy=cos(2* %J =Cos TI: = i— the equation is

3
=—lix-1) or y=—x+—.
- “3

=

b | —

EXAMPLE 26

Suppose two objects are moving in a plane during the time interval 0 <¢ < 4. Their positions at
time ¢ are described by the parametric equations

x=2t, yy=4— and x,=t+1, y,=4-t.
(a) Find all collision points. Justify your answer.

(b) Use a calculator to help you sketch the paths of the objects, indicating the direction in which
each object travels.

BC ONLY

SOLUTION:

(a) Equating x; and x, yields # = 1. Whent = 1, both y; and y, equal 3. So ¢ =1 yields a true
collision point (not just an intersection point) at (2,3). (An intersection point is any point that
1s on both curves, but not necessarily at the same time.)

(b) Using parametric mode, we graph both curves with ¢ in [0,4], in the window [0,8] x [0,4] as
shown in Figure N3-7.

FIGURE N3-7
We’ve inserted arrows to indicate the direction of motion.

Note that if we draw the curves in simultaneous graphing mode, we can watch the objects as
they move, seeing that they do indeed pass through the intersection point at the same time.



G. IMPLICIT DIFFERENTIATION

When a functional relationship between x and y is defined by an equation of the form F(x, y) = 0, we
say that the equation defines y implicitly as a function of x. Some examples are x> +3* — 9 = 0, y* —
4x = 0, and cos (xy) =y* — 5 (which can be written as cos (xy) —y* + 5 = 0). Sometimes two (or
more) explicit functions are defined by F(x, y) = 0. For example, x> +y> — 9 = 0 defines the two
functions y, = ,./o_y? andv.= /o ,*. the upper and lower halves, respectively, of the circle centered
at the origin with radius 3. Each function is differentiable except at the points where x = 3 and x = —3.

Implicit differentiation is the technique we use to find a derivative wheny is not defined
explicitly in terms of x but 1s differentiable.

In the following examples, we differentiate both sides with respect to x, using appropriate

formulas, and then solve for ;l
O

EXAMPLE 27
If x> +3?—9=0, then

Note that the derivative above holds for every point on the circle, and exists for all y different
from 0 (where the tangents to the circle are vertical).

EXAMPLE 28
If x> —2xy + 3y? =2, find 4.

dx

dv dy
2x — 2[.1';+ Ve l] +6y—=10
dex “dx

SOLUTION: .
ﬂ[f&_‘r— 2x)=2y—2x,50 ‘_f}lz Tk o
dx dx 3y—x
EXAMPLE 29
If x siny = cos (x + ), find ?
ax
X oS8 _rﬁ_ﬂ:in v =—sin{x + _w[ 1 +ﬁ] :
SOLUTION: g e
"ri: __Siny +sin(x+y) .
clx X cosy+sin {(x+y)
EXAMPLE 30

Find & .4 92 using implicit differentiation on the equation ¥ +y?=1.
dx ax=

SOLUTION: 2x+2y® -0 —» #2__% (1)

dx dx v

Then



i e (3)
where we substituted for £ from (1) in (2), then used the given equation to simplify in (3).

EXAMPLE 31

Using implicit differentiation, verify the formula for the derivative of the inverse sine function, y

= sin"! x = arcsin x, with domain [-1,1] and range [_gg] _

SOLUTION: y =sin !x <> x=siny.
Now we differentiate with respect to x:

dy
l=cosy—,
dx

dn 1 1 I

dx cosy 4,1-siny +1—x

where we chose the positive sign for cos y since cos y is nonnegative if -~ <y < Z. Note that this
derivative exists only if —1 <x <1.

H. DERIVATIVE OF THE INVERSE OF A FUNCTION

Suppose f and g are inverse functions. What is the relationship between their derivatives? Recall that
the graphs of inverse functions are the reflections of each other in the liney =x, and that at
corresponding points their x- and y-coordinates are interchanged.

Figure N3—-8 shows a function f passing through point (a,b) and the line tangent to f at that point.
The slope of the curve there, f (a), is represented by the ratio of the legs of the triangle, ;l - When this

figure is reflected across the line y =x, we obtain the graph of f !, passing through poiﬁt (b,a), with
the horizontal and vertical sides of the slope triangle interchanged. Note that the slope of the line

tangent to the graph of /! at x = b is represented by % _the reciprocal of the slope of f atx = a. We

dy

have, therefore,

1

or () (¥)= )

[ £ i 1) = l
(f7) () F(a)




FIGURE N3-8

Simply put, the derivative of the inverse of a function at a point is the reciprocal of the derivative
of the function at the corresponding point.

EXAMPLE 32
If£(3) =8 and £ '(3) = 5, what do we know about f ~1?

SOLUTION: Since f passes through the point (3,8), f ! must pass through the point (8,3).
Furthermore, since the graph of /'has slope 5 at (3,8), the graph of ! must have slope % at (8,3).

EXAMPLE 33
A function f'and its derivative take on the values shown in the table. If g 1s the inverse of /, find g
(6).
SOLUTION: To find the slope of g at the point where x = 6, we must look at the point on f
where y = 6, namely, (2,6). Since f (2) = % g '(6) =3.
VACHN VY
6

8

ba | || ] =
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EXAMPLE 34

Lety =f(x) =x>+x — 2, and let g be the inverse function. Evaluate g /(0).
3

SOLUTION: Since =32+ 1,¢'(n)= —— . 1o find x when y = 0, we must solve the equation x

Izt +1

+ x — 2 = 0. Note by inspection that x = 1, so



1
= AR

1
10y =,
g 4

EXAMPLE 35

Where is the tangent to the curve 4x> + 9y = 36 vertical?
4x

SOLUTION: We differentiate the equation implicitly to get dﬁ i lg}-% _q, SO % ==

: 9y
the tangent line to a curve is vertical when % -, we conclude that _2* must equal zero; that is, y

J 4x
must equal zero. When we substitute y = 0 in the original equation, we get x = 3. The points

(£3,0) are the ends of the major axis of the ellipse, where the tangents are indeed vertical.

~ Since

I. THE MEAN VALUE THEOREM

If the function f'(x) is continuous at each point on the closed interval a <x < b and has a derivative at
each point on the open interval a <x <b, then there is at least one number ¢, a <c <b, such that
J-ra _ ey This important theorem, which relates average rate of change and instantaneous rate of

b—a
change, is illustrated in Figure N3-9. For the function sketched in the figure there are two numbers, ¢,
and c¢,, between a and b where the slope of the curve equals the slope of the chord PQ (i.e., where the

tangent to the curve is parallel to the secant line).

l' i

]
A ¢ (b, Fik1)

{a flal)
I
|

0 <7

|
|
I
|
|
|
I
|
|
|
|
|
|
|
c

FIGURE N3-9

Rolle’s Theorem

We will often refer to the Mean Value Theorem by its initials, MVT.

If, in addition to the hypotheses of the MVT, it is given that / (a) = f (b) = k, then there 1s a number,
¢, between a and b such that f (c) = 0. This special case of the MVT is called Rolle’s Theorem, as
seen in Figure N3—10 for £ = 0.



0f ya

FIGURE N3-10

The Mean Value Theorem is one of the most useful laws when properly applied.

EXAMPLE 36

You left home one morning and drove to a cousin’s house 300 miles away, arriving 6 hours later.
What does the Mean Value Theorem say about your speed along the way?

SOLUTION: Your journey was continuous, with an average speed (the average rate of change
of distance traveled) given by

Adistance - 300 miles
Aime 6 hours

= 50 mph.

Furthermore, the derivative (your instantaneous speed) existed everywhere along your trip. The
MVT, then, guarantees that at least at one point your instantaneous speed was equal to your
average speed for the entire 6-hour interval. Hence, your car’s speedometer must have read
exactly 50 mph at least once on your way to your cousin’s house.

EXAMPLE 37
Demonstrate Rolle’s Theorem using f'(x) = x sin x on the interval [0,rx].
SOLUTION: First, we check that the conditions of Rolle’s Theorem are met:
(1) f(x) =x sinx is continuous on <0, > and exists for all x in [0,7x].
(2) f'(x) =x cos x + sin x exists for all x in <0,m >.
3)f(0)=0sin0=0and f () =n sinwt = 0.

Hence there must be a point, x = ¢, in the interval 0 <x <z where f (¢) = 0. Using the calculator
to solve x cos x + sinx = 0, we find ¢ = 2.029 (to three decimal places). As predicted by Rolle’s
Theorem, 0 < c <.

Note that this result indicates that at x = ¢ the line tangent to f is horizontal. The MVT (here as
Rolle’s Theorem) tells us that any function that is continuous and differentiable must have at least
one turning point between any two roots.

J.* INDETERMINATE FORMS AND L’HOPITAL’S RULE



BC ONLY

Limits of the following forms are called indeterminate:

i
—or —,0-0, 0, _o, (P, 1, 6P
o

0

To find the limit of an indeterminate form of the type :_11“- = we apply L’Hopital’s Rule, which

involves taking derivatives of the functions in the numerator and denominator. In the following, a is a
finite number. The rule has several parts:

(a) If lim f(x) = limg(x) =0 and if i, L& exists’, then
K E—a —=a FlXx)

. fixy . X
lim =lim- :

X il ‘;‘r['l] X i -‘:‘_r'r[_l :|

if im £ does not exist, then L’Hopital’s Rule cannot be applied.

¥—a glx)

. Although this a required topic only for BC students, AB students will find L’Hépital’s Rule very helpful.
T The limit can be finite or infinite (+o0 or —0).

(b) If1im fix)=limg(x) ===, the same consequences follow as in case (a). The rules in (a) and (b)
both hold for one-sided limits.

(c) If lim f(x) =lim g(x) =0 and if lim I exists, then

P

x—ee G{ )

o ftyy o X
lim = lim— :
X0 -\.E[ _{J Km0 g (x)

i f1imZ does not exist, then L’'Hopital’s Rule cannot be applied. (Here the notation “x — o0

x—e 0 )

represents either “x — + 00” or “x — —00.”

(d) If lim f(x) = lim g(x) = ==, the same consequences follow as in case (c).
In applying any of the above rules, if we obtainz_l or = again, we can apply the rule once more,

repeating the process until the form we obtain is no longer indeterminate.

Examples 38—43 are BC ONLY.

EXAMPLE 38

lim =2 is of type % and thus equals lim ETT e
T—d

=3 y-=3

(Compare with Example 12 from Chapter 1.)

EXAMPLE 39

lim 2% is of type I and therefore equals lim =X _ .
Kl |:} x I

X



EXAMPLE 40
lim -‘_‘f+i (Example 13) is of type 2 and thus equals jim 3¥ __3, as before. Note that 1im 22 is not
2 X — 2 2x 32 2x

the limit of an indeterminate form!

EXAMPLE 41

im 221 is of type 2 and therefore equals jim < = 1.
k0 R 0 (R |

EXAMPLE 42
im =4 *7 (Example 20) is of type = =, so that it equals jy, “_;"“ which is again of type =.

== 3—6X P

Apply L’Hop1tal s Rule twice more:

For this problem, it is easier and faster to apply the Rational Function Theorem!

EXAMPLE 43
Find jim ]n—l

SOLUTION: jim % is of type = and equals jim T‘ = 0.

X —p X j ST

EXAMPLE 44
Find hm

1+-1

SOLUTION: j, ©*8 _ 22

=2 X" +4

BEWARE: D’Hopital’s Rule applies only to indeterminate forms % and = Trying to use it in
other situations leads to incorrect results, like this:

2

e -
lim — =lim——=3 (WRONG!)

=y 4+ 22X

[’Hopital’s Rule can be applied also to indeterminate forms of the types 0 - oo and oo — oo, if the
forms can be transformed to either % or =

o

EXAMPLE 45

Find jim x sin —l.

X

SOLUTION: 1im x sin l is of the type o - 0. Since x ¢, L = 3™ and, as x — oo, the latter is the

- 1/x

indeterminate form We see that



1 1
B s

1 l
lim xsin— = lim —2 L — lim cos— = Li.

N e X K J- L —p o X

sin =

(Note the easier solution lim xsin~ = lim X =1)
Kokt X

| S

X

Other indeterminate forms, such as 0°, 1° and oo?, may be resolved by taking the natural logarithm
and then applying L’Hopital’s Rule.

BC ONLY

EXAMPLE 46

Find le‘,}[l + x)¥-
SOLUTION: 1im(1 + 27 is of type 1%. Lety = (1 +x)'"%, so that

Iny= Lln(1+x). Thenl'mun Iny= jim 24*9 whichis of type % Thus,
= X — = x—l X

l

limln v = lim L= :%:] ;

x=ll =il 1

and sincelimIny =1,limy=¢' =e.

EXAMPLE 47
Find lim 2"

SOLUTION: lim x** is of type oo¥. Let y = x!*, so that In y= lr]m-: L

T

(which, as x — oo, is of type 2). Thenlim In y ‘T‘ =0, and lim y = e=1.
For more practice, redo the Practice Exercises, applying L’Hopital’s Rule wherever possible.

K. RECOGNIZING A GIVEN LIMIT AS A DERIVATIVE

It 1s often extremely useful to evaluate a limit by recognizing that it is merely an expression for the
definition of the derivative of a specific function (often at a specific point). The relevant definition is
the limit of the difference quotient:

£ .o P,
X . fle+hy= file)
ficy=lim———mmM ———~ )—.
' [ h

EXAMPLE 48

Find jj, @t#r-2'
B0 B



SOLUTION: iy e+m*-2* g the derivative of f (x) =x* at the point where x = 2. Since f (x) =

h

4x3 the value of the given limit is £/(2) = 4(2%) = 32.

EXAMPLE 49

Find jjq ¥9+h-3
b0 .P:

SOLUTION: :!d_]l-.,l .\,'.';I+:| -3 :I‘JEL_}L WheI'e .."_[-1'] — _\-'._1.- . The Vallle Of the llmlt IS %_1'-"5 whenx =9, or é

EXAMPLE 50
1 L 1y 1 1

Find iy 7l55-3)

SOLUTION: yiny +{—1-1) - 2), Where 7= L.

Verify that /(2 = _% and compare with Example 17.

EXAMPLE 51

Find jim &1
B

B0

SOLUTION: lim *"'h_“ - (o), where f'(x) = e*. The limit has value edor 1 (see also Example 41).

EXAMPLE 52

Find i 2=

x—0 x

SOLUTION: lim 3 is £ (0), where f'(x) = sinx, because we can write

£(0) = lim sin(0+ x) —sind = fiss sinx

x—il X x—0 x
The answer is 1, since f (x) = cos x and f (0) = cos 0 = 1. Of course, we already know that the
given limit is the basic trigonometric limit with value 1. Also, L’Hopital’s Rule yields 1 as the
answer immediately.

Chapter Summary

In this chapter we have reviewed differentiation. We’ve defined the derivative as the instantaneous
rate of change of a function, and looked at estimating derivatives using tables and graphs. We’ve
reviewed the formulas for derivatives of basic functions, as well as the product, quotient, and chain
rules. We’ve looked at derivatives of implicitly defined functions and inverse functions, and
reviewed two important theorems: Rolle’s Theorem and the Mean Value Theorem.

For BC Calculus students, we’ve reviewed derivatives of parametrically defined functions and
the use of L’Hopital’s Rule for evaluating limits of indeterminate forms.



Practice Exercises

Part A. Directions: Answer these questions without using your calculator.

In each of Questions 1-20 a function is given. Choose the alternative that is the derivative, dﬂ of
AN
the function.

1.y=xtanx
(A) 5x* tan x
(B) x° sec® x
(C) 5x*sec? x
(D) 5x* +sec® x
(E) 5x* tan x + x° sec? x

2. y= 2—x

Jr+l

(A) -—!

(3x+1)

(B) Hx—3

(G3r+1°

(C) —2

(3x+1)°

(D) —

(3xr+D0°

(E) T—6x

(3x+1)°

3. y=+3-2x

(A) —

243 -2x

(B) -——

A3-2x

(C) i3 — 2"
3

(D) -—

3-2x

(E) %r_ 3_2x)*

\
4, jims—=
Y= Gx+1)p?
3
A) -2
(3x+1)

(B) —30(5x + 1)™*
(C) .

(5r+D*




(D) —g[:’u# |

(E) 30

(5x+1

5.y= 3x23 — 412 =9
(A) 2x13 —2x712
(B) 3x 13 —2x712
(C) 2% g
D22,

X

(E) 2x—1/3 _ 2x—1/2

60 :I.' = 2 "._-II.[ -

2 \-'l.i.'

(A) x+——

XX
(B) x—1/2 + x—3/2
(C) 4x —_l

dxa/x

(B) 4)-/(x + 1)
Cc) —L

2ixt 2 x=]

D _I—H
(D) (x" +Zx=1p"

(E) none of these

8. .'||' - el -1.‘

COs X

(4) 2=

sin x

(B) - 2=

sin x

(C) 2xcosx—x"sinx

cos™ X

(D) 2xcosx - I sinx
Cos™ X

(E) 2xcos 1 + X sinx
sin” x




11. y =In(sec x + tan x)
(A) sec x
(B) —

sec x

(C) tan x + o

tan x

(D) —

secx4tan x

E)-—

secx+tan x

12, gt =t

(A)0
(B) 1
©

2

[ F.‘r + E—x-]'i

(D) —-

[FI + E"_'T J'i

(E) —

{,?'ix +€—1x

13. y= ]:1(\;".{'i aE lj



(A)
(B) .\1, 41
( )j[_ri+l_]
( ) x +l
() 2

r +1

el
(A) cm[%]

(B) cos( |

(©) Lo L)

(D) Lo L} Leos[ L]
(E) cos (Inx)

.\,1 S |

15. yu !

2sin2x

(A) —csc 2x cot 2x
(B)

dcos 2x

(C) —4 csc 2x cot 2x
(D) a":ﬁi

24/sin2x

(E) —csc? 2x

16.y =¢* cos 2x
(A) —e ™ (cos 2x + 2 sin 2x)
(B) ¢™* (sin 2x — cos 2x)
(C) 2e ™ sin 2x
(D) —¢™ (cos 2x + sin 2x)
(E) —e * sin 2x

17. y = sec? (x)
(A) 2 secx

(B) 2 sec x tanx

(C) 2 sec? x tan x



(D) sec? x tan x
(E) tanx

18. y=x1nx
(A) 3l x

X

(B) 3 In? x

(C) 3x Infx +1In x
(D) 3(Inx + 1)

(E) none of these

-

19. . 1+x”
¥y= -
(A) —
(l—a)
dx
(B) (1-x*)’
(C) =
(l—x")
(D) E.r1
1-x°
(E) *
T
20.y=sin! ,_j_
A 1
( )zﬂ—f
(B) ——
y1—2a
C 1+ x
© N
(D) I_‘.: 1
V1-x*
(E)
vi+x

In each of Questions 21-24, y is a differentiable function of x. Choose the alternative that is the
derivative dﬂ _
21.x3 - y3 =

(A) x

(B) 3x?

(© g2



(D) &

22.x +cos(x+y)=0
(A)csc(x+y)—1
(B) csc(x +)

(C) —

sin(x +v)

(D) ——

"-.'I 1—x"

(E) I —sinx

siny

23.sinx—cosy—2=0
(A) —cotx
(B) —coty
(C) COE X

siny

(D) —csc y cos x
(E) 2—cosx

sin v

24.3x> — 2xy + 507 =1

xX—Aavy

(B) =

-

5y—x
(C) 3x+ 5y
(D) Ix+4y

X

(E) none of these

25.1fx=1>+1and y = 28, then:i-_‘?: =
(A) 3t
(B) 67
(o

|
(D) 6t

(1)

E 2t + 687
(E) (t*+ 1)




BC ONLY

26.Iff (x) = Xt —4x3 + 4x2 - 1, then the set of values of x for which the derivative equals zero is
(A) 11,2}
(B) {0,-1,-2}
(©) -1, +2}
(D) {0}
(E) {0,1,2}

27.1f f (x) = 16.x . then f "(4) is equal to
(A) —32
(B) —16
(C) 4
(D) 2
(E) -1

28. If £ (x) = In x> then £ "(3) is
(A) —%
(B) -1
(©) -3
(D) 1
(E) none of these

29. If a point moves on the curve x2+ y2 = 25, then, at (0,5),
(A)0
(B) -
(C) -5
(D) _L1

5

o i
dx*

(E) nonexistent

30.Ifx=¢>—1and y =¢*— 26, then, when ¢ =1, & is

(A) 1 h
(B) -1



OO0
(D) 3
(E) L

BC ONLY

31.If £ (x) = 5 and 51902 _ 5.016, which is closest to f (1)?
(A) 0.016
(B) 1.0
(©) 5.0
(D) 8.0
(E) 32.0

32.Ify=¢e" (x — 1), theny "(0) equals
(A) 2
(B) -1
©0
(D) 1
(E) none of these

33.1fx=¢%cos B and y = €% sin O, then, wheng_ = % is

(A) 1

(B) 0

(C) en/2

(D) nonexistent
(E) -1

BC ONLY

34. If x = cos ¢ and y = cos 2¢, then Q (sin 1 #0) 1S

dx

(A)4 cost
(B) 4
o

(D) —4
(E) —4 cot ¢



BC ONLY

&
35. i (4 =1

h
(A)0
(B) 1
(©6
(D) oo

(E) nonexistent

is

lll
36. lim ¥8+h=2
ki h

(A) 0
®) L
©) 1
(D) 192
(E) ©

37. litn w is

(A0

(B) .

O 1

(D) e

(E) nonexistent
38. lim ‘L”%‘“ is

(A) -1

(B) 0

O 1

(D) oo

(E) none of these

-4
39. /) =4 x—1 7 ! which of these statements are true?
4, x=1

L lim f(x) exists.
IL. '1s continuous at x = 1.



III. f'1s differentiable at x = 1.

(A) none

(B) I only

(C) Iand I only

(D) I and III only

(E) I, 11, and III

40. 1f g(x) = {;1 i : f : which of these statements are true?

L lim g(x) exists.
II.; 1s continuous at x = 3.
III. g is differentiable at x = 3.

(A) T only

(B) IT only

(C) III only

(D) I and II only
(E) L, 11, and III

41. The function f (x) =x%3 on [-8, 8] does not satisfy the conditions of the Mean Value Theorem
because

(A) 1(0) 1s not defined

(B) f(x) 1s not continuous on [—8, §]
(C) f'(—1) does not exist

(D) f (x) is not defined for x <0

(E) 1 '(0) does not exist

42. If f (x) = 2x> — 6x, at what point on the interval 0 <x < ;5 _if any, is the tangent to the curve
parallel to the secant line on that interval?

(A) 1
(B) -1
©O 2
D)o

(E) nowhere

43. If h is the inverse function of fand if s = % then 2 '(3) =
(A) -9



l

B) -1
l
©1
D)3
E)9

4. lim ;_m equals

(A)0
(B) 1

© }ﬂ,

(D) oo
(E) none of these

BC ONLY

45. If sin(xy) = x, then % .
(X

(A) sec(xy)
(B) sl

Q) secly) -y
(C) ===~
D [+ seciay)
(D) ===

(E) sec(xy) — 1

. sin2x .
46. lim o is
—ell x

(A) 1
(B) 2
©) !
D)0
(E) ©

47, .. sindx
* lim — s
=0 81N 4Xx

(A) 1
(B)
©=




(D) 0

(E) nonexistent

48,y oomz,
(A) nonexistent
B) 1

©)2

(D)

(E) none of these

tan mx
49. lim is
x—dl

AL
(B) 0
©1
(D) n
(E) o

S0 tim s
(A)is 1
(B)is 0
(C)is
(D) oscillates between —1 and 1

(E) is none of these

51. The graph in the xy-plane represented by x =3 +2sinfand y=2cos ¢t — 1, for n <¢ <m, is
(A) a semicircle
(B) a circle
(C) anellipse
(D) half of an ellipse
(E) a hyperbola

BC ONLY

52. ]]_]3:} Se0 .1':'.."{]5.1' equals

(A)0



(B) L
O 1
(D) 2
(E) none of these

In each of Questions 53—-56 a pair of equations that represent a curve parametrically is given.

Choose the alternative that is the derivative % )
ax

53.x=t—sintandy=1—cost
(A) sint

l—cost

(B) | —cost

sint

(C) sin it

cos f—1

(D) =2

v

(E) l—-mﬂ 1

t—sint

BC ONLY

54.x =cos’> 0 and y =sin® 0
(A) tan’ 0
(B) —cot 0
(C) cotH
(D) —tan 6
(E) —tan? 0

BC ONLY

55.x=1—¢elandy=t+e!
(A)

1-¢

B)e'—1
O e +1
(D) ' —e*
(E) e —1

56. .- ﬁandy= l1-In(1-2)(<1)



(A) —
B) -1
©1

(D) 4=t

t

(E) 1 +Inx

Part B. Directions: Some of the following questions require the use of a graphing calculator.
In Questions 57-64, differentiable functions f'and g have the values shown in the table.

X S S g g’
0 2 1 5 —4
1 3 2 3 -3
2 5 3 1 -2
3 10 4 0 ~1

57.1fA=f+ 2g, then4 '(3) =
(A) 2
(B) 2
O 7
(D) 8
(E) 10

58.If B=f-g,thenB '(2) =
(A) 20
(B) -7
(©) -6
D) -1
(E) 13

59.1fp= X thenD (1) =
(A) -1

2

B) .

3

©-!
|
®) !

(E)!



60. If H(x) = f(x) . then H (3) =
(A) -
4
l
(B) W

O 2
(D) —

(E) 4 V10

61. If K(x) = [f},_“, then K '(0) =

(]
&

(A) _,,l,i
®) -1
© 1
3
(D) :—t,

(E) 2

62. If M(x) = f (2(x)), then M (1) =
(A) —12
(B) -6
(C) 4
(D) 6
(E) 12

63. If P(x) = f(x3), then P (1) =
(A) 2
(B) 6
©)38
(D) 12
(E) 54

64. If S(x) = f " !(x), then S '(3) =
(A) 2
(B) -—

25

©1



D) !
(E) 2

65. The graph of g 'is shown here. Which of the following statements is (are) true of gatx =a ?
I. g is continuous.
II. g is differentiable.

III. g is increasing.

(A) I only

(B) III only

(C) Iand 11T only
(D) II and III only
(E) 1, 11, and IIT

66. A function f has the derivative shown. Which of the following statements must be false?

(A) f1s continuous at x = a.

(B) f(a) = 0.

(CO) fhas a vertical asymptote at x = a.
(D) f'has a jump discontinuity at x = a.

(E) f has a removable discontinuity at x = a.

67. The function f whose graph is shown has f'=0 atx =



(A) 2 only

(B) 2 and 5
(C)4and 7

(D) 2,4, and 7
(E)2,4,5,and 7

68. A differentiable function f has the values shown. Estimate /' '(1.5).

x | 10 | 12 | 14 | 16
S | 8 | 10 | 14 | 22
(A)8
(B) 12
(C) 18
(D) 40
(E) 80

69. Water is poured into a conical reservoir at a constant rate. If /(7) is the rate of change of the
depth of the water, then 4 is

(A) constant

(B) linear and increasing
(C) linear and decreasing
(D) nonlinear and increasing

(E) nonlinear and decreasing



Use the figure to answer Questions 70—72. The graph of f consists of two line segments and a
semicircle.

70. 1 '(x) =0 for x =
(A) 1 only
(B) 2 only
(C) 4 only
(D) 1and 4
(E)2and 6

71. f '(x) does not exist for x =
(A) 1 only
(B) 2 only
(C)land2
(D)2 and 6
(E)1,2,and 6

72.1'(5) =
(A) -
(B) %
©)1
(D) 2
(E) 5

73. At how many points on the interval [—5,5] is a tangent to y =x + cos x parallel to the secant
line?

(A) none
(B) 1
(©)2



(D) 3
(E) more than 3

74. From the values of /' shown, estimate 1 (2).
x| 192 | 194 | 196 | 198 | 200
f@ | 600 | 500 | 440 | 410 | 400

(A) -0.10
(B) —0.20
(C) -5
(D) -10
(E) 25

75. Using the values shown in the table for Question 74, estimate (f 1) (4).
(A) —0.2
(B) 0.1
(C) -5
(D) —10
(E) 25

76. The “left half” of the parabola defined by y = x> — 8x + 10 for x < 4 is a one-to-one function;
therefore its inverse is also a function. Call that inverse g. Find g (3).

(A) -1
1
(B) L
1
©1!
(D)
(E) L
77. The table below shows some points on a function f that is both continuous and differentiable on
the closed interval [2,10].
x |2 | 4| e | 8 | 10
() ‘30‘25‘20‘25‘30
Which must be true?
(A)f(x)>0for2<x<10




(B)f16)=0
(©)f(8)>0
(D) The maximum value of f on the interval [2,10] is 30.
(E) For some value of x on the interval [2,10] f '(x) = 0.

78. If f 1s differentiable and difference quotients overestimate the slope of f atx =a for all 4 > 0,
which must be true?

(A) f(@)>0
(B)f(a) <0
(©)f"(@)>0
(D) f"(a) <0
(E) none of these

79. If f (1) = sin u and u = g(x) = x> — 9, then (f° 2) (3) equals
(A0
(B) 1
(C) 6
(D) 9
(E) none of these

80. If )= —=. then the set of x’s for which f (x) exists is

1P *
(A) all reals
(B) all reals exceptx =1 and x = —1
(C) all reals except x =—1

(D) all reals except « = ;l and x =—1

(E) all reals exceptx =1

81.1If ,_ /. then the derivative of y* with respect to x? is
(A)l
(B) x*+1

(C) X

2+

(D) %
(E) =

xr+1




BC ONLY

82. If y = x> + x, then the derivative of y with respect to L is

(A) 2x + D(x—1)?
(B) 2x+1

(1—x)

(C) 2x + 1
(D) ——

(1=x)

(E) none of these

BC ONLY

83.If 44y = ﬁ and g(x) = then the derivative of f'(g(x)) 1s

*.,-'I. X,

(A) —x

(x* 410
(B) —(x+ 1)~
(C) ?311 _

x +1)
(D) —

(x+1)

(E)

24x(x+1)

84.Iff(a) =f(b) =0 and f (x) is continuous on [a, b], then
(A) f (x) must be identically zero
(B) f '(x) may be different from zero for all x on [a, b]
(C) there exists at least one number ¢, a < ¢ < b, such that ' (c) =0
(D) f '(x) must exist for every x on (a, b)
(E) none of the preceding is true

85. Suppose y = f(x) = 2x3 — 3x. If h(x) is the inverse function of f, then / (—1) =
(A) -1
(B) L
©!
(D) 1
(E) 3



86. Suppose /(1) =2, £ (1) = 3, and £ (2) = 4. Then (£ 1) (2)
(A) equals _?l

(B) equals _%
(C) equals %
(D) equals %

(E) cannot be determined

87.Iff(x) = x3—3x2+ 8x+ 5 and g(x) =f_1(x), theng (5) =
(A) 8
I
)L
O 1
(D) %
(E) 53

88. Suppose im 22120 _ [t follows necessarily that
k= I

(A) g is not defined at x =0

(B) g is not continuous at x = 0

(C) the limit of g(x) as x approaches 0 equals 1
D) g (0)=1

(E) g (1)=0

Use this graph of y = f (x) for Questions 89 and 90.

89. /'(3) is most closely approximated by



(A) 0.3
(B) 0.8
(©) 1.5
(D) 1.8
(E) 2

90. The rate of change of /' (x) is least at x —

(A) -3

(B)-1.3

0

(D) 0.7

(E) 2.7

Use the following definition of the symmetric difference quotient for ' (x,) for Questions 91-93:
For small values of 7,

flx, +h) = fix, —h)
2h '

f(x)=

91. For f(x) = 5%, what is the estimate of / (2) obtained by using the symmetric difference quotient
with 2 =0.03?

(A) 25.029
(B) 40.236
(C) 40.252
(D) 41.223
(E) 80.503

92. To how many places is the symmetric difference quotient accurate when it is used to
approximate f (0) for f'(x) = 4* and & = 0.08?
(Al
(B) 2
©)3
(D) 4
(E) more than 4

93. To how many places 1s f (x) accurate when it is used to approximate f (0) for /' (x) = 4* and &
=0.001?



(A1
(B) 2
(©)3
(D) 4
(E) more than 4

94. The value of f (0) obtained using the symmetric difference quotient with f (x) = [x| and & =
0.001 is

(A) -1
(B) 0
(C) =1
(D) 1

(E) indeterminate

95. If 4 ¢4y = oy and A(x) = sinx, then < s,y equals
gl dx” £

(A) g(sinx)

(B) cos x - g(x)

(©) g x)

(D) cos x - g (sinx)
(E) sinx - g(sin x)

96. Let /' (x) = 3* — x°. The tangent to the curve is parallel to the secant through (0,1) and (3,0) for x

(A) 0.984 only
(B) 1.244 only
(C) 2.727 only
(D) 0.984 and 2.804 only
(E) 1.244 and 2.727 only

Questions 97-101 are based on the following graph of f (x), sketched on —6 <x < 7. Assume the
horizontal and vertical grid lines are equally spaced at unit intervals.



v = fix)

A
3
7 2
A\
/ |
/ \
0 =
& S5 4 3 2 2 34 6/9
7 -‘\
o | ¥
-3
4

97. On the interval 1 <x <2, f(x) equals
(A)—~x—2
B)—~x—3
(C)—~x—4
(D) ~x+2
(E)x—2

98. Over which of the following intervals does f '(x) equal zero?
L (—6,-3)
II. (-3,-1)
1L (2,5)
(A) I only
(B) I only
(C) Iand I only
(D) I and IIT only
(E) IT and III only

99. How many points of discontinuity does f '(x) have on the interval =6 <x <7?
(A) none
(B) 2
©3
(D) 4
(E)5

100. For =6 <x <3, f (x) equals



A) -2

(B) —I
(O) 1
(D)2
(E) 2

101. Which of the following statements about the graph of f '(x) is false?
(A) It consists of six horizontal segments.
(B) It has four jump discontinuities.
(O) f (x) 1s discontinuous at each x in the set {—3,—-1,1,2,5}.
(D) f '(x) ranges from —3 to 2.
(E) On the interval —1 <x <1, f(x) = 3.

102. The table gives the values of a function f'that is differentiable on the interval [0,1]:
x | 010 | 020 | 030 | 040 | 050 | 0.60

() \ 0.171 \ 0.288 \ 0.357 \ 0.384 | 0.375 \ 0.336
According to this table, the best approximation of / (0.10) is
(A) 0.12
(B) 1.08
(O) 1.17
(D) 1.77
(E) 2.88

103. At how many points on the interval [a, b] does the function graphed satisfy the Mean Value
Theorem?

(A) none



(B) 1
O 2
(D)3
(E) 4



CHAPTER 4 Applications of Differential Calculus

Concepts and Skills

In this chapter, we review how to use derivatives to

» find slopes of curves and equations of tangent lines;

» find a function’s maxima, minima, and points of inflections;

» describe where the graph of a function is increasing, decreasing, concave upward, and concave
downward;

« analyze motion along a line;
» create local linear approximations;

» and work with related rates.
For BC Calculus students, we also review how to

» find the slope of parametric and polar curves

* and use vectors to analyze motion along parametrically defined curves.

A. SLOPE; CRITICAL POINTS

Slope of a curve

If the derivative of y = f'(x) exists at P(x;, y1), then the slope of the curve at P (which is defined to be
the slope of the tangent to the curve at P) is f (x,), the derivative of f (x) atx = x;.

Any ¢ in the domain of f such that either f (c¢) = 0 or f (¢) 1s undefined is called a critical point or

critical value of f. If f has a derivative everywhere, we find the critical points by solving the equation
f'(x)=0.

Critical point

EXAMPLE 1
For f(x) = 4x3 — 6x% — 8, what are the critical points?
SOLUTION: 1 '(x) = 12x2 — 12x = 12x(x — 1),

which equals zero if x 1s 0 or 1. Thus, 0 and 1 are critical points.

EXAMPLE 2
Find any critical points of £ (x) = 3x3 + 2x.
SOLUTION: 1 '(x) = 9x% + 2.



Since 1 (x) never equals zero (indeed, it is always positive), f has no critical values.

EXAMPLE 3
Find any critical points of f (x) = (x — 1)!/3.
SOLUTION: f'(x)=

x -1

Although 1" is never zero, x = 1 is a critical value of f because /' does not exist at x = 1.

AVERAGE AND INSTANTANEOUS RATES OF CHANGE.

Both average and instantaneous rates of change were defined in Chapter 3. If as x varies froma to a +
h, the function f varies from f'(a) to f (a + &), then we know that the difference quotient
Sla+h)— fila)
h
is the average rate of change of f over the interval froma to a + A.

Thus, the average velocity of a moving object over some time interval is the change in distance
divided by the change in time, the average rate of growth of a colony of fruit flies over some interval
of time is the change in size of the colony divided by the time elapsed, the average rate of change in
the profit of a company on some gadget with respect to production is the change in profit divided by
the change in the number of gadgets produced.

The (instantaneous) rate of change of f at a, or the derivative of f at a, is the limit of the average
rate of change as 7 — 0:

{a) =lim _-"r[“ +h)— fla)
ST e

On the graph ofy =f (x), the rate at which the y-coordinate changes with respect to the x-
coordinate 1s f '(x), the slope of the curve. The rate at which s(7), the distance traveled by a particle in
t seconds, changes with respect to time iss (¢), the velocity of the particle; the rate at which a
manufacturer’s profit P(x) changes relative to the production level x 1s P (x).

EXAMPLE 4

Let G = 400(15 — ¢)? be the number of gallons of water in a cistern t minutes after an outlet pipe
1s opened. Find the average rate of drainage during the first 5 minutes and the rate at which the
water is running out at the end of 5 minutes.

SOLUTION: The average rate of change during the first 5 min equals
G(5) ~G(0) _ 400100400225 _

2 2

The average rate of drainage during the first 5 min 1s 10,000 gal/min.

—10,000 gal/min.

The instantaneous rate of change at =5 is G (5). Since
G (1) =—800(15 — 1),

G '(5) = —800(10) = —8000 gal/min. Thus the rate of drainage at the end of 5 min 1s 8000
gal/min.



B. TANGENTS AND NORMALS

Tangent to a curve

The equation of the tangent to the curve y = f(x) at point P(x, y,) 1s

y=y1=f xpPx—x).

The line through P that is perpendicular to the tangent, called the normal to the curve at P, has

slope - Its equation is
i)
| .
p=Nis = X —X).
TS A

If the tangent to a curve is horizontal at a point, then the derivative at the point is 0. If the tangent is
vertical at a point, then the derivative does not exist at the point.

TANGENTS TO PARAMETRICALLY DEFINED CURVES.

BC ONLY

If the curve is defined parametrically, say in terms of 7 (as in Chapter 1), then we obtain the slope at
any point from the parametric equations. We then evaluate the slope and the x- and y-coordinates by
replacing ¢ by the value specified in the question (see Example 9).

EXAMPLE 5
Find the equations of the tangent and normal to the curve of f'(x) = x> — 3x? at the point (1, —2).

SOLUTION: Since f (x) = 3x*> — 6x and f (1) = —3, the equation of the tangent is
y+2=-3(x—1) or y+3x=1,
and the equation of the normal is
;~+3=%[1_H or 3y—x=-7.

EXAMPLE 6
Find the equation of the tangent to x> y — x = 3> — 8 at the point where x = 0.
SOLUTION: Here we differentiate implicitly to get j_}:& :

at =3y

Since y =2 when x = 0 and the slope at this point is %: _|Lv . the equation of the tangent is

y-2= ——x or 12y+x=24.

EXAMPLE 7

Find the coordinates of any point on the curve of y? — 4xy =x? + 5 for which the tangent is
horizontal.

SOLUTION: Since ?:"”}' and the tangent is horizontal when £ =0, thenx = —2y. If we

by y—2x dx




substitute this in the equation of the curve, we get
Pr—dy(-2y)=dy*+ 3
5y =5,

Thus y ==+1 and x = +2. The points, then, are (2, —1) and (-2, 1).

EXAMPLE 8

Find the x-coordinate of any point on the curve of y = sin® (x + 1) for which the tangent is
parallel to the line 3x —3y —5=0.

SOLUTION: Since & ““* = 2sin(x + 1) cos(x + 1) = sin2(x + 1) and since the given line has slope
1, we seek x such that sin2(x + 1) = 1. Then

2x+ 1) = % + 2am {n an integer)
or
m T
i+ 1= — +nm and x= — +nnm-1.
4 4
BC ONLY
EXAMPLE 9

Find the equation of the tangent to F(¢) = (cos ¢, 2 sin’ ¢) at the point where ; = u
SOLUTION: Since % = —sint and % =dsinf cost. WE SE€C tha.t

dv  dsintcost
== : =—4cost .
dx —sint

T 3 3 , - . .
Att= —,x= JT'L = [“—] =—,and 4 =_2. The equation of the tangent is
2 = = dx

L L
‘l'——=—2[.1'——] or dx+ 2y =35.
A 2 :

C. INCREASING AND DECREASING FUNCTIONS
CASE L. FUNCTIONS WITH CONTINUOUS DERIVATIVES.

A function y = f(x) is said to be #creasing on an interval if for all ¢ and b in the interval such that a <

decreasing
"
p, T2 T @ T4 find intervals over which £ (x) incre: asesthat is, over which the curve tises analyze the
-r[lg”f f[{i'] decreases g

=
signs of the derivative to determine where /= E'
flix)<0°

EXAMPLE 10

For what values of x is f(x) = x* — 4x3, increasing? decreasing?
SOLUTION: (%) =4x> — 12x? = 4x? (x — 3).



With critical values at x = 0 and x = 3, we analyze the signs of /' in three intervals:

1] 3
= | | e
rase= - +
The derivative changes sign only at x = 3. Thus,
ifx <3 f(x) <0 and f'1s decreasing;
ifx >3 f(x) >0 and f'is increasing.

Note that f'is decreasing at x = 0 even though f (0) = 0. (See Figure N4-5.)

CASE II. FUNCTIONS WHOSE DERIVATIVES HAVE DISCONTINUITIES.

Here we proceed as in Case I, but also consider intervals bounded by any points of discontinuity of f
or f'.
EXAMPLE 11

For what values of x is £y = LI increasing? decreasing?
X+

SOLUTION: Fiay=—

(x+1)

We note that neither f nor f ' is defined at x = —1; furthermore, f/ '(x) never equals zero. We need
therefore examine only the signs of / /(x) when x <—1 and when x > —1.

Whenx < —1, f(x) < 0; whenx > —1, f (x) < 0. Therefore, f decreases on both intervals. The
curve 1s a hyperbola whose center is at the point (—1,0).

D. MAXIMUM, MINIMUM, AND INFLECTION POINTS:
DEFINITIONS

The curve of y = f(x) has a local (or relative) maximum at a point where x = ¢ if /| ’ i )= f(x) ! for all x in

PR R o) = ||'|'

the immediate neighborhood of c. If a curve has a local i ‘T”RE.' matx =c, then the curve changes from
ITLL AT I

T‘._:i‘]].]‘[‘]‘-a to ’[d]l]]’[‘]‘ﬂ as x increases through c. If a function is differentiable on the closed interval [a, b] and

has a local maximum or minimum at x = ¢ (a < ¢ <b), then f (c¢) = 0. The converse of this statement is
not true.

If £ (c) 1s either a local maximum or a local minimum, then f'(c) is called a local extreme value or
local extremum. (The plural of extremum is extrema.)

The global or absolute maximum of g function on [a, b] occurs atx = c 1f ”” ot :: *) for all x on [a,
b].

A curve is said to be concave utard ata point P(x}, ) if the curve lies 2bove its tangent. If “,, >l

downward =)

at P, the curve is concave it In Figure N4-1, the curves sketched in (@) and (b) are concave

downward at P while in (¢) and (d) they are concave upward at P.
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FIGURE N4-1

Point of inflection

A point of inflection is a point where the curve changes its concavity from upward to downward
or from downward to upward. See §I, for a table relating a function and its derivatives. It tells how to
graph the derivatives of £, given the graph of /.

E. MAXIMUM, MINIMUM, AND INFLECTION POINTS:
CURVE SKETCHING

CASE 1. FUNCTIONS THAT ARE EVERYWHERE DIFFERENTIABLE.

The following procedure is suggested to determine any maximum, minimum, or inflection point of
a curve and to sketch the curve.

Second Derivative Test

(1) Findy "and y ".

(2) Find all critical points of y, that is, all x for whichy "= 0. At each of these x’s the tangent to
the curve is horizontal.

(3) Let ¢ be a number for which y ' 1s 0; investigate the sign of y "atc. If y " (c) > 0, the curve is
concave up and ¢ yields a local minimum; ify " (¢) < 0, the curve is concave down and ¢
yields a local maximum. This procedure is known as the Second Derivative Test (for extrema).
See Figure N4-2. Ify " (¢) = 0, the Second Derivative Test fails and we must use the test in
step (4) below.



@)y () =05y "(c)>0;
c yields a local minimum.
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(b)y (c) =05y "(c) =0;
c yields a local minimum.
FIGURE N4-2

(4) Ify (¢) =0 and y "(c) = 0, investigate the signs of y "as x increases through c. If y '(x) > 0 for
x’s (just) less than ¢ but y (x) <0 for x’s (just) greater than c, then the situation is that indicated
in Figure N4—3a, where the tangent lines have been sketched as x increases through c; here ¢
yields a local maximum. If the situation is reversed and the sign of y ' changes from — to + as x
increases through c, thenc yields a local minimum. Figure N4-3b shows this case. The
schematic sign pattern of y /, + 0 — or — 0 +, describes each situation completely. If y ' does not
change sign asx increases throughc, thenc yields neither a local maximum nor a local
minimum. Two examples of this appear in Figures N4—3c¢ and N4-3d.
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FIGURE N4-3

(5) Find all x’s for which y "= 0; these are x-values of possible points of inflection. If ¢ is such an
x and the sign of y " changes (from + to — or from — to +) as x increases through c, then c is the
x-coordinate of a point of inflection. If the signs do not change, then ¢ does not yield a point of
inflection.

The crucial points found as indicated in (1) through (5) above should be plotted along with the
intercepts. Care should be exercised to ensure that the tangent to the curve is horizontal whenever
& _ and that the curve has the proper concavity.

dx

EXAMPLE 12

Find any maximum, minimum, or inflection points on the graph of f (x) = x> — 5x% + 3x + 6, and
sketch the curve.

SOLUTION: For the steps listed above:
(1) Here f '(x) = 3x2 — 10x + 3 and f "(x) = 6x — 10.
(2) f'(x) = (3x — 1)(x — 3), which is zero when x= l or 3.

(3) Since [ ] =0 and f" [ }{n we know that the pomt[ __{[JJ] is a local maximum; since f(3) = 0
and 1 "(3) > 0, the point (3, /(3)) is a local minimum. Thus, (' "’5J is a local maximum and (3,
—3) a local minimum.

(4) 1s unnecessary for this problem.

(5)f"(x) =0 when .= 2 and /" changes from negative to positive as x increases through so the
graph of f has an 1nﬂect10n point. See Figure N4—4.
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FIGURE N4-4
Verify the graph and information obtained above on your graphing calculator.

EXAMPLE 13
Sketch the graph of f (x) = x* — 4x>.
SOLUTION:
(1) f'(x) =4x> — 12x? and f "(x) = 12x% — 24x.
(2) £ '(x) = 4x? (x — 3), which is zero when x = 0 or x = 3.

(3) Since f "(x) = 12x(x — 2) and f "(3) > 0 withf (3) = 0, the point (3, —27) is a relative
minimum. Since f "(0) = 0, the second-derivative test fails to tell us whether x = 0 yields a
maximum or a minimum.

(4) Since f '(x) does not change sign as x increases through 0, the point (0, 0) yields neither a
maximum nor a minimum.

(5) f"(x) =0 whenx 1s 0 or 2; f " changes signs as x increases through 0 (+ to —), and also as x
increases through 2 (— to +). Thus both (0, 0) and (2, —16) are inflection points of the curve.

The curve is sketched in Figure N4-5.

=
=

[l T et e

- 3
—~ p =3 —dy?

(327
FIGURE N4-5
Verify the preceding on your calculator.



CASE II. FUNCTIONS WHOSE DERIVATIVES MAY NOT EXIST EVERYWHERE.

If there are values of x for which a first or second derivative does not exist, we consider those
values separately, recalling that a local maximum or minimum point is one of transition between
intervals of rise and fall and that an inflection point is one of transition between intervals of upward
and downward concavity.

EXAMPLE 14

Sketch the graph of y = x?3.

SOLUTION: % _ 2 ., é3» 2
de  3x" de” 9x*”

Neither derivative is zero anywhere; both derivatives fail to exist whenx = 0. As x increases
through 0, ‘“ changes from — to +; (0,0) is therefore a minimum. Note that the tangent 1s vertical

at the or1g1n, and that s1nce 4 is negative everywhere except at 0, the curve is everywhere

concave down. See Figure N4 6

i

FIGURE N4-6

EXAMPLE 15

Sketch the graph of y = x!/3.

SOLUTION: SRS e
dv 3™ e 95
As in Example 14, neither derivative ever equals zero and both fail to exist when x = 0. Here,

however, as x increases through 0, j} does not change sign. Since % ‘“ is positive for all x except 0,

the curve rises for all x and can have neither maximum nor mlmmum points. The tangent is again
vertical at the origin. Note here that j » does change sign (from + to —) as x increases through 0,

so that (0, 0) is a point of inflection of the curve. See Figure N4-7.



FIGURE N4-7
Verify the graph on your calculator.

F. GLOBAL MAXIMUM OR MINIMUM
CASE 1. DIFFERENTIABLE FUNCTIONS.

If a function f'1s differentiable on a closed interval a <x < b, then f'is also continuous on the closed
interval [a, b] and we know from the Extreme Value Theorem that f attains both a (global) maximum
and a (global) minimum on [a, b]. To find these, we solve the equation f (x) = 0 for critical points on
the interval [a, b], then evaluate f at each of those and also atx = a and x = b. The largest value of f
obtained is the global max, and the smallest the global min.

EXAMPLE 16

Find the global max and global min of fon (a) 2 <x <3, and (b) 0 <x <3, if f (x) = 2x> — 3x% —
12x.

SOLUTION:

(a) f'(x) = 6x2 — 6x — 12 = 6(x + 1)(x — 2), which equals zero if x =—1 or 2. Since f (-2) = —4, f
—1)=7,f(2) =—20,and f(3) =9, the global max of f occurs at x =—1 and equals 7, and the
global min of f occurs at x =2 and equals —20.

(b) Only the critical value 2 lies in [0,3]. We now evaluate f'at 0, 2, and 3. Since ' (0) =0, /' (2)
=—20, and f (3) = -9, the global max of ' equals 0 and the global min equals —20.

CASE II. FUNCTIONS THAT ARE NOT EVERYWHERE DIFFERENTIABLE.

We proceed as for Case I but now evaluate f also at each point in a given interval for which f is
defined but for which /' does not exist.

EXAMPLE 17

The absolute-value function f (x) = |x| is defined for all real x, but f '(x) does not exist at x = 0.
Since f (x) =—11fx <0, but f (x) = 1 ifx > 0, we see that f has a global min at x = 0.

EXAMPLE 18



The function gy = L has neither a global max nor a global min on any interval that contains zero

(see Figure N2—4). However it does attain both a global max and a global min on every closed

interval that does not contain zero. For instance, on [2,5] the global max of fis 2 the global min
| 2

e

G. FURTHER AIDS IN SKETCHING

It is often very helpful to investigate one or more of the following before sketching the graph of a
function or of an equation:

(1) Intercepts. Setx =0 and y = 0 to find any y- and x-intercepts respectively.

(2) Symmetry. Let the point (x, y) satisfy an equation. Then its graph 1s symmetric about
the x-axis if (x, —y) also satisfies the equation;
the y-axis if (—x, y) also satisfies the equation;
the origin if (—x, —) also satisfies the equation.

(3) Asymptotes. The line y =5 1s a horizontal asymptote of the graph of a function f if either

lim f(x) = bor lim f(x) = b. If f(x) = ? inspect the degrees of P(x) and Q(x), then use the Rational

Kb Fs—ta

Function Theorem. The line x = ¢ 1s a vertical asymptote of the rational functlon o 1f O()=0
but P(c) # 0.

(4) Points of discontinuity. Identify points not in the domain of a function, particularly where the
denominator equals zero.

EXAMPLE 19

Sketch the graph of , - 2 +I'

SOLUTION: Ifx = 0, then y = —1. Also, y = 0 when the numerator equals zero, which is when
r=——. A check shows that the graph does not possess any of the symmetries described above.

Since y — 2 as x — +o0, y = 2 is a horizontal asymptote; also, x = 1 is a vertical asymptote. The
function is defined for all reals except x = 1 ; the latter is the only point of discontinuity.

6
and y'=

We find derivatives: y'=- = =
(x—=1)" } (x =1

Fromy " we see that the function decreases everywhere (except atx = 1), and fromy " that the
curve 1s concave down if x <1, up ifx > 1. See Figure N4-8.



FIGURE N4-8
Verify the preceding on your calculator, using [—4,4] x [—4, 8].

EXAMPLE 20

Describe any symmetries of the graphs of
(a) 3> +x=2;(b) y =x+%: (c) x> —3y?=27.
SOLUTIONS:
(a) Suppose point (x, ) is on this graph. Then so is point (x, —y), since 3(—y)? +x = 2 is
equivalent to 3y? +x = 2. Then (a) is symmetric about the x-axis.
(b) Note that point (—x, —y) satisfies the equation if point (x, y) does:
1

— y=x+—
[—x) X

(—¥)I=(—x)+

Therefore the graph of this function 1s symmetric about the origin.

(¢) This graph is symmetric about the x-axis, the y-axis, and the origin. It is easy to see that, if
point (x, y) satisfies the equation, so do points (x, =), (—x, ), and (—x, —)).

H. OPTIMIZATION: PROBLEMS INVOLVING MAXIMA AND
MINIMA

The techniques described above can be applied to problems in which a function is to be maximized
(or minimized). Often it helps to draw a figure. If y, the quantity to be maximized (or minimized), can
be expressed explicitly in terms of x, then the procedure outlined above can be used. If the domain of
y 1s restricted to some closed interval, one should always check the endpoints of this interval so as
not to overlook possible extrema. Often, implicit differentiation, sometimes of two or more equations,
is indicated.

EXAMPLE 21



The region in the first quadrant bounded by the curves of > =x and y = x is rotated about the y-
axis to form a solid. Find the area of the largest cross section of this solid that is perpendicular
to the y-axis.

(x,.¥)
! 113

(2.7

Y

0

FIGURE N4-9

SOLUTION: See Figure N4-9. The curves intersect at the origin and at (1,1), so 0 <y <1. A
cross section of the solid is a ring whose area 4 is the difference between the areas of two
circles, one with radius x,, the other with radius x;. Thus

5 % A dA i
A=mx,” —mx’ =my" — ') F =m2y —4y") =2mp(1 —2y°).
dy

The only relevant zero of the first derivative is y= . There the area A is

w2

[I ]] i
A=M———|=—.
2 4 4

Note that < @A = m(2 — 12)?) and that this is negative when - ‘_j assuring a maximum there.

Note further thatA equals zero at each endpoint of the 1nterva1 [0,1] so that 1s the global
maximum area.

EXAMPLE 22

The volume of a cylinder equals V' cubic inches, where V' is a constant. Find the proportions of
the cylinder that minimize the total surface area.

a— F—

e

- —
L 3

el
FIGURE N4-10
SOLUTION: We know that the volume is

-

V=mnrh (1)



where 7 is the radius and /4 the height. We seek to minimize S, the total surface area, where

S=2nr"+ 27rh (2)
Solving (1) for 4, we have p- —HV:_ which we substitute in (2):
2

) A AL
1“1 =2;‘Ir‘+i_ (3}
r r

5 =2mr" + 27y

Differentiating (3) with respect to r yields
45 _4qr- 2V
dr I

Now we set % equal to zero to determine the conditions that make S a minimum:
[
amr -2 —g
E

[<

Amr ==
=
2(7rh)

dmr="""_"

-

=
The total surface area of a cylinder of fixed volume is thus a minimum when its height equals its
diameter.

(Note that we need not concern ourselves with the possibility that the value of » that renders %

dr

equal to zero will produce a maximum surface area rather than a minimum one. With V fixed, we
can choose r and / so as to make S as large as we like.)

EXAMPLE 23

A charter bus company advertises a trip for a group as follows: At least 20 people must sign up.
The cost when 20 participate is $80 per person. The price will drop by $2 per ticket for each
member of the traveling group in excess of 20. If the bus can accommodate 28 people, how many
participants will maximize the company’s revenue?

SOLUTION: Letx denote the number who sign up in excess of 20. Then 0 = x = 8. The total
number who agree to participate is (20 + x), and the price per ticket is (80 — 2x) dollars. Then
the revenue R, in dollars, 1s
R =(20 + x)(80 — 2x),
R'(x) =(20 + x)(-2) + (80 - 2x)+ 1
=40 — 4x.
R '(x) is zero if x = 10. Although x = 10 yields maximum R—note that R "“(x) = —4 and is always
negative—this value of x is not within the restricted interval. We therefore evaluate R at the
endpoints 0 and 8: R(0) = 1600 and R(8) = 28-64 = 1792, 28 participants will maximize revenue.

EXAMPLE 24

A utilities company wants to deliver gas from a source S to a plant P located across a straight
river 3 miles wide, then downstream 5 miles, as shown in Figure N4—11. It costs $4 per foot to



lay the pipe in the river but only $2 per foot to lay it on land.
(a) Express the cost of laying the pipe in terms of u.

(b) How can the pipe be laid most economically?

o "y

3 miles %

-+ 3 miles 5

FIGURE N4-11
SOLUTIONS:

(a) Note that the problem “allows” us to (1) lay all of the pipe in the river, along a line from S to
P; (2) lay pipe along SR, in the river, then along RP on land; or (3) lay some pipe in the river,
say, along ST, and lay the rest on land along 7P. When T coincides with P, we have case (1),
with v = 0; when T coincides with R, we have case (2), with u = 0. Case (3) includes both (1)
and (2).

In any event, we need to find the lengths of pipe needed (that is, the distances involved); then
we must figure out the cost.

In terms of u:
In the River On Land
Distances: .
miles ST =+9+u’ TP=v=5—u
feet &= FEEI}{Q +u’ TP =5280(5 — u)
Costs (dollars): 4{523[}]\:‘9+u3 2[5280(3 —u)]

If C(u) 1s the total cost,

Cli) = 21,120:/9+ 1 +10,560(5— 1)
=10,560(2+ 0+ u* +5—u).

(b) We now minimize C(u):

1 2
r’m}:ID.ﬁan{2+— = ‘—]]:lf.‘l.iti{{ = ,-1]_
24940 VO +u

We now set C (u) equal to zero and solve for u:

7 it
2u e 2u % Ay

MO+ VO i’ 9+u

where, in the last step, we squared both sides; then
At =9+u 3ut=9u*=3,u= J3
where we discard u = — 3 as meaningless for this problem.

The domain of C(u) 1s [0,5] and C 1s continuous on [0,5], Since



C(0) =10,560(2+/9 +5)=$116,160,
C(5) =10,560(2+/34 ) = $123,150,

C(+3) =10,560(212 +5- 43)=$107.671.
So u = /3 yields minimum cost. Thus, the pipe can be laid most economically if some of it is

laid in the river from the source S to a point 7 that is .5 miles toward the plant P from R, and
the rest is laid along the road from 7 to P.

I. RELATING A FUNCTION AND ITS DERIVATIVES
GRAPHICALLY

The following table shows the characteristics of a functionf and their implications for f ’s
derivatives. These are crucial in obtaining one graph from another. The table can be used reading
from left to right or from right to left.

Note that the slope at x = ¢ of any graph of a function is equal to the ordinate at ¢ of the derivative
of the function.

f f il
ON AN INTERVAL  increasing =0
decreasing =0
A<c X=¢C X>cC
AT ¢ local maximum - 0 fe)=0

( f'is decreasing)

local minimum 0 + Flic) >0

( f'is increasing)

neither local + 0 +
MLAXITTILIT 1T ]
local minimum { f' does not change sign)
X<C X=€ X>C
AT ¢ point of i) is a minimum; 0 +
inflection f' changes from decreasing

to increasing

Fie)is a maximum; + 0
f' changes from increasing
to decreasing

ON AN INTERVAL  concave up f' is increasing =0

concave down f' is decreasing =0

If f '(c) does not exist, check the signs of /' as x increases through c: plus-to-minus yields a local
maximum; minus-to-plus yields a local minimum; no sign change means no maximum or minimum, but
check the possibility of a point of inflection.

AN IMPORTANT NOTE:

Tables and number lines showing sign changes of the function and its derivatives can be very helpful
in organizing all of this information. Note, however, that the AP Exam requires that students write
sentences that describe the behavior of the function based on the sign of its derivative.



EXAMPLE 25A

Given the graph of ' (x) shown in Figure N4—12, sketch f (x).

fix)
-~

\ I /:\ iy
T T L ~ui
c \j/ : s ié\

Point x = Behavior of f Behavior of /'
c f(c;) is a local max i (e = kg cumigas s
from+ to —
¢, 1s an inflection point of f; the  f ' changes from decreasing
%) graph off changes concavity to increasing;f (cy) 1is a
from down to up local minimum
3 f(c3) is a local minimum J @) = Uy elimiizges sl
from — to +
¢4 1s an inflection point of f; the  f ' changes from increasing
Cyq graph of /' changes concavity to decreasing; f* (cy) is a
from up to down local maximum
Cs f(cs) is a local maximum j leg) = Uy elimitiges s

from+ to —

EXAMPLE 25B



Given the graph of f (x) shown in Figure N4—13, sketch a possible graph of /.

A

_-'L/é_'z_iﬂ RETE T Ot

FIGURE N4-13

SOLUTION: First, we note thatf (—3) and f (2) are both 0. Thus the graph of f must have
horizontal tangents atx = —3 andx = 2. Since f (x) < 0 forx < —3, we see that f must be

decreasing there. Below is a complete signs analysis of f ’, showing what it implies for the
behavior of f.

=3 inc 2 mne
] ]
[

f dec

¥ - + ! +
Because /' changes from negative to positive at x = —3, f must have a minimum there, but / has
neither a minimum nor a maximum at x = 2.

We note next from the graph that f ' is increasing for x <—1. This means that the derivative of /', f
" must be positive for x <—1 and that fis concave upward there. Analyzing the signs of /" yields
the following:

ri conc. upwand =1 conc. down 2 conc. upward
I I

Vi inc dec inc

il + - +

We conclude that the graph of f has two points of inflection, because it changes concavity from
upward to downward at x = —1 and back to upward at x = 2. We use the information obtained to
sketch a possible graph of f, shown in Figure N4—14. Note that other graphs are possible; in fact,
any vertical translation of this f will do!

FIGURE N4-14

J. MOTION ALONG A LINE

Velocity

Acceleration

Speed



If a particle moves along a line according to the law s = f (¢), where s represents the position of the
particle P on the line at time #, then the velocity v of P at time 7 is given by £ % and its acceleration a by

ll,, by *’_‘ The speed of the particle is |v|, the magnitude of v. If the hne of motion is directed
pos1t1ve1y to the right, then the motion of the particle P is subject to the following: At any instant,

(1) if v > 0, then P 1s moving to the right and its distance s is increasing; if v < 0, then P is moving
to the left and its distance s is decreasing;

(2) if a > 0, then v 1s increasing; if a < 0, then v 1s decreasing;

(3) ifa and v are both positive or both negative, then (1) and (2) imply that the speed of P is
increasing or that P is accelerating; ifa and v have opposite signs, then the speed of P is
decreasing or P is decelerating;

(4) 1f s 1s a continuous function of #, then P reverses direction whenever v is zero and a is different
from zero; note that zero velocity does not necessarily imply a reversal in direction.

EXAMPLE 26
A particle moves along a line such that its position s = 263 — 92+ 12t — 4, for t = 0.
(a) Find all ¢ for which the distance s is increasing.
(b) Find all ¢ for which the velocity is increasing.
(c) Find all ¢ for which the speed of the particle is increasing.
(d) Find the speed when ;= 2.

(e) Find the total distance traveled between t =0 and ¢ = 4
SOLUTION: . :j—‘: 61F — 18t +12 = 6(t7 — 3t + 2) = 6(t — 2)t — 1)

- 3
and ff:ﬂ—”’" 12¢ — 13—1*[:——)
dr dr’ 2

Velocityv=0at¢=1and ¢ =2, and:

if t<1, then v =0,
l<t<?2, v <0,
- S v = 0.
. 3
Accelerationa =0 at:= 2, and:
2
:||
if P -~ then a<0,
3
= — a = 0.
2

These signs of v and a immediately yield the answers, as follows:
(a) s increases when¢ <1 or > 2.

(b) v increases when ;-

|'\_||u.|

(¢) The speed |v| is increasing when v and a are both positive, that is, for > 2, and when v and a
are both negative, that is, for ; - ;-

|,_|||_,;



FIGURE N4-15

(e) P’s motion can be indicated as shown in Figure N4—15. P moves to the right if # < 1, reverses
its direction at £ = 1, moves to the left when 1 <¢ <2, reverses again at ¢ = 2, and continues to
the right for all # > 2. The position of P at certain times ¢ are shown in the following table:

t: 0 1 2 4

s —4 1 0 28

Thus P travels a total of 34 units between times ¢ =0 and ¢ = 4.

EXAMPLE 27
Answer the questions of Example 26 if the law of motion 1s

s=1"—4r.

SOLUTION: Since v =413 — 122 =4¢* (t — 3) and a = 124> — 24¢ = 12¢(¢ — 2), the signs of v and
a are as follows:

if t=3, then v<(
oz f, v=0;
if t<0, then a=
O<it<2, a<(
2t a= 10,

Thus
(a) s increases ifz > 3.
(b) v increases if 1 <0 or > 2.

(¢) Since v and a have the same sign if 0 <tz < 2 or ifz > 3, the speed increases on these

intervals.
(d) The speed when ¢ - 2 equals [v| = -ii{z 2

L

=1

A

FIGURE N4-16

(e) The motion is shown in Figure N4—16. The particle moves to the left if # < 3 and to the right

ift > 3, stopping instantaneously when ¢ = 0 and ¢ = 3, but reversing direction only when ¢ = 3.
Thus:



t: 0 3 4
S: 0 =27 0

The particle travels a total of 54 units between ¢ =0 and ¢ = 4.

(Compare with Example 13, where the function f'(x) = x* — 4x3 is investigated for maximum and
minimum values; also see the accompanying Figure N4-5.)

BC ONLY

K. MOTION ALONG A CURVE: VELOCITY AND
ACCELERATION VECTORS

If a point P moves along a curve defined parametrically by P(¢) = (x(¢), y(¢)), where ¢ represents time,
then the vector from the origin to P is called the position vector, with x as its horizontal component
and y as its vertical component. The set of position vectors for all values of ¢ in the domain common
to x(¢) and y(¢) is called vector function.

A vector may be symbolized either by a boldface letter (R) or an italic letter with an arrow
written over it 3, The position vector, then, may be written as 3 = ()} Or as g = (xy). In print the
boldface notation is clearer, and will be used in this book; when writing by hand, the arrow notation
is simpler.

The velocity vector 1s the derivative of the vector function (the position vector):

dB _(dx Ay or wit)= [dx Ay

e Nde Tt} Vv dr |

Alternative notations for ':_‘ and % are v, and v, respectively; these are the components of v in the
! I3

horizontal and vertical directions, respectively. The slope of v is

dy
di _dy
dx gy

de

which is the slope of the curve; the magnitude of v is the vector’s length:

vi= —1 +— = v 4V,
WA dt i ) '

BC ONLY

Thus, if the vector v is drawn initiating at P, it will be tangent to the curve at P and its magnitude will
be the speed of the particle at P.

. . 2
The acceleration vector a is 4v o 4R

Sl B and can be obtained by a second differentiation of the
i ar

components of R. Thus

a= —dl —c'h "' ordifn = f.'l—d-'}_ . d-}... I':-.~
Vit dre) Ve A




and 1ts magnitude is the vector’s length:

|,_|| I 1;.[ {f'.:l ] + {ﬂ] | | _._'.uki +.[1Li )
W\ dt® dr i :

where we have used a, and a,, for ‘j_‘ and j_‘ _respectively.
- ]

Examples 28 and 29 are BC ONLY.

EXAMPLE 28
A particle moves according to the equations x = 3 cost, y =2 sin £.
(a) Find a single equation in x and y for the path of the particle and sketch the curve.
(b) Find the velocity and acceleration vectors at any time ¢, and show that a = —R at all times.
(¢) Find R, v, and a when (1) 1, = %, (2) 1, =, and draw them on the sketch.

(d) Find the speed of the particle and the magnitude of its acceleration at each instant in (¢).
(e) When is the speed a maximum? A minimum?

SOLUTIONS:

(a) Since ‘? = e’ dund % - sin* 1, therefore

X R ‘.'.i
usSUEREY L |
9 4

and the particle moves in a counterclockwise direction along an ellipse, starting, when ¢ = 0,
at (3,0) and returning to this point when ¢ = 2.

(b) We have
R ={3cos t, 2sin 1}
V= -I:—R sin t, 2cos .r:I-
a=(-3cost,2sint)=-R.

The acceleration, then, 1s always directed toward the center of the ellipse.
(c) Aty = g

At t2=71:,

R, =(-3.0)
v ={0,-2)

a, =(3,0)

The curve, and v and a at #; and #,, are sketched in Figure N4—18, below.

(d)AtI,:%_ Atfzzﬂ:,



|a'.|:_:£+l:.\'l:3[. |aa|=.\.".*:|'+ﬂ =3,

R 1= from 0 to P
a=—R, soaisfrom Pto 0

FIGURE N4-18
(e) For the speed |v| at any time ¢
v =+/9sin’ 1 + 4008’ ¢
=+4sin’t +4cos’ 1+ 5sin*s
=+/4 +5sinr.
We see immediately that the speed 1s a maximum when ; - X or ’T“ and a minimum when ¢ = 0 or

n. The particle goes fastest at the ends of the minor axis and most slowly at the ends of the major
axis. Generally one can determine maximum or minimum speed by finding di|1-|. setting it equal to
)

zero, and applying the usual tests to sort out values of # that yield maximum or minimum speeds.

EXAMPLE 29
A particle moves along the parabola y = x> — x with constant speed i Find v at (2,2).

SOLUTION: Since
dy dx

v=—={2x-1})—=(2x—1)v (1}
¥ dr

and

L';‘ + 1-': =10, (2)

1';‘ +[3.1—l]ﬁ‘1'xﬁ‘ =10. (3)
Relation (3) holds at all times; specifically, at (2, 2), ,z 4 g,z = 1o S0 that v, = £1. From (1), then,
we see thatv, = +3. Therefore v at (2, 2) is either {13 or (-1-3.. The former corresponds to

counterclockwise motion along the parabola, as shown in Figure N4—19a; the latter to clockwise
motion, indicated in Figure N4—19b.



FIGURE N4-19a

FIGURE N4-19b

L. TANGENT-LINE APPROXIMATIONS

Local linear approximation

If f (a) exists, then the local linear approximation of f(x) at a is
f(a) +fla)(x —a).
Since the equation of the tangent line to y = f (x) atx = a is
y—f(a)=f1a)x~a),
we see that the y value on the tangent line is an approximation for the actual or true value of . Local

linear approximation is therefore also called tangent-line approximation.” For values of x close to a,
we have

flxy=Ffla)+ ffla)x—a). (1
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FIGURE N4-20
where f(a) + f (a)(x — a) 1s the linear or tangent-line approximation for f'(x), and f (a)(x — a) is the
approximate change in f'as we move along the curve from a to x. See Figure N4-20.
In general, the closer x is to a, the better the approximation is to f (x).

EXAMPLE 30
Find tangent-line approximations for each of the following functions at the values indicated:
(a)sinxata=0 (b) cosxata=2=

(c)2x*—3xata=1 (d) i ata=38
SOLUTIONS:
(a) Ata=0,sinx~sin(0) +cos (0)(x—0)=0+1-x=x

(b) Ata= =, cosx=cos = —sin ( 1J[JL'— £J’—-—Jr+ 2
4 = L 00 o8 — —! > > .

() Ata=1,2x-3x-—1+3(x—1)=3x—4

| T 1
(d) Ata=8, 1+x=4/1+8+ ,J_ x—8)=3+ E[.\'—E]

24/1+8

T Local linear approximation is also referred to as “local linearization” or even “best linear approximation” (the latter because it is better
than any other linear approximation).

EXAMPLE 31

Using the tangent lines obtained in Example 30 and a calculator, we evaluate each function, then
its linear approximation, at the indicated x-values:

Function (a) (b) (c) (d)
x-value —).80 2.00 1.10 5.50
True value —0.72 —0.42 —0.64 2.
Approximation | —0.80 —0.43 —0.70 2.58

Example 31 shows how small the errors can be when tangent lines are used for approximations
and x is near a.



EXAMPLE 32

A very useful and important local linearization enables us to approximate (1 + x) © by 1 + kx for
k any real number and for x near 0. Equation (1) yields

(1+x) = (1+0)" +k(1+ .1']:",;+1.1'—{'.I]

= | +kx. (2)

Then, near 0, for example,

Al+x =1+ %.1‘ and (1+ _1'}J = ] 4+3x.

EXAMPLE 33

Estimate the value of —>— at x = 0.05.

(1-—x

y
SOLUTION: Use the line tangent to fix) = “_31_.13 atx =0;f(0)=3.

fix) = 6 __ s0f'(0)=6;hence, the line is y = 6x + 3.

(=)

Our tangent-line approximation, then, is ﬁ e

Atx = 0.05, we have £(0.05) = 6(0.05) + 3 = 3.3.

The true value, to three decimal places, of —— whenx = 0.05 is 3.324; the tangent-line

i1—x)2
approximation yields 3.3. This tells us that the curve is concave up, lying above the tangent line
to the curve near x = 0. Graph the curve and the tangent line on [—1, 1] x [—1, 6] to verify these
statements.

Approximating the Change in a Function.
Equation (1) above for a local linear approximation also tells us by about how much f changes when
we move along the curve from a to x: it is the quantity f (a)(x — a). (See Figure N4-20.)

EXAMPLE 34

By approximately how much does the area of a circle change when the radius increases from 3 to
3.01 inches?

SOLUTION: We use the formula 4 = m2. Then Equation (1) tells us that the local linear
approximation for A(»), when 4 is near 3, is

AB3) +A4'3)(r — 3).
Here we want only the change in area; that is,
A'3)(r—3) when r=3.01.
Since A () = 2nr, therefore A '(3) = 6m; also, (» — 3) = 0.01, so the approximate change is (6m)
(0.01) = 0.1885 in.? The true increase in area, to four decimal places, is 0.1888 in.?



EXAMPLE 35

Suppose the diameter of a cylinder is 8 centimeters. If its circumference is increased by 2
centimeters, how much larger, approximately, are

(a) the diameter, and
(b) the area of a cross section?
SOLUTIONS:

(a) Let D and C be respectively the diameter and circumference of the cylinder. Here, D plays
the role of f, and C that of x, in the linear approximation equation (1) a previous page. The
approximate increase in diameter, when C = 8, is therefore equal to D (C) times (the change
in C). Since C=nD, p- % and D'(C) = % (which is constant for al/ C). The change in C is given

as 2 cm; so the increase in diameter is equal approximately to L. 2. 0.6366 cm.

L

(b) The approximate increase in the area of a (circular) cross section is equal to

A '(O) - (change in C),

where the area 4 _ g,2- [L] — ¢ Therefore,
Y 4 4m

. 2C C  Bm
ey ="
4 2m 2n

Since the change in C is 2 cm, the area of a cross section increases by approximately 4 - 2 = 8

cm?,

M. RELATED RATES

If several variables that are functions of time ¢ are related by an equation, we can obtain a relation
involving their (time) rates of change by differentiating with respect to ¢.

EXAMPLE 36

If one leg AB of a right triangle increases at the rate of 2 inches per second, while the other leg
AC decreases at 3 inches per second, find how fast the hypotenuse is changing when AB = 6 feet
and AC = 8 feet.

A = i

FIGURE N4-21

SOLUTION: See Figure N4-21. Let u, v, and z denote the lengths respectively of AB, AC, and
BC. We know that ?:é if/sac) and ‘;_: _% “Since (at any time) z2 = u? + V2, then



At the instant in question, # =6, v=_8, and z = 10, so

l l
d )43 |

=—— ~ - —  fi/sec.
i 10 10
EXAMPLE 37

The diameter and height of a paper cup in the shape of a cone are both 4 inches, and water is
leaking out at the rate of L cubic inch per second. Find the rate at which the water level is

dropping when the diameter of the surface is 2 inches.

SOLUTION: See Figure N4-22. We know that j_‘ —_1 and that & = 2r.
It 2
Here, v= I:jm*."rz I:i:w
av ek o B T8 2 atanytime.
i 4 d i 2 mh mh™
When the diameter is 2 in., so is the height, and 'j_f’ = - The water level is thus dropping at the
! =T
rate of L in./sec.
In
cir——x
R e
'-."' Ill,-
'.\\ ;I.
L et _.-"l
SR
"'-. S III.-' 4
\ 3
L i
'\._I' k Ill,-
Y ¢
"\.""' IIII-'
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FIGURE N4-22

EXAMPLE 38

Suppose liquid 1s flowing into a vessel at a constant rate. The vessel has the shape of a
hemisphere capped by a cylinder, as shown in Figure N4-23. Graph y = A(¢), the height (= depth)
of the liquid at time 7, labeling and explaining any salient characteristics of the graph.

¥ =hit)

A
f_.-'——'—_——'—__.,_‘
"—u._\_‘_‘_\_'_'_,_,..--"

bl

Y




FIGURE N4-23

SOLUTION: Liquid flowing in at a constant rate means the change in volume is constant per
unit of time. Obviously, the depth of the liquid increases as ¢ does, so/ (¢) is positive
throughout. To maintain the constant increase in volume per unit of time, when the radius grows,
h '(¢) must decrease. Thus, the rate of increase of # decreases as 4 increases from 0 to a (where
the cross-sectional area of the vessel is largest). Therefore, since 4 (¢#) decreases, 2 "(¢) < 0
from 0 to a and the curve is concave down.

As h increases from a to b, the radius of the vessel (here cylindrical) remains constant, as do the
cross-sectional areas. Therefore £ (¢) 1s also constant, implying that 4(¢) is linear from a to b.

Note that the inflection point at depth @ does not exist, since ~ "(¢) < 0 for all values less than a
but is equal to 0 for all depths greater than or equal to a.

BC ONLY

N. SLOPE OF A POLAR CURVE

We know that, if a smooth curve is given by the parametric equations

x=f(#)and y = g(?),
then

2 - L0 provided that () # 0.
dx [t}

To find the slope of a polar curve  =f(0), we must first express the curve in parametric form.
Since

x=rcosBandy=rsin0,
therefore,
x=f(0)cos0andy=7f(0)sin0.
If £(0) is differentiable, so are x and y; then

E
9
dy

— = "B sin B+ f(9) cos 9.
) J8) s ; cC

L

= f'(B) cos B— f(6)sin B,

Also, if% -0, then

ﬁ_ dy/de fi8)sin® + f(B)cosb - r'sinB 4+ rcos 9
dy dx/dd  f(B)cosB— f(B)sin® r'cosB—rsing

In doing an exercise, it is often easier simply to express the polar equation parametrically, then
find dy/dx, rather than to memorize the formula.

EXAMPLE 39
(a) Find the slope of the cardioid » = 2(1 + cos 6) at 6= . See Figure N4-24.

(b) Where is the tangent to the curve horizontal?



b

T

e r= 2] 4cos B

0 T

FIGURE N4-24

BC ONLY
SOLUTIONS:
(@) Use r =2(1 +cos B),x=rcos B, y=rsin0, and » '=—2 sin 6; then
ﬁ dy/dB  (—2sin8)sin 6+ 2(1 +cosB)(cos B)
dr  dx/d® (=2sinB)cosB— 2(1 +cosO)(sin @)
At o= < Loy

" dx

(b) Slnce the cardioid is symmetric to 6 = 0 we need consider only the upper half of the curve
for part (b). The tangent is horizontal where j_; - o (provided j_é #0). Since j_; factors into 2(2

£l

cos 0 — 1)(cos 6 + 1), which equals 0 for cose=1 or —1 ,0= < or m. From part (a),
j—e;{} e bm 2 does equal 0 at m. Therefore, the tangent is horizontal only atZ (and, by

symmetry, at 3).

It is obvious from Figure N4-24 that » (0) does not give the slope of the cardioid. As 0 varies
from O to 2* the slope varies from —oo to 0 to +oo (with the tangent rotating counterclockwise),

taking on every real value. However, r (0) equals —2 sin 6, which takes on values only between
—2 and 2!

Chapter Summary

In this chapter we reviewed many applications of derivatives. We’ve seen how to find slopes of
curves and used that skill to write equations of lines tangent to a curve. Those lines often provide
very good approximations for values of functions. We have looked at ways derivatives can help us
understand the behavior of a function. The first derivative can tell us whether a function is increasing
or decreasing and locate maximum and minimum points. The second derivative can tell us whether the
graph of the function is concave upward or concave downward and locate points of inflection. We’ve
reviewed how to use derivatives to determine the velocity and acceleration of an object in motion
along a line and to describe relationships among rates of change.



For BC Calculus students, this chapter reviewed finding slopes of curves defined parametrically
or in polar form. We have also reviewed the use of vectors to describe the position, velocity, and
acceleration of objects in motion along curves.

Practice Exercises
Part A. Directions: Answer these questions without using your calculator.

1. The slope of the curve y* — x)? = 4 at the point where y = 2 is
(A) 2
B) L
(B)
C)_1
(©)-1
(D) 1
(E) 2

2. The slope of the curve y* —xy — 3x = 1 at the point (0, —1) is
(A) -1
(B) -2
(O) +1
(D) 2
(E) -3

3. The equation of the tangent to the curve y = x sin x at the point [%;] 1s

(A)y=x—m
B) =7
(O y=n—x
(D);-:Hg
(E)y=x

4. The tangent to the curve of y = xe™ 1s horizontal when x 1s equal to
(A)0
(B) 1
(Oh
(D)2
e
(E) none of these



5. The minimum value of the slope of the curve y =x° + x> — 2x is
(A)0
(B) 2
(€)6
(D) 2
(E) none of these

6. The equation of the tangent to the hyperbola x? — y° = 12 at the point (4, 2) on the curve is
A)x—2y+6=0
(B) y = 2x
OCO)y=2x—-6
D) y= =

2

(E)x+2y=6

7. The tangent to the curve y? —xy + 9 = 0 is vertical when
(A)y=0
B)y==
(©) ==

-

(D) y==3
(E) none of these

8. The best approximation, in cubic inches, to the increase in volume of a sphere when the radius
is increased from 3 to 3.1 in. is

(A) 007
(B) O.b4n
O 1.2n
(D) 3.6m
(E) 36m

9. When x = 3, the equation 2x> — 3> = 10 has the solution y = 2. When x = 3.04, y =
(A) 1.6
(B) 1.96
(O) 2.04
(D) 2.14
(E)2.4



10. If the side e of a square is increased by 1%, then the area is increased approximately
(A) 0.02e
(B) 0.02¢?
(C) 0.01¢?
(D) 1%
(E) 0.01e

11. The edge of a cube has length 10 in., with a possible error of 1%. The possible error, in cubic
inches, in the volume of the cube is

(A)3

(B) 1

(O) 10

(D) 30

(E) none of these

12. The function f (x) = x* — 4x* has
(A) one relative minimum and two relative maxima
(B) one relative minimum and one relative maximum
(O) two relative maxima and no relative minimum
(D) two relative minima and no relative maximum

(E) two relative minima and one relative maximum

13. The number of inflection points of the curve in Question 12 is
(A0
(B) 1
(©)2
(D) 3
(E) 4

14. The maximum value of the function , - _4./2_, is
(A) 0
(B) —4
(©)2
(D) 2
(E) none of these



15. The total number of local maximum and minimum points of the function whose derivative, for
all x, is given by f (x) =x(x — 3)? (x + 1)*is
(A)0
(B) 1
(O)2
(D)3
(E) none of these

16. For which curve shown below are both /' "and /" negative?
(A) (B)

(C) (D)

i E)

\

17. For which curve shown in question 16 is f " positive but /' negative?

In Questions 1821, the position of a particle moving along a straight line is givenbys = — 61> +
12¢ - 8.

|

18. The distance s is increasing for
(A)t<2
(B) all z exceptt=2
(C)1<t<3
MDM)t<lort>3
(E)t>2

19. The minimum value of the speed is



(A1
(B) 2
(€)3
D)0
(E) none of these

20. The acceleration is positive
(A) when¢>2
(B) forall ¢, t #2
(C) whent <2
(D) for 1 <¢<3
(E) for 1 <t<2

21. The speed of the particle is decreasing for
(A)t>2
(B)t<3
(C) all ¢
D)t<lort>2
(E) none of these

In Questions 2224, a particle moves along a horizontal line and its position at time ¢ is s = ¢* — 6¢° +
12£2 + 3.

22. The particle is at rest when ¢ 1s equal to
(A) lor2
(B) 0
C
©2
(D)O0,2,0r3
(E) none of these

23. The velocity, v, 1s increasing when
A)t>1
B)I1<t<2
O)r<2
D)t<lort>2
(E)t>0



24. The speed of the particle 1s increasing for
(A)0<t<lort>2
B)l1<t<2
O r<2
D)t<0ort>2
(E)t<0

25. The displacement from the origin of a particle moving on a line is given by s = * — 4£3. The
maximum displacement during the time interval -2 = ¢ = 4 is

(A) 27

(B) 3

O 12 5+3
(D) 48

(E) none of these

26. If a particle moves along a line according to the law s =# + 5¢%, then the number of times it
reverses direction is

(A)0
(B) 1
©2
(D) 3
(E) 4

BC ONLY

In Questions 27-30, g = (3 cos %1, 2 sin =4 1S the (position) vector |, ,, from the origin to a movin;
5 S p . ) gl g

point P(x, y) at time ¢.

27. A single equation in x and y for the path of the point is
(A) x> +1*=13
(B) 9x* + 4y* =36
(C) 2x%2+3y2=13
(D) 4x* + 9% =1
(E) 4x2 + 9% =36

28. When ¢ = 3, the speed of the particle is



(A) T

(B)2
(©) 3
(D)7
(YRIEE

3

29. The magnitude of the acceleration when ¢ = 3 is
(A) 2
B)
B)Z

(©)3
(D) 22

¥

(E)n

30. At the point where ;- L the slope of the curve along which the particle moves is

(A) 25
9

(B)_2

(C) =

V3
24/

(D) - f

(E) none of these

31. A balloon is being filled with helium at the rate of 4 ft3 /min. The rate, in square feet per
minute, at which the surface area is increasing when the volume is 333"‘1’[3 1s
(A) 4n
(B) 2
(©) 4
(D) 1
(E) 2n

32. A circular conical reservoir, vertex down, has depth 20 ft and radius of the top 10 ft. Water is
leaking out so that the surface is falling at the rate of L ft/hr. The rate, in cubic feet per hour, at

which the water is leaving the reservoir when the water is 8 ft deep is
(A) 4n



(B) 8w
(C) 16m
(D) ﬁ

1
(E) -

33. A local minimum value of the function , - £ is
Al

(B) 1
(©) -1
(D) e
(E)0
34. The area of the largest rectangle that can be drawn with one side along the x-axis and two

: 2.
vertices on the curve of y =e™ 1is

@) 2

(B) V2e
(©) f—

(D) —

'\,'.jr.’“

(E) —

CHALLENGE

35. A line is drawn through the point (1, 2) forming a right triangle with the positive x- and y-axes.
The slope of the line forming the triangle of least area is

A) -1
(B) 2
(©) 4
(D) -1

2

(E) -3

CHALLENGE

2

36. The point(s) on the curve x> — y? = 4 closest to the point (6, 0) is (are)



(A) (2,0)

(B) (5, 1)

(O 3, 5

D) (y13.£43)

(E) none of these

37. The sum of the squares of two positive numbers is 200; their minimum product is
(A) 100
(B) 25,7
(C) 28
(D) 2412
(E) none of these

38. The first-quadrant point on the curve y? x = 18 that is closest to the point (2, 0) is
(A) (2,3)
B) 6. 3
(O . vs)
M) (1,342
(E) none of these

39. If /1 1s a small negative number, then the local linear approximation for 357, 1s
(A) 3+ j_;

."i'l
(B) 3- =
(©) L

40. If f (x) =xe ™, thenatx =0
(A) f1s increasing
(B) fis decreasing
(C) f has a relative maximum
(D) f has a relative minimum
(E) /' does not exist



41. A function f has a derivative for each x such that [x| < 2 and has a local minimum at (2, —5).
Which statement below must be true?

(A)f12)=0.

(B) /' exists at x = 2.

(C) The graph is concave up at x = 2.
M) fF'(x)<0ifx<2,f'(x)>0ifx>2.

(E) None of the preceding is necessarily true.

42. The height of a rectangular box is 10 in. Its length increases at the rate of 2 in./sec; its width
decreases at the rate of 4 in./sec. When the length is 8 in. and the width is 6 in., the rate, in cubic
inches per second, at which the volume of the box is changing is

(A) 200
(B) 80
(C) —80
(D) —200
(E) —20

43. The tangent to the curve x> + x? y + 4y = 1 at the point (3, —2) has slope
(A) -3

(B) -2

©-Z

-1

44.1If f (x) = ax* + bx* and ab > 0, then
(A) the curve has no horizontal tangents
(B) the curve is concave up for all x
(CO) the curve is concave down for all x
(D) the curve has no inflection point

(E) none of the preceding is necessarily true

45. A function f'is continuous and differentiable on the interval [0,4], where f ' is positive but f " is
negative. Which table could represent points on f°?

Ay |0 | 1 | 2 | 3 | 4
()_u- 10 [ 12 | 14 | 16 | 18




(B) X 0 1 2 3 4
y 10 12 15 19 24
(C) X 0 1 2 3 4
¥ L0 18 24 28 30
(D) X 0 1 2 3 4
¥ 30 28 24 18 L0
(E) X 0 1 2 3 4
y 24 19 15 12 10

46. The equation of the tangent to the curve with parametric equations x = 2¢ + 1,y =3 — £ at the
point where t =1 is

(A)2x +3y=12
(B)3x+2y=13
(C) 6x +y=20
(D)3x—-2y=5
(E) none of these

BC ONLY

47. Approximately how much less than 4 is g3 -
A) L
(A) =
(B) L
16
1
(©) -
2
(D) 5
(E) 1

48. The best linear approximation for f (x) = tanx near x= X is
A) L&
( ) [+ 2 ( 1 )
.
B)1+x- =+
1% v E
(C)l+ V2 (¥ 4]
(D) 1 +2(x— ‘T )

3
(E) 24 - g]

49. When / is near zero, ek

(A) k
(B) kh

, using the tangent-line approximation, is approximately



©) 1
D) 1 +k
(E) 1 + kh

50. If  (x) = cx? + dx + e for the function shown in the graph, then

A

T

fix)

(A) ¢, d, and e are all positive
B)c>0,d<0,e<0
(C)c>0,d<0,e>0
D) c<0,d>0,e>0
(E)c<0,d<0,e>0

Part B. Directions: Some of the following questions require the use of a graphing calculator.

51. The point on the curve , - 3,57 at which the normal is parallel to the line y = —3x + 6 is
(A) (4,3)
(B) (0,1)
O . v3)
(D) (4, -3)
(E) 2, 5)

52. The equation of the tangent to the curve x? = 4y at the point on the curve where x = —2 is
A)x+ty—-3=0
B)y—1=2x(x+2)

C)x—y+3=0
Mx+y—-1=0
E)yx+y+1=0

53. The table shows the velocity at time ¢ of an object moving along a line. Estimate the
acceleration (in ft/sec?) at ¢ = 6 sec.



(A) -6
(B)—1.8
(C)-1.5
D) 1.5
(E) 6
Use the graph shown, sketched on [0, 7], for Questions 54-56.

A

54. From the graph it follows that
(A) fis discontinuous at x =4
(B) fis decreasing for 4 <x <7
(C) fis constant for 0 <x <4
(D) f has a local maximum at x = 0

(E) f'has a local minimum at x =7

55. Which statement best describes fat x = 5?
(A) fhas a root.
(B) f has a maximum.
(C) f'has a minimum.
(D) The graph of f has a point of inflection.
(E) none of these

56. For which interval is the graph of f concave downward?
(A) (0.4)
(B) (4,5)
(©) (5.7
(D) (4,7)
(E) none of these



Use the graph shown for Questions 57—-63. It shows the velocity of an object moving along a straight
line during the time interval 0 <¢<S5.

vififsech
F
i o

f—3= ¢ izac)
.;

_tod

57. The object attains its maximum speed when ¢ =
(A0
(B) 1
(©)2
(D) 3
(E) 5

58. The speed of the object is increasing during the time interval
(A) (0,1)
(B) (1,2)
(©) (0,2)
(D) (2,3)
(E) (3,5)

59. The acceleration of the object is positive during the time interval
(A) (0,1)
(B) (1,2)
(©) (0,2)
(D) (2,3)
(E) (3,5)

60. How many times on 0 <¢ <5 is the object’s acceleration undefined?
(A) none
B)1
(02
(D)3



(E) more than 3

61. During 2 < ¢ < 3 the object’s acceleration (in ft/sec?) is
(A)—10
(B) -5
OO0
D)5
(E) 10

62. The object is furthest to the right when ¢ =
(A)0
(B) 1
(O 2
(D)3
(E) 5

63. The object’s average acceleration (in ft/sec?) for the interval 0 < ¢ <3 is
(A) —15
(B) -5
(©) 3
(D) -1
(E) none of these

64. The line y = 3x + k is tangent to the curve y = x> when k is equal to
(A) lor—1
B)O0
(C)3or—3
(D) 4 or -4
(E) 2 or 2

65. The two tangents that can be drawn from the point (3,5) to the parabola y = x* have slopes
(A) 1 and 5
(B) 0 and 4
(C) 2 and 10
(D) 2 and _%



(E)2and 4

66. The table shows the velocity at various times of an object moving along a line. An estimate of
its acceleration (in ft/sec?) at ¢ = 1 is

tsee) | 10 | 15 | 20 | 23
vif'see) | 122 | 130 | 134 | 137
(A) 0.8
(B) 1.0
(©) 1.2
(D) 1.4
(E) 1.6

For Questions 67 and 68, f (x) =x sinx — cos x for 0 <x <4.

67. f has a local maximum when x is approximately
(A) 0.9
B) 1.2
(023
(D) 3.4
(E) 3.7

68. The graph of /' has a point of inflection when x is approximately
(A) 0.9
(B) 1.2
(0)23
(D) 34
(E) 3.7

BC ONLY

In Questions 69—72, the motion of a particle in a plane is given by the pair of equations x =2¢ and y =
4t — 12,

69. The particle moves along
(A) anellipse
(B) a circle
(C) a hyperbola
(D) a line



(E) a parabola

70. The speed of the particle at any time ¢ is
(A) Jo—2
B) 2/ _ 415
(©) 22145
(D) ysk-2)
(E) 2031

71. The minimum speed of the particle is
(A) 2
(B) 2.2
©)0
(D) 1
(E) 4

72. The acceleration of the particle
(A) depends on ¢
(B) is always directed upward
(C) 1s constant both in magnitude and in direction
(D) never exceeds 1 in magnitude

(E) is none of these

73. If a particle moves along a curve with constant speed, then
(A) the magnitude of its acceleration must equal zero
(B) the direction of acceleration must be constant
(C) the curve along which the particle moves must be a straight line
(D) its velocity and acceleration vectors must be perpendicular

(E) the curve along which the particle moves must be a circle

74. A particle 1s moving on the curve of y = 2x — In x so that % - at all times ¢. At the point (1,2),
@ s
dt
(A) 4
(B) 2

(O —4



(D) 1
(E) —2
In Questions 75-76, a particle is in motion along the polar curve » = 6 cos 26 such thatd? _ 1

dt 3

radian/sec when 8= %
i]

75. At that point, find the rate of change (in units per second) of the particle’s distance from the
origin.
(A) 6.3
(B) 2.3
©)
(D) >3
(E) 6,3

76. At that point, what is the horizontal component of the particle’s velocity?
(A) -2

2

7

(B) -1
(OF
DL
(E)2

Use the graph of /' on [0,5], shown below, for Questions 77 and 78.

A

1 1
1 2 3 4 5

77. f has a local minimum at x =
(A0
(B) 1
(©)2
(D)3
(E)5



78. The graph of f has a point of inflection at x =
(A) 1 only
(B) 2 only
(C) 3 only
(D) 2 and 3 only
(E) none of these

79. It follows from the graph of /', shown below, that

A

(A) f'is not continuous atx =a

(B) f'is continuous but not differentiable at x = a
(C) fhas a relative maximum at x = a

(D) The graph of f has a point of inflection at x = a
(E) none of these

80. A vertical circular cylinder has radius r ft and height % ft. If the height and radius both increase
at the constant rate of 2 ft/sec, then the rate, in square feet per second, at which the lateral

surface area increases is
(A) 4nr

(B) 2n(r + h)

(C) 4n(r + h)

(D) 4nrh

(E) 4nh

81. A tangent drawn to the parabola y = 4 —x? at the point (1, 3) forms a right triangle with the
coordinate axes. The area of the triangle is

@3
®) 3
©2
)1
(B) 2



82. Two cars are traveling along perpendicular roads, car 4 at 40 mph, car B at 60 mph. At noon,
when car 4 reaches the intersection, car B 1s 90 mi away, and moving toward it. At 1 p.M. the
rate, in miles per hour, at which the distance between the cars is changing is

(A) —40
(B) 68
(©) 4
(D) —4
(E) 40

83. For Question 82, if ¢ is the number of hours of travel after noon, then the cars are closest
together when 7 1s

(A) 0
(B) 2
26
©)2
(D) 2
(B) &

The graph for Questions 84 and 85 shows the velocity of an object moving along a straight line
during the time interval 0 <z <12.

{ftfsec)
A

84. For what ¢ does this object attain its maximum acceleration?
(A)0<t<4
B)4<t<8
O)t=5
D) =38
(E)t=12

85. The object reverses direction at ¢ =
(A) 4 only
(B) 5 only



(C) 8 only
(D) 5and 8
(E) none of these

86. The graph of /'’ is shown below. If we know that f(2) = 10, then the local linearization of f at x
=21s f(x) =
(A) S +2
(B)Z +9
(C)3x—-3
(D) 3x+4
(E) 10x — 17

A

(A) F (B) r




.
L

IEj F

Use the following graph for Questions 88—90.

¥
A

88. At which labeled point do both % il jT\
A) P
(B) ¢
OR
(D) S
(E) T

89. At which labeled point is % positive and
(A) P
(B) 0
(OR
(D) §
E)T

equal zero?

4%y equal to zero?
dx=



90. At which labeled point is % equal to zero and :1‘ negative?
(A) P
(B) 0
(O R
(D) §
(E) T

91. If /(6) = 30 and ¢+, = ‘_1 estimate f(6.02) using the line tangent to fat x = 6.

(A) 29.92
(B) 30.02
(C) 30.08
(D) 34.00
(E) none of these

92. The local linear approximation for 5, _ ./;7 15 Near x =—3is
(A)s5- Za-3
J

(B) 5+ %u——a;
(©)5- Zer+3)
(D) 3- 2 x-3)
(E) 3+ %[.1’+3]



CHAPTER 5 Antidifferentiation

| % . .. " . b " . . . . b b |

Concepts and Skills

In this chapter, we review

* indefinite integrals,

 formulas for antiderivatives of basic functions,

» and techniques for finding antiderivatives (including substitution).

For BC Calculus students, we review two important techniques of integration:
* integration by parts,

» and integration by partial fractions.

A. ANTIDERIVATIVES

The antiderivative or indefinite integral of a function f (x) is a function F(x) whose derivative is f
(x). Since the derivative of a constant equals zero, the antiderivative of f (x) is not unique; that is, if
F(x) is an integral of f (x), then so i1s F(x) + C, where C is any constant. The arbitrary constant C is
called the constant of integration. The indefinite integral of /' (x) is written as [ ax; thus

dF(x)

= f{x).
dx

_[_F'[.lj de=F(x)+ C if

Indefinite integral

The function f'(x) is called the integrand. The Mean Value Theorem can be used to show that, if two
functions have the same derivative on an interval, then they differ at most by a constant; that is, if

r."Fl.rl:r."L'r'-Lrl thCIl
dx dr

F(x) — G(x) = C (C a constant).

B. BASIC FORMULAS

Familiarity with the following fundamental integration formulas is essential.



[ifde=k [fde &k =0) (1)

f[f[.x,‘l +glx)] de= fj'[.t,'l de + f;-.‘;[.:jl i i2)
HR+]

fl!f' i = +C (n#z-1) (3)
n+l

au

IT =Infu| + C (4)

ﬁ:nﬁ udu=sinu+C (30

fﬁill wdu=—<cosu+C (6)

ftan wdu=1In |secu| +C (7)

or —In |Dl'|-R u| +C

J‘mt udu=1n |ﬁil1 r£| +C (8)

or —1In |1:m: u| +C

fﬁm:’ udu=tanu+ C (9
fcﬁc’ Hdi=—cotu+C (10
fﬁm:utﬂnu:fu=ﬁm u+C (11
fcscacntuduz—q:sc u+C (12)
fﬁﬂcutftIZitl kecu+tanu| + C (13)
Jescudu=1n fscu—cotu +C (14)
fr:" di=e“+C (15)
fu“ du = R ul +C =0, az1) (16)
Ina
J" ,.'dH = =sin'u+C (17}
yl—u

or arcsin g + C

i
1+ u

> =tan'u+ C (18)

or arctan u + C

dil
T =sec’lul+C (19)
u e —1

or arcsec lul+ C

All the references in the following set of examples are to the preceding basic formulas. In all of



these, whenever u is a function of x, we define du to be u (x) dx; when u 1s a function of 7, we define
du to be u '(¢) dt; and so on.

EXAMPLE 1

fi\' dx=5 J'.l' dx by (1),

= i(‘?] + Chy (3).
Weri

EXAMPLE 2

f — 2 Y ¢ 3
_ﬂ - =— L |-f!'.1' = J' [ X%+ 22 —2x72 — i_r”‘ [dx
| X  33x | \ 3 /

= f.r* dx + f.\'” dr—2 f.r‘ dx — % f.r‘“ dx by (1)

and (2)
Ty T
=5 § a9 %3 + C by (3)
Sl e B O
i fos s + C.
EXAMPLE 3

Similarly, f{'ﬁ —dx+ 2% dx = J"ﬁ dr —4 _f.r dx + 2 _f.r" dx

2 o
=gy &, 32X
2 4

. 1.4
=3xr-2x" 4+ i i

+

EXAMPLE 4

21 = 3xpax 1s integrated most efficiently by using formula (3) withu =1 — 3x and du = u (x)dx =
—3 dx.

Efl | —3x)2dx

-
;3 f{l —3x1¥ -3 dx)

“
= g r (3
g}” + C by (3)

2 3x} + C
—— il =3xy + C.
0 ¥

EXAMPLE 5



_ _ — 62 e th
Jor— 1y xvd= éj‘{lﬁ— 1) « (642 dx) = %J'Hs v Where u=2x> — 1 and du = u '(x) dx = 6x? dx; this, by

formula (3), equals

L. Xyc=Loe-r+c
R 36
EXAMPLE 6
[sizxar=[a—xpmar=—[(1 -1 dny = — [ du, Where u =1 —x and du = —1 dx; this, by formula
y¥3 ol
(3) yields ¥ 7 C=—Z(1-2+C
EXAMPLE 7

x 1
f : ix= J'{'."u —4x%)" . (x dx) = —% f[.’- — 4 —Bx dx) = =i Jﬂu'“: du

=

N3 —4x?

_ 1
53

+Chy (3) = —i TEER T

EXAMPLE 8
452 s A T W e . P
J‘f_fs_nj‘fh—‘i f{.l -1y -x*dx= EJ'{A — 1332 dx)
1 e —
3 =2 3 xi=1y
EXAMPLE 9

[y
f s ot S _r RN + dx. Now let u= 1 4+ x", and note
VX xt

112

2x

that du = %.1‘“’ dx; this gives QI[ 1 + 27 [ (L\'j = _%[l + VX F+C.

EXAMPLE 10

J"{E_:"]: ¢ ,l.-,"_‘t‘ tf‘t = f{4_ 41 +_1.1} ,_1.1.'_* :f_‘r = f{4:1.1.'1_ 4}.3.': +_Ts.'z} m

’ - 2 =
=4.2yn_gq.2 gy 2 v+ Chy (2)
- i 3 Th
= E,L.s“ + — 2y ET'.'J_'_ &
& 3 T

EXAMPLE 11



=1 |i— ]n|.1‘| +i\.| +C.
x )

.1‘3—.1'— . 1 4.0
e _,r|‘___ -

EXAMPLE 12

Ix-— o
xSl dx = fll — 2+ 37" (3x - 1) dx

3 — 2x +3x2
3 Sk
= 'T(] —2x 4+ 3x%)*

|,_,||_

1 A

=_ (1 =2x4+3'""6x —2)dx or
EJ"{ PR ex — 2) dx o
+ Chyi3)

1 -2x4+ xR 4 C.

-Lh

EXAMPLE 13

ch fﬁch+ “i‘l“

21 —4x+13 21 —4xr+3 (
dx = L2 5
n—J]- 1-—211—1 | {(x—1)° J

| ; : i ;
= 2x — —— + . This example illustrates the following principle

X =

If the degree of the numerator of a rational function is not less than that of the denominator

divide until a remainder of lower degree is obtained.

EXAMPLE 14

% =lnfu-3] +Chy@).

EXAMPLE 15
gz 1 2 s
il l1- 427 + Cby (4).
EXAMPLE 16
f& dy= L [ Zeosxdr — Ly, 5426002+ Cby (4) Withu = 5 + 2 sin x. The absolute-value sign is
5+ 2sinx 2 5+ 2zinx 2
not necessary here since (5 + 2 sinx) > 0 for all x.
EXAMPLE 17
it SO (K] T 1 o e
J il o= -1 [ dx=—linji-27 +Cby (4.

EXAMPLE 18



[ ae= J-1+ L) ax (by long division) = —x ~In[1 — x|+ C.

EXAMPLE 19

fs'm (1-2y)dy= —JT J.‘.iiﬂ (1 —2y)(-2 dy)

1
= —i?[_ms[] —2y)] +Cby(6)= ?a‘ws[l—i_'r}+(".

EXAMPLE 20
fsin: Et Cos % el =2J'|:?3'lﬂ—.l|E COs % % = % sin® % + C by (3).
EXAMPLE 21
) % dx= _%’% = fr_ITJ In|l +3cosa| + C.
EXAMPLE 22

™ sec? y dy = ™+ C by (15) with = tan y.

o

EXAMPLE 23

e*tan e” dx =In |ﬁﬂ‘€’| + C by (T) with u = e,

2

EXAMPLE 24
S0f% dz= |cacz oot zdr=—cscz+ Chy (12).
J Sin* Z J
EXAMPLE 25
’[m”mz“ﬁ: an’t + Cby (3) withu =tan ¢ and du = u (¢) dt = sec? ¢ dt.

EXAMPLE 26



| R
'} r 0 r —ﬂr.-"
(a) !i.: =l | ; Ifi.. :313 3

R R E N e

1
JJo—z# 3
:

e e (R =
O-r*(2zdy) = ———F— +Cby(3)= —9-7" +C

=sin™'£ + Cby(17) with u =

1 | e

[ zdz
® | o2

=l
Ve -z i

; 1
withu=9-7"n=—7

[ zdz _

[ (—2zdz) _ 1
o_z 2

LIn|9 -2 + Cby(4) withu=9-2.

= — + Chy (3.
) 200-z%) !

—l' —l" _J£ r rq —i
D 2 9 il + Chy (18) with u= 2"
’ ; ey ;) . ]+|:

LR i

EXAMPLE 27
= [1+Izd'% =In(1+2+x )+ Cby(4)

dx
VIl + 24/x)

dx
withu=1+2y;and “~ 7

VI

EXAMPLE 28

’ B : : 1 =
gin x cos x dx= = sinfx + C by (3)with u =sinx; OR = — - COB™X + Chyi3)

withu = cos x; op = !

- COs 2x + C by (6), where we use the trigonometric identity sin 2x = 2
sin x Cos X.

EXAMPLE 29

r [
CO5 & X

ix = 2| uas{.l“":][%x'“’ dr)=2sin x + Chy (S)withu= +/x.
' £

EXAMPLE 30
[ r 3 i 2 o 5 5 o 5 S 1
sinydy= | [+- =2 gy= L 5‘“43-“ + ¢, using the trigonometric identity sin® @ = x(1 —cos 26)
EXAMPLE 31
[ xdr o0 [ 2xdx = i X Lo
I p=r e s tan™ x* 4+ C by (18) with u = x°

EXAMPLE 32



N 3 - . —lrﬂ'
dx = dx L friy _3.1_ 3
J X +4x+13  J9+(x+2) 9] J+[_t+3] 9) J+[_r+3]
[ \ 3 |
=1 jgpa 212 + Chy (18)with u = et
3 3 3
EXAMPLE 33
L
[_dv dy O] . =3.¢|' Ll
Jeoy-y | do-0P-ey+9) 3] | (=) (=)
1|~| B TR ‘lli LB |
) o . ey
:nn"% + Cby (17) with u = %
EXAMPLE 34
€.T
T X L _(h' x
o z;ﬂ'l':;| Fil.zigl 'J'Eta,:—;tmr“%+f
1+(5) L
by (18) with u = By
3
EXAMPLE 35
FT ~ *:_ dr=In(e+e )+ Chy(d)withu=¢e"+¢".
e+ e
EXAMPLE 36
A - 2l i ilm{f+ 1)+ tan™ x + C by (4) and (18).
J x4 Jxr+1 x4l 2
EXAMPLE 37
(4 = [esc2rar= L oscr2r @d= ~Le |
e I ._,I{!rf——|l...5L 2t (2dt)= ——ocot 2t + C by (10).
J sin= 2t ] 2{ 2

EXAMPLE 38



1 cos 87 z sin 8z
— |z = =~ +C,
)

"I'
=
2

cosldzdr=

of

: s . 1
using the trig identity cos*8 = — (1 +cos 28).

EXAMPLE 39
02X v =In(1+sin*x) + C by (4).
] 1 +sin? x
EXAMPLE 40
[ Sy Sy | [ -z R e, T e o - St Sy
xe "dc= = | e~ (—3x"dx) e E + C by (15) with u = —x*
EXAMPLE 41
[ dy _? e bopy o f , r (3
’ N —J[l + Inv) ':}_.d}}'_ 21+ Iny + Chy (3).

BC ONLY

" C.INTEGRATION BY PARTIAL FRACTIONS

The method of partial fractions makes it possible to express a rational functlon D a5 a sum of

I,'l.l

simpler fractions. Here f'(x) and g(x) are real polynomials inx and it is assumed that L2 1s a proper

fraction; that is, that /' (x) is of lower degree than g(x). If not, we divide f (x) by g(x) to express the
given rational function as the sum of a polynomial and a proper rational function. Thus,

X —xt-2 2

= X—- -
xx+1) x(ix—=1)

where the fraction on the right is proper.
Theoretically, every real polynomial can be expressed as a product of (powers of) real linear
factors and (powers of) real quadratic factors. T

In the following, the capital letters denote constants to be determined. We consider only
nonrepeating linear factors. For each distinct linear factor (x —a) ofg(x) we set up one partial
fraction of the type — 4 The techniques for determining the unknown constants are illustrated in the

|

following examples

Examples 42—47 are BC ONLY.

EXAMPLE 42



Find | F-xt4 4

¥ —3x! +2x

SOLUTION: We factor the denominator and then set

e S | A B C
+

.r{.t'—]][.r—ﬂ]_x =1 g=n" (1)

where the constants 4, B, and C are to be determined. It follows that
Mex+d=Ax-1)x-2)+Bx(x—2)+ Cx(x—1). (2)

Since the polynomial on the right in (2) is to be identical to the one on the left, we can find the
constants by either of the following methods:

METHOD ONE. We expand and combine the terms on the right in (2), getting
x2—x+4=(A+B+C)x*—(34+2B+ C)x +24.

We then equate coefficients of like powers in x and solve simultaneously. Thus

using the coefficients of x2, we get 1=4+B+C,

' : -1 =—34 + +
using the coefficients of x, we get C; (&0 2
using the constant coefficient, 4 =24

These equations yield A =2, B=—-4, C=3.

METHOD Two. Although equation (1) above is meaningless for x = 0, x = 1, or x = 2, it 1s still
true that equation (2) must hold even for these special values. We see, in (2), that

1fx=0, then4 =24 and A = 2;
ifx=1, then4 = —B and B = —4;
ifx=2, then 6 =2C and C = 3.

The second method 1s shorter than the first and more convenient when the denominator of the
given fraction can be decomposed into nonrepeating linear factors.

Finally, then, the original integral equals

fra 4 L
= = J.:e’.r: 21n|x|- 4ln|x — 1|+ 3In|x— 2| + C

Jirx x=1L x—
3 3
xlx—2
:ln—l—_,|—+("’.

(x—1)

[The symbol “C” appears here for the constant of integration because C was used in simplifying
the original rational function.]

T In the Topical Outline for Calculus BC, integration by partial fractions is restricted to “simple partial fractions (nonrepeating linear
factors only).”



D. INTEGRATION BY PARTS

Parts Formula

The Parts Formula stems from the equation for the derivative of a product:

;—"un-;:“%Jr ﬁ-“;—“ or, or more conveniently d(uv) =u dv + v du.
ax 1.y X

Hence, u dv = d(uv) — v du and integrating gives us |..'e s |'L-;““- ) | v du, OT

|H dv = uv— |1' dit,

the Parts Formula. Success in using this important technique depends on being able to separate a
given integral into parts u and dv so that (a) dv can be integrated, and (b) |'1- du 1s no more difficult to

calculate than the original integral.

EXAMPLE 43

Find |.1' cos x dx.

SOLUTION: We letu =x anddv = cosx dx. Thendu =dx and v = sinx. Thus, the Parts
Formula yields

i r
|.1' Ccos X 4x = X 5in x — |sjn xdx=xsinx+cosx+C.

EXAMPLE 44

"

X%t dx.

Find

4

SOLUTION: We let u =x2 and dv = &* dx. Thendu = 2x dx and v = e*, so |r_1-:€T e |'11- il

We use the Parts Formula again, this time letting u = x and dv = e* dx so that du = dx and v = €*.
Thus,

r r
et dx =x%" —Nxe" - | et ddx) =x%" - 2xe" 4+ 2" 4+ C.

EXAMPLE 45

Find 7 = ||'."’T cos x dx.

SOLUTION: To integrate, we can let u = e* and dv = cos x dx; then du = €* dx, v = sin x. Thus,

-

I=¢"sinx — |&"sin x dx.

To evaluate the integral on the right, again we let u = €*, dv = sinx dx, so that du = e* dx and v =



— cos x. Then,

"

I=¢sinx—(—¢ cos x + | cos xdx)
=¢ sinx+e cosx—1I.
21 = " (3in x 4+ cos x),

1 :
= Ee”{ﬁm r+cosx)+ C.

EXAMPLE 46

Find |.r‘ ln x dx.

SOLUTION: We let u = Inx and dv = x* dx. Then, 4, = L4 and , _ £ Thus,

r 5

| xInxdx= JlT]n .1.'—1_
J 3

" 5
X
P ——nx—
5

o

THE TIC-TAC-TOE METHOD. !

This method of integrating is extremely useful when repeated
integrate Jugyvix) ax, WE construct a table as follows:

M) -

LS
L

N I‘u'l'x'l

=5

'1—+C.
25

integration by parts is necessary. To

W)

i)
% Il.t’
v lx]
'-'!.l..rl

1'4_L'.r'l

Here the column at the left contains the successive derivatives of u(x). The column at the right

contains the successive antiderivatives of v(x) (always with C =

0); that is, v{ (x) is the antiderivative

of v(x), v, (x) 1s the antiderivative of v; (x), and so on. The diagonal arrows join the pairs of factors
whose products form the successive terms of the desired integral; above each arrow is the sign of that

term. By the tic-tac-toe method,

ﬁa[.t‘n‘[.r]c!.r = w(xyv,(x) — w' (xXpvx) + W@ (v —a" v+ ..

EXAMPLE 47

To integrate Jas cOS X dx by the tic-tac-toe method, we let u(x) =x* and v(x) = cos x, and get the

following table:



x4 . cos X

S
T sinx
Ao -~
T _coax
i S
e
> _sinx
Mr 4
T cosx
-
—
T sinz
i
The method yields
.
oosxde=xsinxyx— (4@ cosx)+(-12¢sinx) —24xcos x+ 24 sinx + C

=xsinx+ 4 cosx - 12%sinx—24xcosxy + 24sinx+ C.

With the ordinary method we would have had to apply the Parts Formula four times to perform
this integration.

! This method was described by K. W. Folley in Vol. 54 (1947) of the American Mathematical Monthly and was referred to in the
movie Stand and Deliver.

E. APPLICATIONS OF ANTIDERIVATIVES; DIFFERENTIAL
EQUATIONS

The following examples show how we use given conditions to determine constants of integration.

EXAMPLE 48
Find £ (x) if £ ((x) = 3x% and £ (1) = 6.

fix)= |3.11 dr=x*+C.

SOLUTION:
Since £ (1) = 6, 13 + C must equal 6; so C must equal 6 — 1 or 5, and f(x) =x> + 5.

EXAMPLE 49

Find a curve whose slope at each point (x, y) equals the reciprocal of the x-value if the curve
contains the point (e, —3).

SOLUTION: We are given that & = and that y = —3 when x = e. This equation is also solved

dr X

o o o v 1
by integration. Since =L =— ;, _ %m.

Thus, y = Inx + C. We now use the given condition, by substituting the point (e, —3), to determine



C. Since -3 =Ilne+ C, we have =3 =1 + C, and C = —4. Then, the solution of the given equation
subject to the given condition is

y=Inx—4.

DIFFERENTIAL EQUATIONS: MOTION PROBLEMS.

An equation involving a derivative is called a differential equation. In Examples 48 and 49, we
solved two simple differential equations. In each one we were given the derivative of a function and
the value of the function at a particular point. The problem of finding the function is called an initial-
value problem and the given condition is called the initial condition.

In Examples 50 and 51, we use the velocity (or the acceleration) of a particle moving on a line to
find the position of the particle. Note especially how the initial conditions are used to evaluate
constants of integration.

EXAMPLE 50

The velocity of a particle moving along a line is given by v(f) = 4£> — 3¢ at time ¢. If the particle
1s initially at x = 3 on the line, find its position when ¢ = 2.

SOLUTION: Since

ix .
Wi = S _ap 3,
dt

"

(4 -3 di=r*-r+C.

1=

Since x(0) = 0* — 0% + C =3, we see that C = 3, and that the position function is x(¢) = t* — £ + 3.
When ¢ =2, we see that

x(2)=2*-23+3=16-8+3=11.

EXAMPLE 51

Suppose that a(?), the acceleration of a particle at time ¢, is given by a(¢) = 4t — 3, that v(1) = 6,
and that /' (2) = 5, where f () is the position function.

(a) Find v(¢) and f (7).
(b) Find the position of the particle when ¢ = 1.

SOLUTIONS:

!I.
{a) u[:}:r“[n:i:flr—?.
dt

v= (-3 di=21-31+C,.



Using v(1) = 6, we get 6 = 2(1)?> —3(1) + Cy, and C; = 7, from which it follows that v(¢) = 2¢>
— 3¢+ 7. Since

e L

vty = i = o
fin= r[zﬁ —dr+ ?Jc!r=§—¥+ Tt+C,.

i

Using /' (2) =5, we get 5= 225 %[g;q 12 +C, 5= 2 _6+ 14+ C,, 50 ¢,= -2, Thus,

2. 3, 25

(]

f 3 2 3
2 3 25 13
(b) Whenr=1, h=———+7T——=——.
(b) I . S 3 E E

For more examples of motion along a line, see Chapter 8, Further Applications of Integration, and
Chapter 9, Differential Equations.

Chapter Summary

In this chapter, we have reviewed basic skills for finding indefinite integrals. We’ve looked at the
antiderivative formulas for all of the basic functions and reviewed techniques for finding
antiderivatives of other functions.

We’ve also reviewed the more advanced techniques of integration by partial fractions and
integration by parts, both topics only for the BC Calculus course.

Practice Exercises
Directions: Answer these questions without using your calculator.

L. _['13_1:_31-+ 3) dx =
A) P —x*+C
(B)3x> —x*+3x+C
(O)x—x2+3x+C
(D) 2 (3 -2x 4374 C

(E) none of these

2. J. |"1 == E_lh. I|- {,f_'l,' —]
A L B
( ) -:1[\.1'— IJ +



(B) r-1+ L +C
4x°
3
(C) . 1_1'—L+ i
3 4x

(D)Q_I_Lc

X

(E) none of these
3. [Va—2r ar=

(A) —l -2+ C

(B) 2 ~@-2pmsC

(© —é @-2p+C

(D) +2i.:4 —2P+C

(E) % (4—2+C

4. _r[l —3xfdx=
(A) é[z 3+ C
(B) —%{2 - 3F+C
© %fl —3xf+C
(D) —é 2-3xF+C

(E) none of these

5-[' 1 - 3y

'-".—1',

(A) 42y-3" 4+ ¢
(B) [21—11 P+

(C) —lnA2y-3y* +C
S iy
(D) % (2yv=3v"2+ C

(E) mx."ﬁ y=3" +C

6. J'm“'_“ =d
(A)
(B) -
O +

21—]

]21.
+C

2x —



+C

( ) \.21. -1
(E) T]11|2.1'— | +C

7.J' 2 du &

1 + 3u

(A) zln |] + 3+ C

( ) = A+ ‘-u]

(©) 2 1n|1 +3up+ C
( ) (1+ 3u)?

(E) none of these

i
8. I ot #=
(A) Elln Jar -1 +C

B) 421 +c
(©) Ea,""!z—l +C

- C
(D) 4["! }+

(E) E‘l.-'lzfz—l +

9. J'mg 3x dx =
(A)3sin3x+C
(B) —sin 3x + C
(C) —%'&;'Lﬂ 3x 4+ C

(D) lj'sjn W+ C
(E) %r:ma: 3x+C

1 x dlx _

0 -rl+4r
(A)—lnn+4f]+r
( )8{]+-11} o
(C)zw'l+41‘ +C
(D) Elln|] +4.r2| +C

(E) %mn'J x4+ C




11, [_&

1+ 4x2

(A) tan ! 2x) + C

(B) lln (1+4x7)+C

O ——=

8(1 + 4x?)?

(D) 5 tan™ (2x)+ C

(E) é]n |l + 4.r:| +C

12. _r v dx =

(A) E]ﬂ (1 +4*7+ C

(B) L{l +4x* 4+ C

( )_E[l+4-i. ]+E
(D )_1{1+4A}
( )_{]+-h} 3}
X ix
13 -[‘\J+-11
(A) —*-;'l Lay” Hi
(B) ]+-11

(C) Esjn'“ 2x4+C
(D) ,jlmn'J 2x+ C

(E) éln J1+4x* +C

(A) %gm"% i

B) sy +c
(O s 2 +c

(D) —Lln-y"d, SR
(E) -——=+cC

’%[_1—1

15 J' uﬁ



(A) ﬁls;'m'“ % +C

(B) —qv":l —y +C
(C) sin™ ::— +

(D) =S A=y e
Tl

E)2ja_v e

2x+1 4. _
16. j% dx =
(A) T+ %]n |1| +C
(B) +%.1r'l =EY %

O)x+2Ink|+C
(D) x+In2x|+ C
(E) ( 1__,-|+‘:

oyl
17. f% dr =

: 4
(4) =2,
X

(B) £—kEu.r+ 6]n|.1‘|—E+E

2 X
(C) L— Ix + Bln|.r|+ g +C
x
(D) - “ == e
4.1

(E) none of these

18. [[i - 1) ar=

A2+ e
(B) I_—:—Q:—rhr
(C)§+1np|+c
(D) 2 2rmpf+c

(E)—_:__+r:

2

19. -r[4.1.""" —5x — ') dx =
(A) 33— 032 — 9512 4 ©



(B) 3x4/3 _ 2x5/2 + 2x1/2 +C

(C) 65— 25— %.v‘ +C

~

i

(D) %_‘-_:.'5_ ;—5.1'L'2+ l.l._g,-:_'_ cC

(E) none of these

20. 1
_r T dx=
Lt oty
(A) 4 23 +C
3*
o %+E

© IT — Injx| - % T s

(D) IT - ]11L1'| + % +

(E) = - ]n|.1.'| + % 3C
i

21. .r m— =
(A) sfim iy +c
(B) —1n|l—. v+ C

(O 2m —Jy)+C
(D) 2y =+ €
(E) -2 ]n|1 - --.,-'._T| +C

22, eS8 .
'r S —agt T
(A) ~sin” 22
2
(B) _Eln Na—0® +C

© 2Wa_9? 1€
(D) l_i;i11"iu +C
(= 2

(E) —El*:'.d- -0 +C

23. [sin@®cos O d6 =
(A) sin’ ﬂ

(B) —Tms 26+C



(C) mf . +

(D) qlﬁin 26+ C
(E) cos 20+ C

24 J‘ sin 4/ x o

\.l

(A) 2 cos?x+C
(B) _cos+x +C

(C) 2cos4x +C
(D) %nin-"’ x+C

(E) %cm vx +C

25. _rr cos (20 di=
(A) %nin (45 +C

(B) - cos' 20+ C
(9) —Ei sin (47) + C
(D) % sin 200+ C
(E) none of these

26. fm::’ 2rdr=
(A) qm 4x . C
(B) RJ ndx L C
(C) x -::n dx L C
(D) x qm dx 4 C

4 16

(E) %[.1‘ +sindx)+ C

27. [sin 2040 =
(A) ~cos26+C
(B) 2cos20+C
(C) —sin? 0+ C
(D) cos? 0+ C



(E) —ﬂlmﬁ 204+C

28. [xcosxde=
(A) xsinx +C
(B) xsinx +cosx+ C
(CO)xsinx—cosx+C

(D) cosx —xsinx + C
(E) %Ri[l r+C

BC ONLY

29. [ -

cos 3u

(A) _ﬁ&;ﬁr{ L C

(B) tan3u + C

(C) i RDL;RH g
(D) L'Lem 3u+C
3

E l
( ) Jcos Ju T

30‘-[' s X =

Vl+sinx
(A) _%{1 +sin x)* + C
B) 1 1+sinx+c
(O 2/i+sinx+C
(D) In|1 +sinx|+ C
E)-—2 ¢

3(1 + sin x)"*

31. [es@ v _

sin® (8 — 1)
(A) 2Insino — 1|+ C
(B) —csc(0—1)+C
() —lj'sin'"n[ﬁ— )+ C
(D) —cot(®6—1)+C
(E)csc(0-1)+C

32. -rr;eu %Jr =



(A) infec Ll 0

(B) 2t =+

(O) 2ncos % +C

(D) Insec ¢t +tant|+ C

(E) 21n +C

3 t
sec— + tan—
2 2

33.-[' sin 2x dx o

Y1+ cos? x
(A) 214cosx +C
(B) %]:1{] +cosi )+ C
(C) Vi+cosix +C

(D) —In \,':l +cos’x +C
(E) 2 Insinx|+ C

34. fﬁeu“ £ tan x de=
(A) %scu“ v
(B) —%mﬁ'“ x+C
(C)sec*?>x+C
(D) %seum x+C

(E) none of these

35. [tan6do=
(A) —Injsec 0|+ C
(B) sec’ 0+ C
(O) Insin 0|+ C
(D) sec0+C
(E) —Inlcos 6|+ C

36. [ % _

sin” 2x

(A) %csc 2xcot2x+ C

(B)— 2 +C

sin 2x

(C) —%a‘m 2x+C



(D) —cotx+C
(E) —¢csc2x+ C

37. [ BEE

1+ ¥
(A)sec ' y+C
(B) (tan"' y)°*+ C
O In(1+y»+C
(D) In(tan"' y) + C
(E) none of these

38. [sin20cos0do=
(A) —% cos’ @+ C
(B) % cos’@ + C
(C)sin’0 cos O + C
(D) cos> 0+ C
(E) none of these

39. -r & ,:]FI =
1l —cos2r
,j
(A) ————+cC
{1—cos2t)

(B) —In|l —cos2¢|+ C
(O ..\."|] —cos| +C

(D) V1—cos2t +C
(E)21In|1 —cos 2t|+C

40. [ cot 2u du =
(A) Insinu|+ C
(B) Zinfsin 24+ €
(© -Lescaurc
(D) —sec 2u +C
(E) 2 Insin2u|+ C

41. f e dx =

& =1

(A)x+Inle*— 1|+ C



B)x—e+C
(C) r— : +C

(e —1)°
(D) Lk
[

(E) Inle* — 1|+ C

l
+C
—1

x—1
42. f T dx =

(A) ql]n |x|+In|x - 2|+ C
(B) %ln H +C

(O) Inpx — 2|+ Inx|+ C
(D) %ln |r(x—2)+C

(E) none of these

BC ONLY

43. f xe™dx =
(A) Ele”: +C
(B) & 22+ 1)+C
(C) 2¢" + C

(D) & +C
(E) %f“z” +C

44. [cos 0 et do =
(A) eSO+ 14 C
(B) &9+ C
(C) —en¥+ C
(D) e+ C
(E) &9 (cos 0 —sin0) + C

45. _re*-*' sin € df =
(A) cos €2+ C
(B) 2¢* (cos e® + sin 2%) + C

(&) —%ms e® +C



(D) 2 cos e¥+ C
(E) none of these
46. -r % dx =

(A) I x(e™ -1+ C
(B) 7' L C

(C) i(i + ]._j +C

2 Lx xx
(D) Elé'""‘ +C

(E) none of these

47. I.‘.‘f"T dx =
(A)e*(1-x)+C
(B) <
(C)—e* (x+1)+C
(D) —gt’_: +C

E)e*(x+1)+C

BC ONLY

48. [xe dr=
(A) & (x> +2x)+ C
B)e* (x*—2x—-2)+C
O e xP—2x+2)+C
D) e (x—1)*+C
(E)e* (x+1)*+C

BC ONLY

49, [£2 gy

P

A)x—Ine*—e™|+C
B)x+2Ine*—e™|+C
© —%ff*—r‘]‘% C

D) Ine* —e™ |+ C
(E)In(e*+e™)+C



50. [ dr=
(A)tan ' ¥+ C
(B) %]n (1+eM+C
O In(l+e*)+C
D) %hm" £+C

(E)2tan ' e+ C

51.-[‘ ]“T.m. .
(A) Inlnv|+ C
B) 1l i
2
(C) %fln vViE4+ C
(D)2Inv+C
(E) %ln v+ C

52..r b dx =
x

(A) ]111Ia_,-'.x' P

VX

(B) In”x+C
© ql]n|ln.1'| +C
(D) (nvx) |
2
(E) %]n: IFEC
S3. f Xlnx dx =
A Blnx+1)+C
(B) X 4r-n+cC
16
(C) %[lm‘— L+ C
(D) 3_[3|{ lnx— H +C

(E) none of these

BC ONLY

54. f Inndn=



(A) ql]ﬂ: n+cC
B)n(lnnp-1)+C
(C) Ellm,‘r: +C

Ohnhpn-H+C
E)nhn+n+C

BC ONLY

5S. _rln Xdx=
(A) %]]1: x+C
B)3x(Inx—-1)+C
O)3Inx(x—-1)+C
(D) 3x 21:.1' |

=

(E) none of these

BC ONLY

56. [ 1oy ay -
(A) %{]— Inyvj+C

(B) Llrﬁ_‘r+ C

(D) ——[l:1_‘r+ 1+ C

(E)“‘_‘__ c

BC ONLY

57 -r v ]n'p
(A)
Inv’
(B) ——: +C
In" v
(C) ~Inlnv|+ C
(D) ln%+ 5

(E) Inlnv|+ C

BC ONLY




58. f =l .5!_1‘:

y+1

A)y—2Inp+1/+C

2

(B) [— +C
v+1
©ull_c

(¥ + 1)

M)1-2Inp+1+C

(E) l%

59. [ L — =

X 42x42 N

+C

(A)In(x*+2x+2)+C
B)Ink+1]+C
(C)arctan(x + 1) + C
D) —L—~+c

ey

E) L1 Liia+®
(E) .1_+2]:1|x|+2+-‘.'."

60. [ Jx(x - 1yax =
(A) 2(x*?-x)+C
(B) X _ic
© %[E— I +C
(D) L. ; i
(E) y_2vx +c
61. [ cos 0 do =
(A) v (cos 8 —sinB) + C
(B) ’sinf + C
© %yt‘[sme +c0s8)+C
(D)2 €° (sin @ + cos 0) + C

(E) %e“{sinﬁ— cos@)+ C

BC ONLY

62. -r —{l_ in”- dir=



(A) ;l[] —Inty +C

B)Int—21n? ¢+’ ¢+ C
O 20 —-Int)+C
(D) 1o 1o+ 12
(E) [l—]m‘J G

63. [usec udu=
(A) u tanu + Incos u|+ C
(B) Ctani+
() %muu tanu + C
D) utanu — Insinu|+ C

(E) u sec u —In|sec u +tanu|+ C

BC ONLY

dx =

64. [ 2221
(A In(x*+4)+C
(B) In (x* + 4) + tan™ é +C
© %tzm" % +C
(D) (2 +4 +%1:m"'gl+ C

(E) none of these

CHALLENGE

65. J‘I,];l dx =

(A) yi—2

(B)sin ' x+C

(®)) %]n Ji—x* +C
(D) sintx+ fl-x? +C

(E) sin x + %]n Jl=? e

CHALLENGE




66-_r .Llﬂ idx =

yVidx — 4x°
(A) Aln+/dx —4x* + C
B)sin ' (1-2x)+C
(C) %\-"4.1' —dx e
(D) —% In(4x— 4x*)+C

(E) —ql Vdx—4x* +C

CHALLENGE

67.f e dx=

1+ e

(A)tan ' ¥+ C
B)ef—In(l1+e")+C
(C)f—x+njl +e&|+C
M) e+—L ¢

(e + 1)

(E) none of these

CHALLENGE

68. f 1 :2?:3 5=
(A)secOtan0 + C
(B) sinO —csc 0+ C
(O)In(1 +sin*?0) +C
(D) tan"! (sin@) + C

(E)-——+c

{1+ sin® 6)’
69. [arc tan x dx =
(A) arc tanx + C
(B)xarctanx —In(1 +x?) + C
(C)xarctanx+In(1+x?)+C

1 X
(D) xarc tan x + ?]n (l+x9+C

1
(E) X arc tan x — E]ﬂ A+x)+C

BC ONLY




70, [ _dx_

1-£t

(A) -In[l —¢&* |+ C
(B) x —In|l —e* |+ C

C Ly
( )l.‘]—f”}'+

M)e*Inl+e|+C
(E) none of these

CHALLENGE

71 L 4

¥

(A) glil =Py +C

(B) 2.y - 2 ¥y i v 40
3 5
(O Inp|—-y+2*+C

(D) Q:LJ:: . ::L,:--: 2 %},5-: L C

(E) none of these

72, [ow -
(A) Lo s c
(B) e +C
© Loc
(D) %e”"" +C

(E) el+2]nu_|_c

73._[‘ - S

vil + 1n v

(A) Elln|] +]r1_'r:|+ C

B)-—— ¢

(1+Iny)

O m | + %]11|]:1_‘r| =B

(D) tan"! (Inp|) + C
(E) none of these

74. _r[mn 0-1yYdo=



(A) sec 0 +0 + 2 InjcosB| + C
(B) tan 0 + 2 In|cos 0|+ C
(C)tan® —2 sec?0+C
(D)secH+60—tan’ 0+ C
(E) tan 0 — 2 In|cosB| + C

CHALLENGE

75’.[ 1+‘it;na -
(A)secO—tan6 + C
(B)In(1 +sinB)+C
(C)In|sec 6 +tan 6|+ C
(D) 6 +Injcsc 6 —cot O]+ C

(E) none of these

CHALLENGE

76. A particle starting at rest at £ = 0 moves along a line so that its acceleration at time ¢ is 12¢
ft/sec2. How much distance does the particle cover during the first 3 sec?

(A) 16 ft
(B) 32 ft
(C) 48 ft
(D) 54 ft
(E) 108 ft

77. The equation of the curve whose slope at point (x, y) is x> — 2 and which contains the point (1,
—3) is

(A) =L
B)y=2x-1

1, 10
(C) »= ?1 —T
(D) v = %.}.‘3 —2x —%
(E)3y=x>-10

78. A particle moves along a line with acceleration 2 + 6¢ at time #. When ¢ = 0, its velocity equals



3 and it is at position s = 2. When ¢ = 1, it is at position s =
(A) 2
(B) 5
(©)6
(D) 7
(E) 8

79. Find the acceleration (in ft/sec?) needed to bring a particle moving with a velocity of 75 ft/sec
to a stop in 5 sec.

(A) -3
(B) -6
(C)-15
(D) 25
(E) —30

x?
-1

80. |

A lr+ln'r_l
(A) . = }ﬁ
(B) Inp? — 1|+ C
(O x+tan'x+C

(D) .r+lln }_.1‘+l
N |

(E) l+iln}ﬂ{+(’
2 |x-1

BC ONLY

dx =

+C

+C

CHALLENGE




CHAPTER 6 Definite Integrals

Concepts and SKkills

In this chapter, we will review what definite integrals mean and how to evaluate them. We’ll look

at

« the all-important Fundamental Theorem of Calculus;

« other important properties of definite integrals, including the Mean Value Theorem for
Integrals;

» analytic methods for evaluating definite integrals;

» evaluating definite integrals using tables and graphs;

e Riemann sums;

» numerical methods for approximating definite integrals, including left and right rectangular
sums, the midpoint rule, and the trapezoid rule;

» and the average value of a function.

For BC students, we’ll also review how to work with integrals based on parametrically defined
functions.

A. FUNDAMENTAL THEOREM OF CALCULUS (FTO);
DEFINITION OF DEFINITE INTEGRAL

If fis continuous on the closed interval [a, b] and F''=f, then, according to the Fundamental Theorem
of Calculus,

| fix) dv= Fib)— Fla).

Definite integrals

Here | ) 18 the definite integral of f from a to b; f (x) is called the integrand; and a and b are

called respectlvely the lower and upper limits of integration.

This important theorem says that if f is the derivative of F' then the definite integral of f gives the
net change in F as x varies froma to b. It also says that we can evaluate any definite integral for
which we can find an antiderivative of a continuous function.

By extension, a definite integral can be evaluated for any function that is bounded and piecewise
continuous. Such functions are said to be integrable.

B. PROPERTIES OF DEFINITE INTEGRALS



The following theorems about definite integrals are important.

Fundamental Theorem of calculus

THE FUNDAMENTAL THEOREM OF CALCULUS: di fit) dt =fix) 1)
C Ja
,:., oy

Hixyde=k | fix)dx (% a constant) (2)
fxyde=10 (3
fx)yde=— | fix)dx (4)

Ja Jb
fixyde+ | fixyde= | fixydy a=c<b) (5)

If fand g are both integrable functions of x on [a.b], then

(b ra

Jix) dx + | 2ix) dx i(6)

(&

[F(x) £ g(x)] dx=

<& “a

THE MEAN VALUE THEOREM FOR INTEGRALS: If fis continuous on [a.b] there exists
at least one number ¢, a < ¢ < b, such that
)

Jixyde=flcyb—a) (7

S

By the comparison property, if fand g are integrable on [a.b] and if fix) = g(x) for
all x in [a.b], then

flxyde =

o L

rh

glx) dx (8)

The evaluation of a definite integral is illustrated in the following examples. A calculator will be
helpful for some numerical calculations.

EXAMPLE 1

%

G-y dx=x x| =(8-4)—(-1-1)=6.
|

=1 ™,

EXAMPLE 2

.-: I-: i ; .2
f*'—-f‘za_'x:% [1+i— ]dr: [.r+1nx+3J
41

2
3 i
I 7]
N 2x 2 x

1

[(2+In2+D)~(1+2)]= 5 In2 orln V2 .

b | —

EXAMPLE 3



BC ONLY

rl

4=1

EXAMPLE 5
(*  dt 1 t
|t o _—,‘tmrl 3
I =
g [4
EXAMPLE 6

1 1
1
(Ax—2yY dx= = | (3x— 27(3 dx)
J0 = MO
(3x— 2y

12

0

EXAMPLE 7

EXAMPLE 8

fin® m'd

cos 2x dx = 1 sin 2x 1
2 —:l;-'d. 2

J=nid

EXAMPLE 9

xe' dx=(xe" —e")

1 1 5
= Sl e

1
. = 7 (tan 1 — tan™ 0)

(1+1)=1.

L
= — & — (_i—l]:
L e e

2

e

(by Parts).

B gy [* — |®
By =— | O-y"(d)=-29-y | =-21-2)=
| L) /5 2
EXAMPLE 4
S U e e e _i[1_1_]
TR S e P e e e



— =gintx| =—
Ja Al=x° 0
BC ONLY
EXAMPLE 11
re=1 =1
In (x + 1) dx = |[{(x+ 1) In (x + 1) — x i (Parts Formula)
=¢elne—(e—-1)-0=1.
BC ONLY
EXAMPLE 12
rl
Evaluate il
=

J-1

SOLUTION: We use the method of partial fractions and set

y—-4 y+2 y-2°

Solving for A and B yields 4 - _% B= 2L Thus,

4

o dy 1 =20 I
——=—In L :—[ln——]n.‘-):——ln’i
o ¥y—-4 4 |y+21, 4 3 7.
EXAMPLE 13
Y 9 2 .8 | 1. 8
e tan s sec’ 2 df = 5 tan® 3 - =1- et
EXAMPLE 14
|’n;: sine E oy e (J__ COs .r] oo X _sinx _x_1
J B T - 2 2 Tl TR

EXAMPLE 15

rx

= V1 +sin’t df = \-"l +sin” x by theorem (1).

+—1



EXAMPLE 16

"

e"id.r] by theorem (4},
1

r1
i e ¢ dt = i —
de |, dx J

=- % e dt = —eF by theorem (1).
e
EXAMPLE 17
Given Fr) = | Bl find F (x).
N 3+t
SOLUTION:
Fi(x)= b ...
de h 34+t
= i il (where u = %)
dyx h 3+t
o PR e (ks Bule
die \h 341 dx
:[ l ](11_} = 2x 2
34w 3+ x
EXAMPLE 18
I ; '
If F'[-}l'] = -\.'] —Ij dt, ﬁnd F (X)
SOLUTION: We let u = cos x. Thus
ak_gi ax - /1 — i (—sinx) = —sinx+/1 — cos’ x
dy  du (.f.-.'_‘M AT T B
EXAMPLE 19
. ra+h
Find j,, L Je' —1dt.
0 R,
SOLUTION:
lim L . -,-"e” = w.".y’ =il
h=t R

T

Here we have let 4= /o _; and noted that

rax+k 2 - =
lim— | Pyl = T et O F]
ka0 )y b0 h

where



dF(x) I
= filxy=+e —1.
dx s &

The limit on the right in the starred equation is, by definition, the derivative of F(x), that is, f (x).

EXAMPLE 20

interms ofu1f ,_ [ _7

e
Reexpress | g
Ja ; :

SOLUTION: When , - ;=3 u> =x — 2, and 2u du = dx. The limits of the given integral are
values of x. When we write the new integral in terms of the variable u, then the limits, if written,
must be the values of u that correspond to the given limits. Thus, whenx =3, u =1, and when x =

6, u=2. Then

0

2 rz
xNx—2dx =2 | (1 + 2)u’du = 2 | (u* +2u’)du .
43 41 41

EXAMPLE 21

- o reeh
If g 'is continuous, find jjp, L g'(x) dx.

h=0 I

SOLUTION:

rovk

gle+h)—glc) _

£'(c),
h :

el
lim—
-0 h )

g(x)dx= Lj_r}}

Note that the expanded limit is, by definition, the derivative of g(x) at c.

C. INTEGRALS INVOLVING PARAMETRICALLY DEFINED

FUNCTIONS
The techniques are illustrated in Examples 22 and 23.

BC ONLY

EXAMPLE 22

Evaluate | v, Where x =2 sin 6 and y =2 cos .

SOLUTION: Note that dx =2 cos 0 d0, that s = _g when x =—2, and that 6 = g when x = 2.

ad

2cos0(2cos0)db=4

Jex

- E[B o 51[129]
2

2

=2
1+ cos28
Then | ¥dx=

i
4-xf1 2

x|]

=27

—x2



When using parametric equations we must be sure to express everything in terms of the parameter.
In Example 22 we replaced in terms of 0: (1) the integrand, (2) dx, and (3) both limits. Remember
that we have defined dx as x (0) d0.

EXAMPLE 23

Express 2n |rJ xy dx interms of t if x =Intand y = £,
J0

SOLUTION:

We see that dx = %d.r. We now find limits of integration in terms of #:

For x=0,we solveInt=0to gets=1.
Forx=1,wesolvelns=1to getz=e.

rl e re
Then 2w | xydx=2xn | (ln !][!’}{% di) = 21 | (* In H)dt.
J J1 J1

D. DEFINITION OF DEFINITE INTEGRAL AS THE LIMIT OF
A SUM: THE FUNDAMENTAL THEOREM AGAIN

Most applications of integration are based on the FTC. This theorem provides the tool for evaluating
an infinite sum by means of a definite integral. Suppose that a function f (x) is continuous on the

closed interval [a, b]. Divide the interval into » subintervals of lengths” Ax;.. Choose numbers, one in
each subinterval, as follows: x; in the first, x, in the second, ..., x; in the kth, ..., x,, in the nth. Then

dFix)

h
fixydy = F(b) — Fia), where

<&

= ..r'f.rj.

"
lim (X, 1A, =
im 3 1
K=

Any sum of the form z fix,) Ax 1s called a Riemann sum.
k=l

AREA

If / (x) 1s nonnegative on [a, b], we see (Figure N6—1) that /' (x;) Ax, can be regarded as the area of a

typical approximating rectangle. As the number of rectangles increases, or, equivalently, as the width
Ax of the rectangles approaches zero, the rectangles become an increasingly better fit to the curve.
The sum of their areas gets closer and closer to the exact area under the curve. Finally, the area
bounded by the x-axis, the curve, and the vertical lines x = a and x = b is given exactly by



lﬂl Z Fix, )Ax and hence by filx)dx.
i o) :

Ja

_r'l'_rj_'l

0] a Ax h

FIGURE Né6-1

*t is not necessary that the subintervals be of equal length, but the formulation is generally simpler if they are.

What iff (x) is negative? Thenany area above the graph and below the x-axis is counted as
negative (Figure N6-2).
The shaded area above the curve and below the x-axis equals

b
fix) dx,

Bl

FIGURE N6-2
where the integral yields a negative number. Note that every product f'(x;) Ax in the shaded region is
negative, since f (x;) 1s negative for all x between a and b.
We see from Figure N6-3 that the graph of f crosses the x-axis at ¢, that area A4, lies above the x-
axis, and that area A4, lies below the x-axis. Since, by property (5),

b re b
f(x) dx = | flxydx + | Jix) dx,

therefore

fixydx=4A,-A,

Ja



v=fix)
4
= I

a CW&

FIGURE N6-3

Note that if fis continuous then the area between the graph of f on [a, 5] and the x-axis is given by

b
| (x)| .

This implies that, over any interval within [a, b] for which f (x) < 0 (for which its graph dips below
the x-axis), [f (x)| = —f (x). The area between the graph of f and the x-axis in Figure N6-3 equals

|’6 |f(x)|dx = |r:_f"i.t'] dx — |$ff.1'] dx.

This topic 1s discussed further in Chapter 7.

E. APPROXIMATIONS OF THE DEFINITE INTEGRAL;
RIEMANN SUMS

It is always possible to approximate the value of a definite integral, even when an integrand cannot be
expressed in terms of elementary functions. If /' is nonnegative on [a, b], we interpret |"ﬂ” dx as the

area bounded above by y = f(x), below by the x-axis, and vertically by the lines x = a and x = b. The
value of the definite integral 1s then approximated by dividing the area into » strips, approximating the
area of each strip by a rectangle or other geometric figure, then summing these approximations. We
often divide the interval from a to b into n strips of equal width, but any strips will work.

E1. Using Rectangles.

We may approximate | ., 4, by any of the following sums, where Ax represents the

<

subinterval widths:

(1) Left sum: f'(xy) Ax; +f(x)) Axy + ... +f(x, _ 1) Ax,, using the value of f at the left endpoint of
each subinterval.

(2) Right sum: f'(x;) Axy +f(x,) Axy + ... +f(x,) Ax,,, using the value of f at the right end of each
subinterval.

=

(3) Midpoint sum: 7[5 ay, +f(%} Ax, + - - +f[$] Ax, using the value of f at the midpoint
of each subinterval. f
These approximations are illustrated in Figures N6—4 and N6—5, which accompany Example 24.

EXAMPLE 24

Approximate | @ 4 by using four subintervals of equal width and calculating:

(a) the left sum,



(b) the right sum,

(c) the midpoint sum, and (d) the integral.
SOLUTIONS: Here ax= % :%_
(a) For a left sum we use the left-hand altitudes at , - g, % 1, and

3 3 il q
{1}}3.l+[l] l+[l]3 l+[_] -l:'__
2 Ak Z: TN 2 4

The dashed lines in Figure N6—4 show the inscribed rectangles used.
(b) For the right sum we use right-hand altitudes at x =

|u|l,:u

_ The approximating sum is

.1, 2, and 2. The approximating sum is

d
2

3 3 3 =
[l} l_+{”1 l. (;} -l_+[2ﬁ-l_=.gi_
2 g 2 2 2 4

This sum uses the circumscribed rectangles shown in Figure N6—4.

¥ |

&
& \_-.-—.1"
ﬁ p
£
4
R i
14 e
=
T 1 T 1 2
2 el
FIGURE N6-4
A
g
i b e
[
5
4 /
; /
'I__ i
B T S
FIGURE N6-5

(¢) The midpoint sum uses the heights at the midpoints of the subintervals, as shown in Figure N6—
5. The approximating sum is

[1]3 1 [3]3 1 [EJL 1 (?T gl g gy
—|r=+=| =+ =+ =—=—OF —.
o ) T T TR T R 4

(d) Since the exact value of | A 2]
4

1]

or 4, the midpoint sum is the best of the three

approximations. This is usually the case.

We will denote the three Riemann sums, with n subintervals, by L(n), R(n), and M(n). (These



sums are also sometimes called “rules.”)
E2. Using Trapezoids.

We now find the areas of the strips in Figure N6—6 by using trapezoids. We denote the bases of the
trapezoids by v, y1, 9, ..., V,, and the heights by Ax = hy, h,, ..., h,,.

A =

= l.'i. ]

4

A \
-

Y| ¥ ¥z ¥a

L

Ne-1 ¥n

Y

X X
——— S
.'|| -’.‘1 '5".1

FIGURE N6-6

The following sum approximates the area between f and the x-axis froma to b:
.-"'L-'l'."'I 2 ":."-'1 ikix .‘-'31‘.‘-'3 N V.

b e i Fa

If all subintervals are of equal width, 4, we can remove the common factor g

R,

Ya-1 T ¥
.

Trapezoid Rule

Using 7(n) to denote the approximating sum with n equal subintervals, we have the Trapezoid Rule:

h
Tiny=5(¥ +2y 42y, +---+2¥,_, + %)

i

EXAMPLE 25
Use 7(4) to approximate r il

SOLUTION: From Example 24 = L Then,

2
T(4) =%[ﬂ3‘ + 2[%]3 (1) + 2(%)3 + 23] =14_?.

This is better than either L(4) or R(4), but M(4) is the best approximation here.

EXAMPLE 26
A function f passes through the five points shown. Estimate the area 4 - ’Hlﬂ_r} 4r using (a) a left

rectangular approximation and
(b) a trapezoidal approximation.



(129

SOLUTION: Note that the subinterval widths are not equal.

(a) In each subinterval, we sketch the rectangle with height determined by the point on f at the
left end-point. Our estimate is the sum of the areas of these rectangles:

A= 1(7)+3(11) +2(13) + 4(12) = 114

(6,13

(8,1

(3,11

2,74 |z

(=]
1

- X

23 & i 12

(b) In each subinterval, we sketch trapezoids by drawing segments connecting the points on f.
Our estimate is the sum of the areas of these trapezoids:

{6, 13)

o) /'\\\\ (8,12)

(3.11)
1o+ l,' _
I.' p (12,90
84 !
(2,7TH 12

Comparing Approximating Sums



"

Iff is an increasing function on [a,b], then; , < b_m.] dr = R, While iff is decreasing, then

]
Rin) = | Fixydx = Lin).

Fr(;m Figure N6—7 we infer that the area of a trapezoid is less than the true area if the graph of f'is
concave down, but is more than the true area if the graph of /'is concave up.

B

ar while ar

concave dl_'ﬂl-'ﬂ concave up
FIGURE N6-7
Figure N6-8 1s helpful in showing how the area of a midpoint rectangle compares with that of a
trapezoid and with the true area. Our graph here is concave down. If M is the midpoint of AB, then the
midpoint rectangle is AM| M, B. We’ve drawn T T, tangent to the curve at 7 (where the midpoint

ordinate intersects the curve). Since the shaded triangles have equal areas, we see that area AM|; M,

B = area AT, T, B." But area AT, T, B clearly exceeds the true area, as does the area of the midpoint
rectangle. This fact justifies the right half of the inequality below; Figure N6—7 verifies the left half.

TE
.-ﬂ""f.

A M B
FIGURE N6-8

Generalizing to n subintervals, we conclude:
If the graph of f'is concave down, then

&

flx)y dx = Min).

Tin) =
If the graph of f'is concave up, then
b
: fix) dx = T(n).

Mn) =
EXAMPLE 27
Write an inequality including L(n), R(n), M(n), T(n), and |rb fnya Tor the graph of / shown in Figure
N6-9. ’



Rt

FIGURE N6-9

T Note that the trapezoid AT| T, B is different from the trapezoids in Figure N6—-7, which are like the ones we use in applying the

trapezoid rule.

SOLUTION: Since fincreases on [a,b] and is concave up, the inequality is

Lin) = Mn) = | fix)dx = Tin) = Rin).

Graphing a Function from Its Derivative; Another Look

EXAMPLE 28

Figure N6—10 is the graph of function f (x); it consists of two line segments and a semicircle. If
(0) = 1, sketch the graph of f (x). Identify any critical or inflection points of f and give their
coordinates.

Y

| U 4 5

FIGURE N6-10

SOLUTION: We know that if /'> 0 on an interval then f increases on the interval, while if /' <
0 then f decreases; also, if /' is increasing on an interval then the graph of f is concave up on the
interval, while if f ' is decreasing then the graph of / is concave down. These statements lead to
the following conclusions:

fincreases on [0,1] and [3,5], because f ' > 0 there;
but  fdecreases on[1,3], because /' < 0 there;
also  the graph of /'is concave down on [0,2], because f ' is decreasing;
but  the graph of /'is concave up on [2,5], because /' is increasing.

Additionally, Since /(1) =f(3) = 0, f has critical points at x = 1 and x = 3. As x passes through



1, the sign of /' changes from positive to negative; as x passes through 3, the sign of /' changes
from negative to positive. Therefore /(1) is a local maximum and f'(3) a local minimum. Since f
changes from concave down to concave up at x = 2, there is an inflection point on the graph of /'
there.

These conclusions enable us to get the general shape of the curve, as displayed in Figure N6—
I1a.

s /
I

I I I
t t T t t
1 2 i 4 3

FIGURE N6-11a

FIGURE N6-11b
All that remains is to evaluate f (x) atx = 1, 2, and 3. We use the Fundamental Theorem of
Calculus to accomplish this, finding f'also atx =4 and 5 for completeness.

We are given that /' (0) = 1. Then

il

Fily =10} +
+0

f'ix) dx
= ] 4+ ] = 2

where the integral yields the area of the triangle with height 2 and base 1;

F2y=f(1)+ :

F'ix) dx

=5 G = 1.2,

1
where the integral gives the area of a quadrant of a circle of radius 1 (this integral 1s negative!);

'3
fi3=fi2)+ | f'ix) dx

=12 - % (why?) =04,
4
fidy=f3)+ : F'x) dx
=04 + - = (i

2
where the integral is the area of the triangle with height 1 and base 1;

s
f'ix) dx
I

JF(3)=fld) +

=09 + 1.5 (why?) =24



So the function f (x) has a local maximum at (1,2), a point of inflection at (2,1.2), and a local
minimum at (3,0.4) where we have rounded to one decimal place when necessary.

In Figure N6—11b, the graph of f is shown again, but now it incorporates the information just
obtained using the FTC.

EXAMPLE 29

Readings from a car’s speedometer at 10-minute intervals during a 1-hour period are given in the
table; # = time in minutes, v = speed in miles per hour:

1] 0]10]20{30]40[50]60
1|26[40| 55| 10| 60| 32|45
(a) Draw a graph that could represent the car’s speed during the hour.
(b) Approximate the distance traveled, using L(6), R(6), and 7(6).
(c) Draw a graph that could represent the distance traveled during the hour.

SOLUTIONS:

(a) Any number of curves will do. The graph has only to pass through the points given in the
table of speeds, as does the graph in Figure N6—12a.

il

S04

40

30

204

104

i]

> -

T
2 &
- :

e

FIGURE N6-12a
(b) L(6) = (26 +40 + 55 + 10+ 60 +32) - = =37 2 mi;
R(6) =(40+ 55+ 10+ 60 + 32 +45) - % :4{}_;‘ mi;
T{hj:%(26+2'40+2 “55+2-10+2-60+2 - 32+45)=35% mi.
(¢) To calculate the distance traveled during thef_ hour, we use the methods demonstrated in
Example 28. (We know that, since v(¢) > 0, , - | wr a¢ 18 the distance covered from time a to

time b, where v(?) 1s the speed or velocity). Thug,



(0 =0,

1%

.s-[—l] =0+ L 1-[ncfr=r.‘l+{lﬁ+4<}]+L=ﬁ—b.

6 ) 12 12

- TG - =
.s'[;]=ﬁ+ 1'[!]{4’::f}—{:'l+l.’4f_‘.'+:7:nf"]+i=ﬂ~

6 12 A1 12 12 12

6 388 i 388 1 465
,s-[—] — == | vit) df = +(32+45)y — = —.

6 12 LT 12 12 12

It is left to the student to complete the missing steps above and to verify the distances in the
following table (¢ = time in minutes, s = distance in miles):
t]o[10]20 [30 |40 |50 |60
s]0|5.5|13.4|18.8]24.7|32.3|38.8

Figure N6-12b is one possible graph for the distance covered during the hour.

5= distance (mi)

! ! !
T T T

1 3 i 5 &
9 T3 I I I I

FIGURE N6-12b

EXAMPLE 30
The graph of f'(¢) is given in Figure N6—13. 1f fix) = |”,f'[:; dr, fill in the values for F(x) in the table:

14

=3

FIGURE N6-13

SOLUTION: We evaluate F(x) by finding areas of appropriate regions.



A0
Fl0) = | fithdt =0 ;
40

1l
F(l)= | fit)dt = %{]}[2] =1 (the area of a triangle);
| =

F(2) = L fithdt = %{]}[2] + (132) =3 (a triangle plus a rectangle);

3
and Fid) = Jn fthdt = %{3 + 12y - —i{l}fl} = 3 (a trapezoid minus a triangle).
Here is the completed table:

= |j0jifofsf4]5i6

Fx)|o|1[3[4]3]1]-0.5

EXAMPLE 31
The graph of the function f(?) 1s shown in Figure N6—14.

¥

{ WSSEY EESNT Py U PR P [y
| R RS S M SN O Ewm Bl s

FIGURE N6-14

Let Fx) = | fir) d. Decide whether each statement is true or false; justify your
J1

answers:
(1) If4 <x <6, F(x) > 0.
(1) If4 <x <5, F (x) > 0.
(ii1) F "(6) <O0.
SOLUTIONS:
(i) 1s true. We know that, if a function g is positive on (a, b), then |¢gm dv~ o Whereas if g is

re

negative on (a, b), then | 4, 4r < 0. However, the area above the x-axis between x = 1 and x =4 is

greater than that below the axis between 4 and 6. Since

X 4
fyde=| fio)de+
J1 J1

Flw i) d,
J4

it follows that F(x) >0 1f4 <x <6.
(ii) 1s false. Since F' (x) =f(x) and f'(x) <0 1f4 <x <35, then F '(x) <O0.

(iii) is false. Since F (x) =f (x), FF " (x) =f (x). Atx = 6, f (x) > 0 (because f is increasing).
Therefore, F "(6) > 0.




EXAMPLE 32
Graphs of functions 1 (x), g(x), and A(x) are given in Figures N6—15a, N6—-15b, and N6—15c.
Consider the following statements:

D/ (%) =g @) (D) ~x) =/ (x) (D) gy = |

fle) dt
5

Which of these statements 1s (are) true?
(A) T only
(B) I only
(C) III only
(D) all three
(E) none of them

SOLUTION:
The correct answer is D.

I is true since, for example, f'(x) = 0 for the critical values of g: f is positive where g increases,
negative where g decreases, and so on.

.l.I
A

v =fix)

Y

FIGURE N6-15a
II is true for similar reasons.

III is also true. Verify that the value of the integral g(x) increases on the interval —2.5 <x <0
(where f > 0), decreases between the zeros of f (where f < 0), then increases again when f

becomes positive.

FIGURE N6-15b



FIGURE N6-15c¢

EXAMPLE 33

Assume the world use of copper has been increasing at a rate given by £ (£) = 1.5e%°1% where ¢
is measured in years, with # = 0 the beginning of 2000, and f (¢) is measured in millions of tons
per year.

(a) What definite integral gives the total amount of copper that was used for the 5-year period
from ¢ = 0 to the beginning of the year 2005?

(b) Write out the terms in the left sum L(5) for the integral in (a). What do the individual terms of
L(5) mean in terms of the world use of copper?

(c) How good an approximation is L(5) for the definite integral in (a)?
SOLUTIONS:

(@ [ 15 ar
<0

(b) L(5) = 15e%015° 0+ 150015 - 1 4 1560015+ 2 4 71500015+ 3 4 1500154 The five terms on the
right represent the world’s use of copper for the 5 years from 2000 until 2005.

(¢) The answer to (a), using our calculator, 1s 77.884 million tons. L(5) = 77.301 million tons, so
L(5) underestimates the projected world use of copper during the 5-year period by

approximately 583,000 tons.
Example 32 is an excellent instance of the FTC: if f=F ' then [’

fix) dx gives the total change in F

as x varies froma to b.

EXAMPLE 34



r4 fo

4
Suppose | fix)dx=6, g{x)dx =-3, and gi(x) dx=—1. Evaluate
. | 4=1 =1
I'* I'd_ I"||
ia) (f— g} (x) dx; i) g(x) dx, ic) flx—3) dx.
. | 40 41
SOLUTIONS:
(a) 9.
4 =1 rd 0 rd
() plx) dx = J olx) dy + gixyde=—| glx)dr+ glx) dx
Jo 0 J-1 | = J=1

=+l +i-3)=-2.

7
fiix —3) dx, let u = x — 3. Then du = dx and, when x = 2,

() To evaluate
42

4

tt=—1; when x=T7, u = 4. Therefore flu) du=06.

1

o

7
flx=3)de=
2

o -

F. INTERPRETING In x AS AN AREA

It is quite common to define In x, the natural logarithm of x, as a definite integral, as follows:

l
— dt (x = 0).
i) O 4

This integral can be interpreted as the area bounded above by the curve , - %[; - 0y, below by the -
axis, at the left by # = 1, and at the right by t = x (x > 1). See Figure N6-16.

Inx=

A

]__ —
L
i | i SR x i

FIGURE N6-16
Note that if x = 1 the above definition yields In 1 =0, and if 0 <x < 1 we can rewrite as follows:

rl

1
— dt,
ir t

Inx=-

showing that Inx <0 i1f 0 <x <1.

With this definition of In x we can approximate In x using rectangles or trapezoids.

EXAMPLE 35
Show that% <In2<1.

SOLUTION: Using the definition of In x above yields 1, 2 =

1 4 which we interpret as the area
I

71




under - % above the f-axis, and bouned at the left by = 1 and at the right byz = 2 (the
shaded region in Figure N6-16). Since y - % is strictly decreasing, the area of the inscribed
rectangle (height%~ width 1) is less than In 2, which, in turn, is less than the area of the
circumscribed rectangle (height 1, width 1). Thus

i+]-::]112-:]+]L*.~1' i-c:;lnﬁ-r:hl.
2 2

EXAMPLE 36
Find L(5), R(5), and 7(5) for | @m

SOLUTION: Noting that for » = 5 subintervals on the interval [1,6] we have Ax = 1, we make a
table of values for g, - ;‘3

1 pl3lals]s

£ (x)120]60|40|30|24|20

Then:
L(5)= (120 + 60 + 40 + 30 + 24) - 1 = 274;

R(5)=(60+40+ 30+ 24 +20) - 1 = 174;
T(5) = iuz<}+2~5m+'=-4D+'=~'%ﬂ+2-24+'=m:224.

NOTE: The calculator finds that | @ 4 18 approximately 215.011.

G. AVERAGE VALUE

Average value of a function

If the function y = f (x) 1s integrable on the interval a <x < b, then we define the average value of f
froma to b to be

" fix) dx. i1y

b—a la

Note that (1) is equivalent to

{average value of f)« (b —a) = | fix) dx. (2)

Iff (x) > 0 for all x on [a,b], we can interpret (2) in terms of areas as follows: The right-hand
expression represents the area under the curve of y =f (x), above the x-axis, and bounded by the
vertical lines x = a and x = b. The left-hand expression of (2) represents the area of a rectangle with
the same base (b — a) and with the average value of f as its height. See Figure N6—17.

CAUTION: The average value of a function is not the same as the average rate of change. Before
answering any question about either of these, be sure to reread the question carefully to be absolutely
certain which is called for.



A o y=fix)
Il.l"

% it S il N\
.

average value of
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FIGURE N6-17

EXAMPLE 37

Find the average value of f (x) = In x on the interval [1,4].
SOLUTION: —] B In x dx = L (xlnx—x) feilinad :
3

4—-1 I L 3
EXAMPLE 38
Find the average value of y for the semicircle , - .y 2 on[-2,2].
SOLUTION: __! |” I LH®) T
2-(-2) |1 4 2 2

NOTE: We have used the fact that the definite integral equals exactly the area of a semicircle of
radius 2.

EXAMPLE 39

The graphs (a) through (e) in Figure N6—18 show the velocities of five cars moving along an
east-west road (the x-axis) at time ¢, where 0 < ¢ < 6. In each graph the scales on the two axes are
the same.

Which graph shows the car

(1) with constant acceleration?

(2) with the greatest initial acceleration?

(3) back at its starting point when ¢ = 6?

(4) that 1s furthest from its starting point at ¢ = 67

(5) with the greatest average velocity?

(6) with the least average velocity?

(7) farthest to the left of its starting point when ¢ = 6?



(a) (=1 (]

FIGURE N6-18
SOLUTIONS:
(1) (d), since acceleration is the derivative of velocity and in (d) v ’, the slope, is constant.
(2) (e), when ¢ = 0 the slope of this v-curve (which equals acceleration) is greatest.
(3) (b), since for this car the net distance traveled (given by the net area) equals zero.
(4) (e), since the area under the v-curve is greatest, this car is farthest east.

(5) (e), the average velocity equals the total distance divided by 6, which is the net area divided
by 6 (see (4)).

(6) (a), since only for this car is the net area negative.

(7) (a) again, since net area is negative only for this car.

EXAMPLE 40

Identify each of the following quantities for the function f (x), whose graph is shown in Figure
N6—19a (note: F (x) =f(x)):

() f(b) = f(a)

JUbYy — fia)
(by L2 L
(¢) F(b) — F(a)

Fib) — Fila)
(d) 22220

3 III| §= f )
& /
/I
hee e
Aia) Bik) i

FIGURE N6-19a
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FIGURE N6-19b

SOLUTIONS: See Figure N6—19b.

(a) /(D) — f (a) = length RQ.
(b) SB)=Jla) _ % = slope of secant PQ.

b—a

(¢) F(b) ~ F(@) = " fix) ax = area of APDQB.

(d) M = average value of f over [a
equal to the area F(b) — F(a).

,b] = length of CD, where CD - AB or CD - (b —a) is

EXAMPLE 41
The graph in Figure N6-20 shows the speed v(¢) of a car, in miles per hour, at 10-minute

intervals during a 1-hour period.

(a) Give an upper and a lower estimate of the total distance traveled.
(b) When does the acceleration appear greatest?

(c) Estimate the acceleration when ¢ = 20.

(d) Estimate the average speed of the car during the interval 30 < ¢ < 50.

vir)

0 30 A0 50 &0

fman

FIGURE N6-20

SOLUTIONS:

(a) A lower estimate, using minimum speeds and é hr for 10 min, is

{2ttt 2o o(2) (2

This yields 3.5% mi for the total distanc

¢ traveled during the hour. An upper estimate uses



maximum speeds; it equals
4{][%] + wo[glj i ?r_u(é] + ?o[gl] + ?r)[é] + 3{1(9
or 55 mi for the total distance.

(b) The acceleration, which is the slope of v(7), appears greatest at = 5 min, when the curve is
steepest.

(¢) To estimate the acceleration v (¢) at ¢ = 20, we approximate the slope of the curve at ¢ = 20.
The slope of the tangent at ¢ = 20 appears to be equal to (10 mph)/(10 min) = (10 mph)/qé hr) =

60 mi/hr?.
(d) The average speed equals the distance traveled divided by the time. We can approximate the
distance from ¢ = 30 to £ = 50 by the area under the curve, or, roughly, by the sum of the areas

of a rectangle and a trapezoid:
o)+ 201
6 2 \6

Thus the average speed from¢ =30 to =50 is

Wmy | mi/fmin = 60 mph.
20 min
EXAMPLE 42
Given the graph of G(x) in Figure N6-21a, 1dentify the following if G (x) = g(x):
(a) g(b)
®) [ Gy ax
(© |'-'= gix) dx
(b
(d) | etxdx
b—a
| \“- ¥=1{rI)
Alc .S‘(Ib'. =

FIGURE N6-21b



SOLUTIONS: See Figure N6-21b.
(a) g(b) is the slope of G(x) at b, the slope of line ST.

(b) |'b Giv) dr 18 equal to the area under G(x) froma to b.

(c)

i ey dx = G(b) — G(a) = length of BT — length of BR = length of RT.

<

(b
(d) Jﬁ':-”‘“r" _ length of RT
b=a length of QR

= slope of OT.

EXAMPLE 43
The function f'(¢) 1s graphed in Figure N6—22a. Let

Fix) = |”_,f'{r:| dt.
44

AN /\ .

! ! ! ' !
T hdl T T T T
/1 L 2 - 4 5 ]

= I

FIGURE N6-22a
(a) What is the domain of F'?
(b) Find x, if F '(x) = 0.
(c) Find x, if F(x) = 0.
(d) Find x, if F(x) = 1.
(e) Find F (6).
() Find F(6).
(g) Sketch the complete graph of F.

SOLUTIONS:

(a) The domain of f'is [-2,1] and [2,6], We choose the portion of this domain that contains the
lower limit of integration, 4. Thus the domain of

Fis2<I<6,ord4<x<12.
(b) Since F'ix)=f [5‘]5[ , F'(x)=0iff [5‘] =0.Then = =2andx=4.

(¢) F(x) =0 when £ -y orx=8. F(8) =" 1) 4=,

(d) For F(x) to equal 1, we need a region under f whose left endpoint is 4 with area equal to 1.
The region from 4 to 5 works nicely; so £ =5 and x = 10.

(€) Fe)=r ()1 =13 (1] =2- (1] =1.

2



3
() F(6) - | Sit) dt =— (area of trapezoid) = — B G —%.
44 L

2

(g) In Figure N6-22b we evaluate the areas in the original graph.

)

L]
1

y=fin)

ot———-0

FIGURE N6-22b

Measured from the lower limit of integration, 4, we have (with “f” as an abbreviation for *“f (¢)
dr’):

2 1 ] 1
F=p = Fi(6)= | f=-1
4 2 Ja

3 s

Fld)=

r4 5

1L Fioy= | f=1,

44 44

Fi(8)=

ré

F(12)= | f=2.

We note that, since F' (=) is linear on (2,4), F' is quadratic on (4,8); also, since F' ' is positive
and increasing on (2,3), the graph of ' is increasing and concave up on (4,6), while since F' " is
positive and decreasing on (3,4), the graph of ' is increasing but concave down on (6,8).
Finally, since F' 'is constant on (4,6), F'is linear on (8,12). (See Figure N6-22c.)

1
e, S

T

[g*]
1

a4

FIGURE N6-22¢

Chapter Summary

In this chapter, we have reviewed definite integrals, starting with the Fundamental Theorem of
Calculus. We’ve looked at techniques for evaluating definite integrals algebraically, numerically, and
graphically. We’ve reviewed Riemann sums, including the left, right, and midpoint approximations as
well as the trapezoid rule. We have also looked at the average value of a function.

This chapter also reviewed integrals based on parametrically defined functions, a BC Calculus



topic.
Practice Exercises

Part A. Directions: Answer these questions without using your calculator.

1. |'J (—x-11dr=
(A) 2
(B) 0
(©)-2

(D) -2
(E) -1

? 3x-1
2. | dr =
1 3x

(A)'—;
(B)1- ;‘mz
(C)1—1n2
(D) _%1113
)1

3. |'3

o

dt

b vA-r

(A1
(B) 2
O 4
(D) -1
(E) 2

o

4| -
(A) 2
(B) 2
(OF-
(D) 6

?
(E)



rl
7-| (2r— 1P d=
]
AL
( )4

(B) 6

© El

(D) 0
(E) 4

B[ S

(A) sz
B) 4
(©) 1
(D) ;
(E) <

9. |.- 3 dr

5 9+t

)X
(B)O



(o)
(D) -2

()

10. |’0‘ G
(A) 1 -1
B)l-e
(©) —f
D)1 - ?l
(E) —;

11. |’u‘ B
(A;) e—1
(B) L (e-1)
(C) i(e - 1)
(D) 2

(E) -1

12. |Dl1 sin 20 d0 =
(A) 2
(B) 1
(©) -1
!
(D) >
(E) 2

13. |

iz
3I-z

(A) —In 2
(B) i

(C) 2 x';z -1
(D) %m 2
(E) In 2



14. If we let x = 2 sin 0, then B

J1

(A) B | cos” B 48
Ja sinB
(B) B, L[}‘ia
Init qmﬂ
(C) 5 [ ms?Eﬁﬂ,ﬁ
lws sin®
(D) | Lmﬂ
N imﬂ

(E) none of these

]
o | cost@sin Q40 =

(4 -2
(B) L
(C) 1
(D) 2

(E)O
16. | ]n—{ dx =
(A) -
(B) 2 SE@=1)
(C) o
(D) 1
(E)e—1
17. |’l.r€*' dx =
(A) -1
(B)e+1
(C) 1
(D) e—1
(E) Elw— 1)

BC ONLY

cos A
la 1+2sinB

(A) In2

J4- 2% 4 1S equivalent to

X



(B) 5

© —% In2
(D) 5

(E) 1.2

19. | i

(A) 103
(B) -
(Omn -
(D) In3
(E)i- 3

20. |: o du

43 W -7 "
l
(A)-1
(B) _2

]

(©)2
(D) -1
1
(E) .
21. |’""4 oos 2 dr _

T ]sinz 2x
(A) =
(B) 1
©!
1
(D) ==
(E) -1

P o |
—X

22. ('

(A)e
B)2+e
©) 1

M)1+e

dr =



(E)e—1

23. |’0‘ Ll
(A) In 2

(B) e

©) 1+e
(D) —In 2
(E) In e+l l

J1+ 2 ax 1S €quivalent to

L sec 8 40
(B) JL sec’ 0 d0
(© J:: sec’ B 40
D) -

sec? @ tan 6 J9
Jxid

3
(E) | sec @ J0
J1

25. If the substitution ,, - ./, ;1 1s used, then | 1s equivalent to

Jo i'\ x+1

(A) | i

h u? -1
(B) | 2du

h u? -1
(C) 3 | it

Jo tw=1iu+ 1)
D dit
( ) |J u(u’ —1)
(E) 3 | i

Ty wlu—=1

26. The table above shows some values of continuous function f and its first derivative. Evaluate

fh}c?‘.x

()| )
11| 3

[E—
N
I
i

—
(\&}
|
(U8)

IOOIO\IAINIOIHIS-.-—~
—
()]
(\}

N
-




(A) —1/2

(B) —3/8

(O3

(D) 4

(E) none of these

27. Using M(3), we find that the approximate area of the shaded region below is
(A)9
(B) 19
(O) 36
(D) 38
(E) 54

28. The graph of a continuous function f passes through the points (4,2), (6,6), (7,5), and (10,8).
Using trapezoids, we estimate that |"'j it
M

(A) 25
(B) 30
(C) 32
(D) 33
(E) 41

29. The area of the shaded region in the figure is equal exactly to In 3. If we approximate In 3
using 1(2) and R(2), which inequality follows?



(A)_,,
(B) !
(c)_,, [2
[ Lacl

2
(E) — < | —.:ik‘ < l
& h x 2

n X
3

Ml X

S i

30. Let , _ |fL We estimate A using the L, R, and T approximations with n = 100 subintervals.

cos x dx.
WhjchisJil:Jrue?
(A)L<A<T<R
B)L<T<A<R
(OR<A<T<L
MDM)R<T<A<L

(E) The order cannot be determined.
31. |_JL x| dx=

A

(42

(B) 4

(o)

(©)?

(D) 5

(E) L

2

32. |—_‘I |x +1] dx=

A2

(4

B)’

(82

(©)5



(D) 1t
(E) 2

33. The average value of , _ [z _,= onits domain is
(A)2
(B) 4
(O) 2n
(D) 4n
(E) none of these

34. The average value of cos x over the interval Z == Z is
A) 2
i
(B) -
2
(O 32— %)

I

= -“

(D) o

(E) %

35. The average value of csc? x over the interval from - g to x = } is

(4) 25

|

(B) 2
©) EZs-n

T
(D) 12
(E) 33 -1y

Part B. Directions: Some of the following questions require the use of a graphing calculator.

36. Find the average value of function f, as shown in the graph below, on the interval [0,5].



+ 2,100 (5,100
1014

(A)2
(B) 4
(O
(D)7
(E) 8

37. The integral |”t J16— x? ay 8ives the area of
-4

(A) a circle of radius 4

(B) a semicircle of radius 4

(C) a quadrant of a circle of radius 4

(D) an ellipse whose semimajor axis is 4
(E) none of these

38. |: 11— cos 2a do =
(A) 0.25
(B) 0.414
(C) 1.000
(D) 1.414
(E) 2.000
Use the graph of function f, shown below, for questions 39—42.

24)

4__




39. In which of these intervals is there a value ¢ for which f'(¢) 1s the average value of f over the
interval [0,6]?

L. [0,2]

IL [2,4]

IIL. [4,6]

(A) Tonly

(B) I only

(C) 1T only

(D) I'and II only

(E) none of these, because fis not differentiable on [0,6]

40. |':f"r_ 3x)dx =
(A) =2
(B)-2
©)0
D)2
(E)2

41. Let g(x) = r__fr_f%m!r: then g (1)

(A) =3.
(B) =4.
(O)=6.
(D) =8.
(E) does not exist, because f'is not differentiable at x = 2.

i

&
B x)edx.
(1]

42. Let h(x) = x> — £ (x). Find

(A) 22
(B) 38
(C) 58
(D) 70
(E) 74

43. If f (x) is continuous on the closed interval [a,b], then there exists at least one number ¢, a <c
< b, such that |.#_.r'|_‘_1']| 4r 18 equal to



(A) fle)

bh—a
B) S (c)(b — a)
(O f(c)(b—a)

D T
( )l'i'-'—.:i'

(E) 1 (0)lf (0) = f(a)]

44. If f (x) is continuous on the closed interval [a,b] and £ 1s a constant, then |ﬂ kf(x) dx 18 €qual to

(A) k(b — a)

(B) k{1 (0) —f (a)]
(C) kF(b — a), where 4£0) _ ¢

dx
e
(D) k | fixydx

(E) [kFix) 7 °
2 ;

gi i .
45. = Yt +lde =

dar Jy

(A) -\-'IIJ + 1
(B) JE 41

3t

O %[r‘ FIA L +1-1)

(D) 3t yxt +1
(E) none of these

46. If ) = | (2 _ 2y dv. then F (1) is equal to

(A) —6u(2 — u?)?

(B) (2 —u?) 1

4 4
©) 2-ud)*-1
(D) (2 - u?)?

(E) 2u(2 — u?)?

ysint dt =

(A) -x-"sainrz
(B) 2x n-"sin =1
(@) %[ﬁiﬂ“ ¥ 1)

|-_'|':
47. 4 |
fray 4l



(D) x-"ﬁin =]
(E) 2x+/sin x°

» _ .
xydx 18 equivalent to

i
(A) 45 | i sin @ cos* 8 46

(B) 45 [

42

sin® @ cos 6 46
) [
( ) 36 | sin @ cos® 6 49

(D)

md
sin @ cos® 8 46
40

3
sin® @ cos @ 46
J0

49. A curve is defined by the parametrlc equations x = 2a tan 0 and y = 2a cos® 0, where 0 = 0 =
7. Then the definite integral | v2dy 18 equivalent to

(A) s |
(B) s |

Jxyd

reeny
(C) Bma® cost 0 40
40

D) sp |

ms;* o J0

cos? 8 48

cost 0 40

20

rEid
(E) Ama? | sin B cos® 8 20
Jo

BC ONLY

50. A curve is given parametrically by x =1 —cos t and y =¢ — sin ¢, where 0 = ¢ = n. Then |”"2 y dx

is equivalent to
ryz

(A) | sin #t —sin ) dt

J0

(B) LI . sin fH(f — sin ) d¥

(t—sin ¢) dt

sin Ht —sin ) dt

D) [

(E) | (t—sint) dt

]

BC ONLY

51. When |rL J1+ 2 dx 1s estimated using n = 5 subintervals of equal width, which is (are) true?
il



L 1) =|] W1+0.22 + 414047 + V14062 +J1+0.82 |

L 315)= (Vi 0.8 4+ 1403 441405 41407 +/1409° |- (02)
ML 75) = 2214+ 2V1+027 + 2314047 + 2014.0.6* +2V1+0.8° +2
(A) 1T only

(B) Il only

(C) I'and II only

(D) I'and III only
(E) I and III only

52. Find the value of x at which the function y = x? reaches its average value on the interval [0,10].
(A) 4.642
B)5
(C)5.313
(D) 5.774
(E) 7.071

q ¥ x<2

=li =7 on the interval 0 <x <5 is
ax, X = =&

53. The average value of )

(A) 8

(B) 9.2
(C) 16
(D) 23

(E) undefined because f'is not differentiable on this interval



CHAPTER 7 Applications of Integration to Geometry

Concepts and Skills

In this chapter, we will review using definite integrals to find areas and volumes; specifically
» area under a curve,

 area between two curves,

 volumes of solids with known cross sections,

* and volumes of solids of revolution (using disks and washers).

We’ll also review related BC topics, including

« arc length;

« arc lengths, areas, and volumes involving parametrically defined functions;

» and area and arc length for polar curves.

Also for BC Calculus students, we’ll review the topic of improper integrals, including
* recognizing when an integral is improper

* and techniques for determining whether an improper integral converges or diverges.

A. AREA

To find an area, we

(1) draw a sketch of the given region and of a typical element;
(2) write the expression for the area of a typical rectangle; and

(3) set up the definite integral that is the limit of the Riemann sum of n areas as n — .
)

A /J' =f(x) |

Ad = flx) Ay =-—1—

0 a Ax b

FIGURE N7-1
If / (x) 1s nonnegative on [a,b], as in Figure N7-1, then f (x;) Ax can be regarded as the area of a

typical approximating rectangle, and the area bounded by the x-axis, the curve, and the vertical lines x
=a and x = b is given exactly by

lim } flx) Ax and hence by ﬁ_f[.r;u dx.

See Questions 1,5, and 10 in the Practice Exercises at the end of this chapter.



If ' (x) changes sign on the interval (Figure N7-2), we find the values of x for which f (x) = 0 and

note where the function is positive, where it is negative. The total area bounded by the x-axis, the
curve, x = a, and x = b is here given exactly by

ad =

J:J"[.I'J dx — J: Jix) de+ J:j'[_n dx,

where we have taken into account that f (x;) Ax is a negative number 1f ¢ <x <d.

A

(%)
FIGURE N7-2
See Question 11 in the Practice Exercises.

If x 1s given as a function of y, say x = g(y), then (Figure N7-3) the subdivisions are made along

the y-axis, and the area bounded by the y-axis, the curve, and the horizontal lines y =a and y =5 is
given exactly by

L b
lim » 2(y) Ay = | 2(y) dy.

See Questions 3 and 13 in the Practice Exercises.

¥
-~

b

Ay

A
-~

Ad = gO)Ay =—

e x=g(¥

FIGURE N7-3
Al. Area Between Curves.

To find the area between curves (Figure N7—4), we first find where they intersect and then write the
area of a typical element for each region between the points of intersection. For the total area

bounded by the curves y = f(x) and y = g(x) between x =a and x = ¢, we see that, if they intersect at
[c,d], the total area is given exactly by

J;[j'[.r )= g(x)] dx + J: [2(x) — fix)] dx.



See Questions 4, 6, 7, and 9 in the Practice Exercises.

¥

-

Ad =(f() - plelhe <

y=fiz)

_udind) L

/ /
1 {a, B \\' {.I'*. ,l,"'._Ik W II
\ \

H“l"*m -.."-1., \ } (e g
i 0 \ \ / e Ad = { gl — ) e
N, \ L
\ \ [~
Ax '-." ff’" Ax _

A2. Using Symmetry.

X
[ / .
= BN o . (2.}
[E e (ed) /

[EMIEN]Y

FIGURE N7-4

Frequently we seek the area of a region that is symmetric to the x- or y-axis (or both) or to the origin.
In such cases it is almost always simpler to make use of this symmetry when integrating. For example:

» The area bounded by the x-axis and this arch of the cosine curve 1s symmetric to the y-axis; hence it
is twice the area of the region to the right of the y-axis.

LN

- /f \___f

» The area bounded by the parabola and the line is symmetric to the x-axis; hence it is twice the area

of the region above the x-axis.

* The ellipse is symmetric to both
first quadrant.

axes; hence the area inside the ellipse is four times the area in the



=h

Evaluating )10 ax Using a Graphing Calculator
The calculator is especially useful in evaluating definite integrals when the x-intercepts are not
easily determined otherwise or when an explicit antiderivative of /'is not obvious (or does not exist).

EXAMPLE 1

P
e dx.
1]

Evaluate J

SOLUTION: The integrand f (x) = ¢ has no easy antiderivative. The calculator estimates the
value of the integral to be 0.747 to three decimal places.

EXAMPLE 2
In Figure N7-5, find the area under /' (x) = —x* + x?> + x + 10 and above the x-axis.

(x,¥)
E = A4 = Fix)Ax

—10

FIGURE N7-5

q
SOLUTION: To get an accurate answer for the area 70 % e the calculator to find the two
intercepts, storing them as P and (O, and then evaluate the integral:

J‘f (- + 2"+ x + 10) dx = 32,832,

which is accurate to three decimal places.
Region Bounded by a Parametric Curve

If x and y are given parametrically, say by x =f(0), y = g(0), then to evaluate Ly ax e express y, dx,
and the limits @ and b in terms of 6 and d6, then integrate. Remember that we define dx to be x () db,



or 1(0) db.
See Questions 14, 15, and 44 in the Practice Exercises.

BC ONLY

Region Bounded by Polar Curve

— =p

QU +Ar B+ AB)

-

-= Fr, ]

FIGURE N7-6

To find the area 4 bounded by the polar curve » = (0) and the rays 6 =« and 0 = 3 (see Figure
N7-6), we divide the region into n sectors like the one shown. If we think of that element of area, AA4,

l 2
. . . . . . Ad == AD.
as a circular sector with radius » and central angle A0, its area is given by 2

Summing the areas of all such sectors yields the area of the entire region:

A :]i[IIZ%ffﬂﬁk :
bt 3

==

The expression above is a Riemann sum, equivalent to this definite integral:

A= J.EI,:IL e .

[

We have assumed above that / (0) = 0 on [a, B]. We must be careful in determining the limits o
and P in (2); often it helps to think of the required area as that “swept out” (or generated) as the radius
vector (from the pole) rotates from 0 = o to 6 = B. It is also useful to exploit symmetry of the curve
wherever possible.

The relations between rectangular and polar coordinates, some common polar equations, and
graphs of polar curves are given in the Appendix.

BC ONLY

EXAMPLE 3
Find the area inside both the circle » = 3 sin 0 and the cardioid » =1 + sin 0.
SOLUTION: Choosing an appropriate window, graph the curves on your calculator.
See Figure N7-7, where one half of the required area is shaded. Since 3 sin 6 = 1 + sin 6 when



n ir

9= % O % we see that the desired area is twice the sum of two parts: the area of the circle swept

n
out by 0 as it varies from 0 to s plus the area of the cardioid swept out by a radius vector as 0 varies

n
— o
froms

3| =

" Consequently

9, ree ] z ST
| =sin*6a6+ | —[l+ﬁinﬁj‘-:fﬁ‘= it
w3 we D il

A=2

4
2

.
r

FIGURE N7-7

See also Questions 46 and 47 in the Practice Exercises.

BC ONLY

EXAMPLE 4

Find the area enclosed by the cardioid » = 2(1 + cos 0).

SOLUTION: We graphed the cardioid on our calculator, using polar mode, in the window [—2,5] X
[—3,3] with 6 in [0,27].

r=11 + cos H)

FIGURE N7-8

Using the symmetry of the curve with respect to the polar axis we write



.ﬂ.:zij ride = 4] (1 + cos O d0

4 J:[] +2cos 8 +cos' @) d0

P i B
4J 1+2<;‘1:+5'E\‘+i+M b
0 2 2

g
=4[E'+251nﬁ+E+5m“E] = 6T.
5 @

i}

B. VOLUME

B1. Solids with Known Cross Sections

If the area of a cross section of a solid is known and can be expressed in terms of x, then the volume
of a typical slice, AV, can be determined. The volume of the solid is obtained, as usual, by letting the
number of slices increase indefinitely. In Figure N7-9, the slices are taken perpendicular to the x-axis
so that AV = A(x) Ax, where A(x) 1s the area of a cross section and Ax is the thickness of the slice.

£

"

f_“‘-,./"\,

—~— ] _ '___
et b
I .I'
] | #
i ! ¥
| | &
| :'I s
i #
C [
r

FIGURE N7-9

EXAMPLE 5

A solid has as its base the circle x> +y? =9, and all cross sections parallel to the y-axis are squares.
Find the volume of the solid.

SOLUTION:

J//”'

Ll'_[lﬁ

e

FIGURE N7-10

In Figure N7—-10 the element of volume is a square prism with sides of length 2y and thickness Ax,
SO



AV = (2y)? Ax = 4% Ax = 4(9 — x?) Ax.

Now, using symmetry across the y-axis, we find the volume of the solid:

]
=144,

e zj':4 (9-x?) dx =aj:(t:r-_12] dx :8[91 -‘Tj]

0

Questions 25, 26, and 27 in the Practice Exercises illustrate solids with known cross sections.

When the cross section of a solid 1s a circle, a typical slice is a disk. When the cross section is the
region between two circles, a typical slice is a washer—a disk with a hole in it. Both of these solids,
which are special cases of solids with known cross sections, can be generated by revolving a plane
area about a fixed line.

B2. Solids of Revolution

A solid of revolution 1s obtained when a plane region is revolved about a fixed line, called the axis
of revolution. There are two major methods of obtaining the volume of a solid of revolution “disks”
and “washers.”

DISKS

The region bounded by a curve and the x-axis is revolved around the x-axis, forming the solid of
revolution seen in Figure N7—-11. We think of the “rectangular” strip” of the region at the left as
generating the solid disk, AV (an element of the volume), shown at the right.

&Y

% 0 "]

FIGURE N7-11

This disk is a cylinder whose radius, 7, is the height of the rectangular strip, and whose height is
the thickness of the strip, Ax. Thus

b
AV=mnrAr ad V=n| ridr.

EXAMPLE 6
Find the volume of a sphere of radius 7.

SOLUTION: If the region bounded by a semicircle (with center O and radius r) and its diameter is
revolved about the x-axis, the solid of revolution obtained is a sphere of radius 7, as seen in Figure
N7-12.



(X

—r 0 s = : >

FIGURE N7-12

The volume AV of a typical disk is given by AV = r y* Ax. The equation of the circle is x* + )? =

72, To find the volume of the sphere, we form a Riemann sum whose limit as 7 becomes infinite is a
definite integral. Then,

k]

[
G, SE e x
i J Ky dx = :I'I:J (rP—x)di=m |:."2.1' — T} | -

- -

| =

EXAMPLE 7

Find the volume of the solid generated when the region bounded by y =x%, x =2, and y = 0 is rotated
about the line x =2 as shown in Figure N7—13.

¥
L (2.4)

(x,¥)

SOLUTION:
Disk.

r=2-2x

AV =2 — x)* Ay
=4
V= IEJ (2 —x)p dy
o
= TEJ‘*[E - 1*‘II'I_T P tf}‘
o
_ 8
=3
FIGURE N7-13

See Questions 18, 49, 51, 52, and 53 in the Practice Exercises for examples of finding volumes by



disks.

WASHERS

A washer 1s a disk with a hole in it. The volume may be regarded as the difference in the volumes of
two concentric disks. As an example, consider the volume of the solid of revolution formed when the
region bounded by the two curves seen in Figure N7—14 is revolved around the x-axis. We think of
the rectangular strip of the region at the left as generating the washer, AV (an element of the volume),

shown at the right.

YA

FIGURE N7-14

This washer’s height is the thickness of the rectangular strip, Ax. The washer is a disk whose
outer radius, R, is the distance to the top of the rectangular strip, with the disk of inner radius 7 (the

distance to the bottom of the strip) removed. Thus:

P
AV=mR*Ax-Rr Ac=nR-r)Ax and V= .‘rL (R2— r)dx.

EXAMPLE 8

Find the volume obtained when the region bounded by y = x? and y = 2x is revolved about the x-axis.

SOLUTION: The curves intersect at the origin and at (2, 4), as shown in Figure N7—15. Note that
we distinguish between the two functions by letting (x, y;) be a point on the line and (x, y,) be a

point on the parabola.

(2.4)

Washer.



R=y=2x
i

AV = ﬂ:[_‘l_-ll . _'I-‘f_:l Ax.
= J']:J.i (v =¥ dy

i}

= TEJ ((2XF (%) dx

i}

_ 6dm
s

FIGURE N7-15

EXAMPLE 9

Find the volume of the solid generated when the region bounded by y =x%, x =2, and y = 0 is rotated
about the y-axis, as shown in Figure N7-16.

¥
A

W

0 {20

SOLUTION:
Washer.

V= nr[ - dy

i}

&4
=1 4 — vy 2
*IJDH ¥) dy

= BT
FIGURE N7-16

See Questions 19, 21, 48, 50, and 54 in the Practice Exercises for examples in which washers are
regarded as the differences of two disks.

Occasionally when more than one method is satisfactory we try to use the most efficient. In the
answers to each question in the Practice Exercises, a sketch is shown and the type and volume of a
typical element are given. The required volume is then found by letting the number of elements
become infinite and applying the Fundamental Theorem.

SHELLS?



A cylindrical shell may be regarded as the outer skin of a cylinder. Its volume is the volume of the
rectangular solid formed when this skin is peeled from the cylinder and flattened out. As an example,
consider the volume of the solid of revolution formed when the region bounded by the two curves
seen in Figure N7-17 is revolved around the y-axis. We think of the rectangular strip of the region at
the left as generating the shell, AV (an element of the volume), shown at the right.

g A
1Jl |; |

|- Inr -|\\m
FIGURE N7-17
This shell’s radius, 7, is the distance from the axis to the rectangular strip, and its height is the
height of the rectangular strip, 2. When the shell is unwound and flattened to form a rectangular solid,

the length of the solid is the circumference of the cylinder, 2nr, its height is the height of the cylinder,
h, and its thickness is the thickness of the rectangular strip, Ax. Thus:

AV=2nrhAxr and V= E:rj- rh d.

iExamples 10-12 involve finding volumes by the method of shells. Although shells are not included in the Topic Outline, we include this

method here because it is often the most efficient (and elegant) way to find a volume. No question requiring shells will appear on the
AP exam.

EXAMPLE 10

Find the volume of the solid generated when the region bounded by y =x%, x =2, and y = 0 is rotated
about the line x = 2. See Figure N7-18.

¥

0 Ar 2m

SOLUTION:
About x = 2.
Shell.



=

A

T ]
munnn
p2 b= B
- I

[ am
IIEJ (2 -x)\xdx= o
(1]

(Note that we obtained the same result using disks in Example 7.)
FIGURE N7-18

EXAMPLE 11

The region bounded by y = 3x —x? and y = x is rotated about the y-axis. Find the volume of the solid
obtained. See Figure N7-19.

R N
Ax \"'.,'
\
\
AET \
(xy;) \
L]
|
A = X
i
SOLUTION:
About the y-axis.
Shell.
AV =2m2 — x)y Ax
= 2m(2 — x)x% Ax

L‘EJ (2-xde= —.
0 3

FIGURE N7-19

EXAMPLE 12

Find the volume obtained when the region bounded by y = x? and y = 2x is revolved about the x-axis.

SOLUTION: The curves intersect at the origin and at (2,4), as shown in Figure N7-20. Note that
we distinguish between the two functions by letting (x;, y) be a point on the line and (x,, y) be a

point on the parabola.



24)

ix.¥) (X3)

Shell.
r=y.
h=x —x,.
AV = 2my(x, — x,) Ap

o
L= ET[J ¥, —x)dy
|1}

]
_ 6dm
S

(Note that we obtained the same result using washers in Example 8.)
FIGURE N7-20

NOTE: In Examples 32 and 33 we consider finding the volumes of solids using shells that lead to
improper integrals.

BC ONLY

C. ARC LENGTH

If the derivative of a function y =/ (x) is continuous on the interval a = x = b, then the length s of the
arc of the curve of y = f (x) from the point where x = a to the point where x = b is given by

| i
.u:J _’l+[£J dx . (1)
LA ilx
Here a small piece of the curve is equal approximately to «1+(f(x)" Ax.

As Ax — 0, the sum of these pieces approaches the definite integral above.

If the derivative of the function x = g(y’) is continuous on the interval ¢ <y <d, then the length s of
the arc fromy = ¢ to y = d is given by

e : 2
3 :J G+ “r—l dy (2)
ik |II. Iﬂl:'l'

If a curve 1s defined parametrically by the equations x = x(¢) and y = (), if the derivatives of the
functions x(#) and y(#) are continuous on [¢,, #;], (and if the curve does not intersect itself), then the

length of the arc from#=1¢, to t =1, 1s given by




K :Jr_k I[ﬁ] +[£) ar . [-h
=\ dlt o

BC ONLY

The parenthetical clause above is equivalent to the requirement that the curve is traced out just once
as ¢ varies from?, to ¢,.

As indicated in Equation (4), formulas (1), (2), and (3) can all be derived easily from the very
simple relation
ds® = dx* + dy? (4)

and can be remembered by visualizing Figure N7-21.

FIGURE N7-21

EXAMPLE 13
Find the length, to three decimal places, of the arc of y = x*2 fromx =1 to x = 8.
dy 3 n ¢ I TR 9
SOLUTION: Here i = .50,by (1), s _J__ 1III|l +E.1 e =22 803

EXAMPLE 14

Find the length, to three decimal places, of the curve (x —2)? =4y fromy=0to y = 1.
dx
=gy

SOLUTION: Since x —2=2)%?and v = Equation (2) above yields

= [ 595y =268,

EXAMPLE 15
The position (x, y) of a particle at time ¢ is given parametrically byx =¢> and*~ 3 ~ " Find the

distance the particle travels betweenz =1 and ¢ = 2.
SOLUTION: We can use (4): ds? = dx? + dy?, where dx =2 t dt and dy = (> — 1) dt. Thus,

ds =+dr +1* —2¢* +1 dr, =0

s :J_‘ W+ 1) dr :J_‘ (F +1)dt

[ 2 10
=l
3 1 3

BC ONLY




EXAMPLE 16

kL

Find the length of the arc of y =In sec x fromx=0to *~ 3"
SOLUTION: & _secxtany o,

Foky SEC X

&

LT 2 ]
5 :j A1 +tan” x dx :J secx oy
1] i}

a3

=In(secx +tanx) .= In(2 ++3).

D. IMPROPER INTEGRALS

There are two classes of improper integrals:
(1) those in which at least one of the limits of integration is infinite (the interval is not bounded); and

(2) those of the type |7, where f'(x) has a point of discontinuity (becoming infinite) atx =c, a = ¢
= b (the function is not bounded).
Illustrations of improper integrals of class (1) are:

[~_ & ey re gl s
I : S > — 5 e ! .
Ju va+1 J| X J“"u‘+_1‘ J-.ﬁt dx
2 i 1
J l % (n a real number); J = X -
= X K
wee X a5 g
Jl:u (4+x)° " J B dx JJ e dx .
The following improper integrals are of class (2):
(! a1 dx .
J ﬁ J (n a real number); J dx _.
T L 1 1—x°
2 ] ac » :
J : X = {.II:'I. E J {f.'l. : J o =
s v —x° = | +sinx caxlx =1
[ Si an oy
J sin.x dx . L'- - inreal:a =c = b);
o Ccosx+1 (x —¢)

#1 dx e 124y
l . s J ) dr |
VX + X 2 V2 —x

Sometimes an improper integral belongs to both classes. Consider, for example,

el pee il Pl dx
Ju T Ju Nx+xt : J'—« N1-x

In each case, the interval is not bounded and the integrand fails to exist at some point on the interval

of integration.
Note, however, that each integral of the following set is proper:

;podxe e odx | pes dx |
J-. Nr+27 J o Ju cosx
1 =3 ﬂl:l
l]n (x+ 1) dx; J - :
et 41

The integrand, in every example above, is defined at each number on the interval of integration.



Improper integrals of class (1), where the interval is not bounded, are handled as limits:

P sk

J Hll{h—]mlJ Jix) dr,

L3 b a

where f'1s continuous on [a,b]. If the limit on the right exists, the improper integral on the left is said
to converge to this limit; if the limit on the right fails to exist, we say that the improper integral
diverges (or is meaningless).

The evaluation of improper integrals of class (1) 1s 1llustrated in Examples 17-23.

EXAMPLE 17

: Jmﬁ
Find /1 -
b

= lim - [L-1)=1. . .
S -t (!r lJ " The given integral thus converges to 1. In

SOLUTION: | 5= lim [ dv=tim —

dx
Figure N7-22 we interpret Jt +* as the area above the x-axis, under the curve of y = 3, and bounded

at the left by the vertical line x = 1.
A

FIGURE N7-22

BC ONLY

EXAMPLE 18

" dx S I P 1
J il hmJ dr = lim 24/ x
1 1 L

q_' bes

=lim2(+/b — 1) = 4o=
i bses

re dx

Then J — diverges.

1 ANX

It can be proved thatJI ¥ converges 1f p > 1 but diverges ifp = 1. Figure N7-23 g1ves a

2 for pP=

geometric interpretation in terms of area of J i Only the first-quadrant area under ° .T—‘

bounded at the left by x = 1 exists. Note that



= 4=,

=o gy :
J — =limlnx
1 b—p=a

FIGURE N7-23

EXAMPLE 19

-]

= dx . ¢ dr : 1 x
J :hmJ —— =lim = tan* =
a b Jy X+ 9 [ 3

= lim b tam! bk
12 +9 PR @i TE

*
Iul:

L | =
;=

<]

EXAMPLE 20

‘ml:?..‘l-l_' o —y et . __!,_ .
Lo=lmf e dy =lim " -D=1.

BC ONLY

EXAMPLE 21

#ii - . r : .
J dz _ _ l||t1Ju[;—1J_‘.[f; = lim __!
- [}

N |'|1 by—ea h—yp—ca —1

1]

]

= lim - [—l—'—):l.
bh——a h—=1

EXAMPLE 22

1]

i)
J = ix = J:Iim —gr

—=—0a

=lim —(1 - &") =4e=,
k h—ca

Thus, this improper integral diverges.

EXAMPLE 23

ey &
J cos x dx = lim sin x = lim sin b.
1] b o b

s Since this limit does not exist (sin b takes on values between —1 and 1

as b — x), it follows that the given integral diverges.



Note, however, that it does not become infinite; rather, it diverges by oscillation.

Improper integrals of class (2), where the function has an infinite discontinuity, are handled as
follows.

=k ah =k
. . {x) dbx, . . flx) dx lim | flx) dx.
To investigate J IO here fbecomes infinite at x = a, we define R e L 1S

given integral then converges or diverges according to whether the limit does or does not exist. If f

ah _ rk . )
has its discontinuity at b, we define J, fo0 dx g g Jim | 0 d again, the given integral converges or
diverges as the limit does or does not exist. When, finally, the integrand has a discontinuity at an
interior point ¢ on the interval of integration (a < ¢ < b), we let

."‘ " - .J'. - - "" n,
J fix) dx = ]][HJ fx) dx + hmJ fix) dx.
a k= m—

a M= Wy

Now the improper integral converges only if both of the limits exist. If either limit does not exist, the
improper integral diverges.

The evaluation of improper integrals of class (2) is illustrated in Examples 24-31.

BC ONLY

EXAMPLE 24

e

Find Ju VX
el e o1 L

St L i Gl A R —""!'=1.
SOLUTION: J.j a-.r—L”.’.Ele-‘ SRR R e

1
In Figure N7-24 we interpret this integral as the first-quadrant area under * = 7+ and to the left of x =
1.

] k |
FIGURE N7-24
EXAMPLE 25
= -
Does % & converge or diverge?
[rae, _ ealea e
SOLUTION: L= i =i =l [_“;..-:]""“

Therefore, this integral diverges.



[ dx

It can be shown that ) “(a>0) converges if p < 1 but diverges if p = 1. Figure N7-25 shows an

L dx 1
interpretation of Jc. + interms of areas where = 3 1, and 3. Only the first-quadrant area under °
to the left of x = 1 exists.

1
=

Note that
= 1
Jlﬁ— limlnx | =lim {(Inl—Ink)=+ ==
o k=0T * k="
BC ONLY
¥
A
_ > x
FIGURE N7-25
EXAMPLE 26
ez dy rk Yy 5 m
=t — ¥ = il Dy TE
J-:u‘-.4 HE_E-LEJD N 1_;}1}@-5]“13 0 BT L B = Fix
EXAMPLE 27
(T dr r
J o _11m J‘[’-—I}I [_d”_}ﬂl = 2—+'="='
This integral diverges.
EXAMPLE 28
v
—_— _]—‘-'Jrj -_]-.'!.'Jd.
J.;. (x— 1)*® x—u J.;. x ) 7 +J3|J£I:1J W ) &
k 2
= lim 3(x— 1) | +Lm3(x—1)"| =30+1+31-0)=
k—=r o  m=l =
BC ONLY

EXAMPLE 29



3 ak E
ix _ o I . 1
J.ﬂ"—‘ = hmJ dy 4 I|m J de=s lim —— |+ lim ——
= I i L Ll il X =3 sl X

Neither limit exists; the integral diverges.

NOTE: This example demonstrates how careful one must be to notice a discontinuity at an interior
point. If it were overlooked, one might proceed as follows:

a2 dX 1 |2 1
e =r=l = (,,+—|——-
Lo e X |-2 L

Since this integrand 1s positive except at zero, the result obtained is clearly meaningless. Figure N7—
26 shows the impossibility of this answer.

2

0

FIGURE N7-26

THE COMPARISON TEST

We can often determine whether an improper integral converges or diverges by comparing it to a
known integral on the same interval. This method is especially helpful when it is not easy to actually
evaluate the appropriate limit by finding an antiderivative for the integrand. There are two cases.

(xy dv .

(1) Convergence. If on the interval of integration f (x) < g(x) and J 1s known to converge, then

J W also converges. For example consider Ju 1™ We know that J, o converges. Since
_r‘l+1 < the improper integral J L X +1 " must also converge.

(2) Divergence. If on the interval of integratiorll f(x) >g(x) and J“r"l'r"' “Ir"" is known to diverge, then
J.-";“” N also diverges. For example, consider J Htk ) \I7Ve know that J dlverges Since sec x >
1, it follows that wx“ 25 " hence the improper integral J HL: il must also diverge.

BC ONLY
EXAMPLE 30

faa

Determine whether or not J-. ¢ d¢ converges.

SOLUTION: Although there 1s no elementary function whose derivative is e_)‘2 we can still show
that the given improper integral converges. Note, first, thatif x = 1 then x? = x, so that —x?> = —x and

_2
e ™ =e *. Furthermore,



= : = |
e'dy = lim — ” ==
k=5

fae ak k
1 i &

J__ e*dx= lim J

F— -

. i 1x I—Az < gt 1
Since J, € converges and * e ],

2

T dx converges by the Comparison Test.

EXAMPLE 31

fima dx
Show that Ju Vr+x* converges.

e DX P/ | pu X

SOLUTION: Ju x-';.l + x* =Ju -.;'I.l +x +J-_ \.\.':.'L +x ;

we will use the Comparison Test to show that both of these integrals converge. Since if 0 <x = 1,

then x +x* > x and vx +* > x . it follows that
LR

Jx +x* ) Vx

J i J elx
We know that % +x converges; hence % +x +x* must converge.

ND<x=1).

= o]t

Further, ifx = 1 then x + x*= x* and vx +x* = Vax* =x. g0
| |

- )
T = o (x =1}
Jx +x x*

el | r= x
dx
We know that ) + x*  converges, hence J‘-

JVx+x* also converges.
J""“ el
Thus the given integral, /= +x+x* converges.

NOTE: Examples 32 and 33 involve finding the volumes of solids. Both lead to improper integrals.

BC ONLY

EXAMPLE 32

Find the volume, if it exists, of the solid generated by rotating the region in the first quadrant
1

bounded above by ¥~ 3 at the left by x = 1, and below by y = 0, about the x-axis.



o (1,0 Ax

FIGURE N7-27
SOLUTION:
About the x-axis.

Disk.
AV =my Ax,

k= IEJ.__N Ydx= ﬂ:J__ # dx

. e 1
= ﬂZ]imJ — dx=T.
=iy x

BC ONLY

EXAMPLE 333
Find the volume, if it exists, of the solid generated by rotating the region in the first quadrant

1
bounded above by * = ¥ at the left by x = 1, and below by y = 0, about the y-axis.



Y

0 (1,0) Ax

FIGURE N7-28
SOLUTION:
About the y-axis.
Shell.
AV =2nxy Ax =2n Ax.

Note that 2%J, diverges to infinity.

Chapter Summary

In this chapter, we have reviewed how to find areas and volumes using definite integrals. We’ve
looked at area under a curve and between two curves. We’ve reviewed volumes of solids with
known cross sections, and the methods of disks and washers for finding volumes of solids of

revolution.

For BC Calculus students, we’ve applied these techniques to parametrically defined functions and
polar curves and added methods for finding lengths of arc. We’ve also looked at improper integrals
and tests for determining convergence and divergence.

No question requiring the use of shells will appear on the AP exam.

Practice Exercises

Part A. Directions: Answer these questions without using your calculator.

AREA
In Questions 1-11, choose the alternative that gives the area of the region whose boundaries are
given.



1. The curve of y =x%,y=0,x=—1, and x = 2.
T
(A) 3
4
(B) 3
©)3
(D)5

(E) none of these

2. The parabola y = x> — 3 and the line y = 1.
3
(A) 3

(B) 32
32

(C) 3
16

D) 3

(E) none of these

3. The curve of x = y*> — 1 and the y-axis.

2
(A) 3

=
N’
b | = a| oo |

CHNG

(E) none of these

4. The parabola y* = x and the line x + y = 2.



L 4
5. The curve of * ~ ¥ +2 the x-axis, and the vertical lines x =—2 and x = 2.

(A) 0

T

(B) 2
(O) 2n

(D) n

(E) none of these

6. The parabolas x = > — 5y and x = 3y — 2.

32

(A3
139

(B) &
B

©)F
128

(D) 3

(E) none of these

a4

7. The curve of ¥~ T and x + y = 3.

8. In the first quadrant, bounded below by the x-axis and above by the curves of y = sinx and y =
COS X.

(A)2-+2
(B) 2++2
(©)2
(D) 2
(E) 242



9. Bounded above by the curve y = sin x and below by y = cos x from*~ % "~ %
(A) 22

(B) 72

l
(C) 242
(D) 242 -1
(E) 2 W2 +1)

10. The curve y = cot x, the line * ~ % * and the x-axis.

(E) 2

11. The curve of y = x> — 2x? — 3x and the x-axis.

28

(A) 3
79

(B) 6
45

(C) 4
71

(D) 6

(E) none of these

12. The total area bounded by the cubic x = y® — y and the line x = 3y is equal to

(A) 4
L6
(B) 3

(©) 8
32

(D) 3
(E) 16

13. The area bounded by y = €*, y = 2, and the y-axis is equal to
(A)3-—e



(B) e — 1

(C) 2 +1
D)2In2-1
(E)21n2-3

14. The area enclosed by the ellipse with parametric equations x =2 cos 6 and y = 3 sin 6 equals
(A) 61
S
(B) 2
(O) 3n
3
(D)2

(E) none of these

BC ONLY

15. The area enclosed by one arch of the cycloid with parametric equations x =0 —sin§ and y = 1
—cos 0 equals
an

(A) 2
(B) 3w
(O) 2n
(D) 67
(E) none of these

BC ONLY

16. The area enclosed by the curve y? = x(1 —x) is given by

(A) %)

v+/1— x dx

Nx—xtdx

B)

i ody

ol
MD)=n
(E) 2n

BC ONLY




17. The figure below shows part of the curve of y = x> and a rectangle with two vertices at (0,0)
and (c, 0). What is the ratio of the area of the rectangle to the shaded part of it above the cubic?

¥

A

LURA]] {efl)

(A) 3:4
(B) 5:4
(C) 4:3
(D) 3:1
(E) 2:1

VOLUME

In Questions 18-24 the region whose boundaries are given is rotated about the line indicated.
Choose the alternative that gives the volume of the solid generated.

18. y =x% x =2, and y = 0; about the x-axis.
B
(A) 3
(B) 8n
8T
(C) 3

28w

19.y= X2, x=2, and y = 0; about the y-axis.
167
(A) 3
(B) 4n
2n
©) s
(D) 8n



Sh

()3

20. The first quadrant region bounded by y = x2, the y-axis, and y = 4; about the y-axis.
(A) 8n

(B) 4n
Ba

©) 3
IZm

(D) 3
L6

(E) 5

21.y =x? and y = 4; about the x-axis.
I.“ﬂ"[
(A) 5
si2n
(B) 15
2561
€ 5
1287

(D) 5
(E) none of these

22.y =x”and y = 4; about the line y = 4.

256m
(A) 15
256m
(B) 5
S12m
©) >
512m
) =
64T

(E) 3
23. An arch of y = sin x and the x-axis; about the x-axis.

(A)2 "[ -3)

LJ|""

(B)’
©

n
4



(D) =
(E) n(m — 1)

24. A trapezoid with vertices at (2,0), (2, 2), (4,0), and (4,4); about the x-axis.
561
(A) 3

1287

(B) 3
92n
©) 3

[12m

(D) 3
(E) none of these

25. The base of a solid is a circle of radius a, and every plane section perpendicular to a diameter
is a square. The solid has volume

8 a’
(A) 3
(B) 2na>
(C) 4na?

Ea‘"
D) 3

o H

(E) T i

26. The base of a solid is the region bounded by the parabola x*> = 8y and the line y = 4, and each
plane section perpendicular to the y-axis is an equilateral triangle. The volume of the solid is

6443

(A) 3

(B) 6443

(C) 3243

(D) 32

(E) none of these

27. The base of a solid is the region bounded by y = e, the x-axis, the y-axis, and the line x = 1.
Each cross section perpendicular to the x-axis is a square. The volume of the solid is

(A) 2

(B) 2 — 1

I l

© &



et —1

D) 2
| |
(E) E[l ‘?]
ARC LENGTH

28. The length of the arc of the curve y? = x> cut off by the line x = 4 is

4 i
—(104/10 =1
H iz
(B) E[lﬂ" -1)
E[lﬂ.!-'i _ |.__|

(C) 27

16 ;
—10+10
(D) 27

(E) none of these

BC ONLY

29. The length of the arc of y =Incos x from™*~ % “*~ 3

A3 +2
In—

(A) V2 +1

(B) 2

(C) In(1+ B -2
(D) v3 -2

In(+/3 +2)

(E) In(+2 +1)

equals

BC ONLY

IMPROPER INTEGRALS

s

30. /o
Al

e de =

l
(B) ¢
©) -1

1
(D) .



(E) none of these

’Eﬂ_

31. L w
(A) 1
1
(B) ¢
1
© ¢
D) -1
(E) none of these

(B) 2
O3
D)1
(E) none of these

rd -Li'l.'
. (x —=3py°

33. )
(A) 6
6
(B) 5
©)3
(D)0
(E) none of these

34.
(A)2
(B) -2
©0

~

dx

(x — 3¢

(D)3
(E) none of these



in X

35. JU A1 —cos x
(A) 2

dx

| b

(B) 3
)2

l
(D) 2

(E) none of these

BC ONLY

In Questions 3640, choose the alternative that gives the area, if it exists, of the region described.

X

36. In the first quadrant under the curve of y = e .
A1
(B) e
1
(O
(D) 2
(E) none of these

37. In the first quadrant under the curve of y = xe ™.
(A) 2

(B)«
1
(€) 2
1
(D) 2e
(E) none of these

38. In the first quadrant above y = 1, between the y-axis and the curve xy = 1.
Al
(B) 2

l

(O) 2
(D) 4
(E) none of these



4
39. Between the curve * ~ 1+ and the x-axis.

(A) 2n

(B) 4n

(C) 8n

(D) n

(E) none of these

4

40. Above the x-axis, between the curve * = +1- = and its asymptotes.
I

(A) 2
(B) m

(O)2n

(D) 4n

(E) none of these

In Questions 41 and 42, choose the alternative that gives the volume, if it exists, of the solid
generated.

| —

41. "~ T atthe left by x = 1, and below by y = 0; about the x-axis.

d

(A) 2

(B) m

(O)2n

(D) 4n

(E) none of these

| =

42. The first-quadrant region under y = e * ; about the x-axis.
I

(A) 2

(B) n

(O) 2n

(D) 4n

(E) none of these

Part B. Directions: Some of the following questions require the use of a graphing calculator.

AREA



In Questions 43—47, choose the alternative that gives the area of the region whose boundaries are
given.

43. The area bounded by the parabola y = 2 — x? and the line y = x — 4 is given by

r3
(6 —x—x%) dx

) -
- (24 x4+ dx
®) L.
‘ (6 —x—x2) dx
(©)
3 i[* e | wma
(D) i X°) x4+ J_-!' x) X

(E) none of these

BC ONLY

{010

(1R

44. The area enclosed by the hypocycloid with parametric equations x = cos> ¢ and y = sin® ¢ as
shown in the above diagram is

ro

(A) 3 b sin*f cos® 1 dr
34 - sin? 1 o
(B) L sin? ¢ ot
i
— sin® f o
(C) Jap
run
(D) 12 I sin® r cos? 1dr

(E) none of these

BC ONLY




45. Suppose the following is a table of ordinates for y = f (x), given that f is continuous on [1, 5]:
x | 1 2 3
y ‘ 1.62 4.15 7.5

If a trapezoid sum in used, with n = 4, then the area under the curve, fromx = 1 to x = 5, is equal, to
two decimal places, to

(A) 6.88

(B) 13.76
(C) 20.30
(D) 25.73
(E) 27.53

46. The area A enclosed by the four-leaved rose » = cos 20 equals, to three decimal places,
(A) 0.785
(B) 1.571
(0) 2.071
(D) 3.142
(E) 6.283

BC ONLY

47. The area bounded by the small loop of the limacon» =1 — 2 sin 0 is given by the definite

integral
& [lr_l _2sin a;.} 46
(A) s 12
(1-2sin 0 do
(B) s
-
(1—2sn &) J6
(©) )=
o I_ 2 I I_ 2
—(1 —2s5in®) | g8 + —(1 —2sin®) | a8
D . L2 Jows 12
x
(1—-2sin8)?J6
(E) s
BC ONLY
VOLUME

In Questions 48—54 the region whose boundaries are given is rotated about the line indicated.
Choose the alternative that gives the volume of the solid generated.



48. y = x? and y = 4; about the line y = —1.

4
dr | v+ 1) \-'I_T dy

) "

(B) 2m I: (4 — x5 dx

(16 —x%) dx

©) "L

2

(24 — 2x — xY) o

2

(D)
(E) none of these

Jo

49. y = 3x — x? and y = 0; about the x-axis.

]
T | (O 4 xY) dx
A) " b
i
T (3 —xhtdx
®) "L
(43
) (3 —x%dx
© "
3
(D) 2n oY x';{} —4y dy

(a4

(E) T ¥y

50. y = 3x —x? and y = x; about the x-axis.

11

(A) T an[[:h —x)? — x?) odx

b L‘ (O? — B?) e
B) "

[(3x — x¥)?— x7] dx

(©) "k

[(3x — %) — x¥] dx

(D) "

ri
o

3
(2x — x*) dx

(E) ")

51.y=Inx, y=0, x = e; about the line x = e.

| (e—x)Inx dx
A"

i § : (e — ")y
(B) Ju E

2m | (e —1nx) dx

© 7).



re

oy L (e — 2™ + &) dy

(D)
(E) none of these

52. The curve with parametric equations x = tan 0, y = cos? 0, and the lines x =0, x = 1, and y = 0;
about the x-axis.

rEi4

cost 040

i}

A"

B) "

4

© "

"

cos? B sin B 40

cos? 840

- cos® 640

(i}

D) "
(E) T r--:_‘t':lﬂ" a8

BC ONLY

53. A sphere of radius 7 is divided into two parts by a plane at distance # (0 </ <r) from the
center. The volume of the smaller part equals

m #
—(2F + 1 =3 h)
(A) 3 :

E
(B) 3

e
(C)Rm +3_,.

m =
—(2F +3rh—-K)

(D) 3
(E) none of these

(3 —h*)

-1

i

CHALLENGE

54. If the curves of ' (x) and g(x) intersect for x = a and x = b and if /' (x) > g(x) > 0 for all x on (a,
b), then the volume obtained when the region bounded by the curves is rotated about the x-axis is
equal to

re (&

T A de— | g¥x)dx
(A) |
b
m| [fix)— glx)] dx
B)
b
2 | x[f(x) — g(x)] dx

©) "L



D) ",
(E) none of these

[FHx) — g dx

ARC LENGTH

X =t—sint

55. The length of one arch of the cycloid v =1-cost equals

a
/1 —cost dt

(A) b
(B) rix _.I‘::ﬁ dt
0 4
( C) J: -\-"3 — 2008t ot
(D) fum N2 —2cost dt
= 1 —cost
@2
BC ONLY

56. The length of the arc of the parabola 4x = y? cut off by the line x = 2 is given by the integral

(A) -

Jax© +1dx

A+ dy

|
B)2h
(C) |r W+ xdy

InZ

Ji 4+ dy

(D)
(E) none of these

BC ONLY

57. The length of x = ¢’ cos t, y = e sint from¢ =2 to ¢ = 3 is equal to
(A) 26 e 1
(B) +2(e" - ¢)
(C) 2(e’ — &%)
(D) €3 (cos 3 +sin 3) — €2 (cos 2 + sin 2)
(E) none of these



CHALLENGE

IMPROPER INTEGRALS

58. Which one of the following is an improper integral?

dx

( A) L Jxa]

|r" dx
B) = 147
? xdx
(C) o 1—x
(=2 sin x dx

(D) L cos X
(E) none of these

59. Which one of the following improper integrals diverges?
(= dx
[ dx

o F X

(A)
(B)

©). =

(D) ,|--_ ak
(E) none of these

60. Which one of the following improper integrals diverges?
[~ dx
(A) o 1+2°
ri d__l
(B) Ia l_'._:!-

i oz

dx
(C) lo x* +1

dx

o &' +2
=

(D)
dx

(E) ).




CHAPTER 8 Further Applications of Integration

| % . .. " . b " . . . . b b

Concepts and Skills

In this chapter, we will review many ways that definite integrals can be used to solve a variety of
problems, notably distance traveled by an object in motion along a line. We’ll see that in a variety
of settings accumulated change can be expressed as a Riemann sum whose limit becomes an
integral of the rate of change.

For BC students, we’ll expand our discussion of motion to include objects in motion in a plane
along a parametrically defined curve.

A. MOTION ALONG A STRAIGHT LINE

If the motion of a particle P along a straight line is given by the equations = F(z), where s is the
distance at time ¢ of P from a fixed point on the line, then the velocity and acceleration of P at time ¢
are given respectively by

s dv  d%
=— and 4a=—=—.
dt dt dr”

This topic was discussed as an application of differentiation. Here we will apply integration to find
velocity from acceleration and distance from velocity.

Distance

If we know that particle P has velocity v(¢), where v is a continuous function, then the distance
traveled by the particle during the time interval from ¢ = a to ¢ = b 1s the definite integral of its speed:

rk
| [vie)| dr- (1)

Ifv(¢) = 0 for all £ on [a, b] (i.e., P moves only in the positive direction), then (1) is equivalent to
|' v dr. Similarly, 1fv(¢) = 0 on [a b] (P moves only in the negative direction), then (1) yields

ok

e dr. If V() changes sign on [a, b] (i.e., the direction of motion changes), then (1) gives the total

distance traveled. Suppose, for example, that the situation is as follows:

A== Wit = 0
c=t=d i) = 0;
d=t=b vit) = 0.

Then the total distance traveled during the time interval from ¢ =a to t = b is exactly

re d b
Vi) dt — | ViE) dtf + | V() dt.
Ja

4a E




The displacement or net change in the particle’s position from¢ =a tot =b is equal, by the
Fundamental Theorem of Calculus (FTC), to

v dt

EXAMPLE 1

If a body moves along a straight line with velocity v = £ + 3¢, find the distance traveled between ¢
=1and t=4.

SOLUTION: [" *+3tyar=( o’ | | = 207,

L

Note that v> 0 for all £ on[1, 4].

EXAMPLE 2

A particle moves along the x-axis so that its velocity at time ¢ is given by v(¢) = 6¢2 — 18¢ + 12.
(a) Find the total distance covered between ¢ =0 and ¢ = 4.

(b) Find the displacement of the particle fromz =0 to t = 4.

SOLUTIONS:

(a) Since v(¢) = 61> — 18t + 12 = 6(¢ — 1)(t — 2), we see that:

if =1, then v =0;
ifl <t<2, then v < 0;
if 2 < §, then v > 0.

Thus, the total distance covered betweens=0and 1 =4 is

rl r2 4

Wy di— | viyde+ | vty 3

40 J1

When we replace v(¢) by 612 — 18¢ + 12 in (2) and evaluate, we obtain 34 units for the total
distance covered betweent = 0 and ¢t = 4. This can also be verified on your calculator by
evaluating

rd
| ()| dt .
S0

This example is the same as Example 26, in which the required distance is computed by another
method.

(b) To find the displacement of the particle from ¢ =0 to ¢ = 4, we use the FTC, evaluating

d rd
| vit) dt = | (612 — 181+ 12) 4.
20 A0

i

=128 — 144 + 48 =32,

= (28— 9%+ 121)
a



This is the net change in position from ¢ = 0 to ¢ = 4, sometimes referred to as “position shift.” Here
it indicates the particle ended up 32 units to the right of its starting point.

EXAMPLE 3

The acceleration of an object moving on a line 1s given at time ¢ by a = sin ¢; when ¢ = 0 the object
Sn

1s at rest. Find the distance s it travels from7=0to ;- :

SOLUTION: Since , - f;_? = % _ sin +. it follows that
= T

"

= |sint 4t Wi =—cost+ C.

vt = —

Also, v(0) = 0 yields C = 1. Thus v(¢#) = 1 — cos ¢; and since cos ¢ = 1 for all # we see that v(¢) =

for all ¢. Thus, the distance traveled 1s

swe S5m0 |

rSiE
] (i 2

(1l —cost)dt =(t—sint)

40

B. MOTION ALONG A PLANE CURVE

BC ONLY
In Chapter 4, §K, it was pointed out that, if the motion of a particle P along a curve is given
parametrically by the equations x = x(¢) and y = y(¢), then at time ¢ the position vector R, the velocity

vector v, and the acceleration vector a are:

R =ix. v

/ dvy i

Todr  \dt drf

_d*R _dv _| .:FI -f!"l'.

T odt T odt T\t dr ={ax, ).
The components in the horizontal and vertical directions of R, v, and a are given respectively by the
coefficients of'i and j in the corresponding vector. The slope of v is & o . 1ts magnitude,

hr\. |

is the speed of the particle, and the velocity vector is tangent to the path. The slope of a 1s f: _ f; * The

distance the particle travels from time ¢, to #,, is given by

_|.rl-|"|“i!_ | \d(ih ﬂr; | dt



How integration may be used to solve problems of curvilinear motion is illustrated in the
following examples.

BC ONLY

EXAMPLE 4

Suppose a projectile 1s launched from the origin at an angle of elevation a and initial velocity v,.
Find the parametric equations for its flight path.

SOLUTION: We have the following initial conditions:

Position: x(0) = 0; y(0) = 0.

Velocity: %[{}] = ¥, cO5 O; % (0) = v, sin O

We start with equations representing acceleration due to gravity and integrate each twice,
determining the constants as shown:

PP e d*x { d*y
Acceleration: ——=U; —=—pg;
dr dr* g
ax dy
L EREO —=—pt+ L}
g T
v eind=C;
| b -
x = (v, cos a)t + C; y= ——gt' + (V. sin o)t + Oy
x(0)= 0 yields C, =0. ¥ =0 yields C, = 0.
Finally, then, |
x = (v; cos Oi)t: § = —Egrz + (v, sin O0)1.

If desired, ¢ can be eliminated from this pair of equations to yield a parabola in rectangular
coordinates.

EXAMPLE 5
A particle P(x, y) moves along a curve so that
BE - Sl @ _1a any time ¢ = 0.
dt dt x

At¢t=0,x=1 and y = 0. Find the parametric equations of motion.

SOLUTION: Since £ =2 4, we integrate to get,./; = 2 4+ ¢ and use

WX

x(0) =1 to find that C = 2. Therefore, ./ -, , ; and
x=(t+ 1) (1)

1
J 7 ot
Thet ¥ =-L=. 1 by (1), sody= —% __ and y=—+C". (2)
@t x (i) : it +1° r+1

Since y(0) = 0, this yields C "= 1, and so (2) becomes




Thus the parametric equations are

x=1(t+1) and y=—
F+1

BC ONLY

EXAMPLE 6

The particle in Example 5 is in motion for 1 second, 0 <¢ < 1. Find its position, velocity, speed,
and acceleration at = 1 and the distance it traveled.
SOLUTION: In Example 5 we derived the result p) = fILH 1) If?| the parametric representation

of the particle’s position. Hence its positionat # =1 is p(1)= (4.1].

From P(¢) we write the velocity vector:

fde dyvy { L
v=i—, ——={2{t+ 1), =
Wt dt ] ( (t+ 1)/

Hence, at ¢ = 1 the particle’s velocity is v = (4, %}_

Speed is the magnitude of the velocity vector, so after 1 second the particle’s speed is
|¥|= "I||I||4? + |—er = 4,008 units/sec.

The particle’s acceleration vector at 7 =1 is

- 4

T Sy f f
__Jd%x i T 4 o

- > % 5 = &= r J=\
I"L{f." drl N @+ 1Y)

1\
4 ,':I

On the interval 0 <¢ <1 the distance traveled by the particle is

3

2 2 | 2
1 fax f-ff_‘l‘\ = It Tate P ! = ;
) \.'[.a:!r | + @ J dat= [ \I[ELH”] +[m} dt =3.057 units.

/ A,

BC ONLY

EXAMPLE 7

A particle P(x, y) moves along a curve so that its acceleration is given by

3
.

f
a=(—4cos 2, —2sint) |_£g;§£
o 2)



when ¢ = 0, the particle is at (1, 0) with TT; St % =
(a) Find the position vector R at any time ¢.

(b) Find a Cartesian equation for the path of the particle, and identify the conic on which P
moves.

SOLUTIONS:

(@) v = (-2 sin 2t + ¢,. 2 cos t + ¢.), and since v = 0,2y whent = 0, it follows thatc; =c¢, = 0. So
v = {2 sin 2. 2 cos #). AlSO R = {cos 2r + ¢, 2sint+¢,); and since R =(1,0) when # = 0, we see that c; =
¢4 = 0. Finally, then,

R ={cos 2t, 2 sint).

(b) From (a) the parametric equations of motion are
X =cos2t,y=2sint.
By a trigonometric identity,

x=1-2s5n*r=1-

L]
b =,

P travels in a counterclockwise direction along part of a parabola that has its vertex at (1, 0) and
opens to the left. The path of the particle is sketched in Figure N8—1; note that -1 <x <1, 2 <y <
2.

-1.2)

T J.'=Efl.‘: =I
f=? ¥=-E8NTr

0 {10
=0

FIGURE N8-1

C. OTHER APPLICATIONS OF RIEMANN SUMS

We will continue to set up Riemann sums to calculate a variety of quantities using definite integrals.
In many of these examples, we will partition into #» equal subintervals a given interval (or region or
ring or solid or the like), approximate the quantity over each small subinterval (and assume it is
constant there), then add up all these small quantities. Finally, as n — oo we will replace the sum by



its equivalent definite integral to calculate the desired quantity.

EXAMPLE 8

Amount of Leaking Water. Water 1s draining from a cylindrical pipe of radius 2 inches. At ¢
seconds the water is flowing out with velocity v(¢) inches per second. Express the amount of water
that has drained from the pipe in the first 3 minutes as a definite integral in terms of v(z).

SOLUTION: We first express 3 min as 180 sec. We then partition [0,180] into »n subintervals
each of length Az. In At sec, approximately v(¢) At in. of water have drained from the pipe. Since a

typical cross section has area 4m in.? (Figure N8—2), in A¢ sec the amount that has drained is

(47 in.2) (v(¢) in./sec)(At sec) = 4nv(t) At in.>.
The sum of the n amounts of water that drain from the pipe, as n — oo, is J:%m-[:}. dr; the units are
cubic inches (in.%).

—Aren =4 in.?

Htight: v () At in.
FIGURE N8-2

EXAMPLE 9
Traffic: Total Number of Cars. The density of cars (the number of cars per mile) on 10 miles of
the highway approaching Disney World is equal approximately to f (x) = 200[4 — In (2x + 3)],
where x is the distance in miles from the Disney World entrance. Find the total number of cars on
this 10-mile stretch.

SOLUTION: Partition the interval [0, 10] into » equal subintervals each of width Ax. In each
subinterval the number of cars equals approximately the density of cars f'(x) times Ax, where f (x)
=200[4 — In (2x + 3)]. When we add n of these products we get Y flxax, which is a Riemann sum.

As n — oo (or as Ax — 0), the Riemann sum approaches the definite integral

Le]

| [2004 — In (2x+ 3)] dx,
40

which, using our calculator, is approximately equal to 3118 cars.

EXAMPLE 10

Resource Depletion. In 2000 the yearly world petroleum consumption was about 77 billion
barrels and the yearly exponential rate of increase in use was 2%. How many years after 2000 are
the world’s total estimated oil reserves of 1020 billion barrels likely to last?

SOLUTION: Given the yearly consumption in 2000 and the projected exponential rate of increase



in consumption, the anticipated consumption during the Arth part of a year (after 2000) is 7729
At billion barrels. The total to be used during the following N

years is therefore " 77,0 4 This integral must equal 1020 billion barrels.

Ja

We must now solve this equation for N. We get

.
3850e™™ | = 1020,
1]

3RS0(2" W _ 1) = 1020,
liel} s 1020
£ =i 3850°
e, 102
I‘E'D —]+ﬁ.
r‘rHE'\.—]n|]+m”
102
r:rnz] (l Tags) = I

Either more oil (or alternative sources of energy) must be found, or the world consumption must be
sharply reduced.

D. FTC: DEFINITE INTEGRAL OF A RATE IS NET CHANGE

If /'is continuous and f) = £ then we know from the FTC that
dr

|'__ﬁ.‘.rj dt = F(b) - F(a).

The definite integral of the rate of change of a quantity over an interval is the net change or net

accumulation of the quantity over that interval. Thus, F(b) — F(a) is the net change in F(¢) as t varies
froma to b.

We’ve already illustrated this principle many times. Here are more examples.

EXAMPLE 11

Let G(¢) be the rate of growth of a population at time ¢#. Then the increase in population between
times ¢ =a and ¢t =b is given by |’ G(n ar. The population may consist of people, deer, fruit flies,

sa

bacteria, and so on.

EXAMPLE 12
Suppose an epidemic is spreading through a city at the rate of / (#) new people per week. Then

4
| Sty dt
o



is the number of people who will become infected during the next 4 weeks (or the total change in
the number of infected people).

EXAMPLE 13

Suppose a rumor is spreading at the rate of £ (#) = 100e %% new people per day. Find the number of
people who hear the rumor during the 5th and 6th days.

SOLUTION: |““ 100e 0% gt = 74 people.

If we let F (¢) =f (¢), then the integral above is the net change in F(¢) from¢ =4 to ¢t = 6, or the
number of people who hear the rumor from the beginning of the 5th day to the end of the 6th.

EXAMPLE 14

Economists define the marginal cost of production as the additional cost of producing one
additional unit at a specified production level. It can be shown that if C(x) 1s the cost at production
level x then C (x) 1s the marginal cost at that production level.

If the marginal cost, in dollars, is L per unit when x units are being produced, find the change in
X
cost when production increases from 50 to 75 units.

SOLUTION:

[75

L-:J'.‘-.‘ = §0.41.

/s X

We replace “cost” above by “revenue” or “profit” to find total change in these quantities.

EXAMPLE 15

After ¢ minutes, a chemical is decomposing at the rate of 10e’ grams per minute. Find the amount
that has decomposed during the first 3 minutes.

SOLUTION: |’* 10 dt ~ 9.5 g,

EXAMPLE 16

An official of the Environmental Protection Agency estimates that ¢ years from now the level of a
particular pollutant in the air will be increasing at the rate of (0.3 + 0.4¢) parts per million per year
(ppm/yr). Based on this estimate, find the change in the pollutant level during the second year.

SOLUTION: | (0.3 + 0.41) dt = 0.9 ppm.
J1

Work"

Work is defined as force times distance: W = F x d. When a variable force F(x) moves an object
along the x-axis froma to b, we approximate an element of work done by the force over a short
distance Ax by

AW = F(.Xk) AX,



where F(x;) 1s the force acting at some point in the kth subinterval. We then use the FTC to get

Fix) dx

W= 11_:2 z Flx)Ax =
If the force is given in pounds and the distance in feet, then the work is given in foot-pounds (ft-1b).
Problems typical of those involving computation of work are given in the following examples.

EXAMPLE 17

Find the work, ¥, done by a force F, in pounds, that moves a particle along the x-axis fromx = 4
feet to x =9 feet, if Fry = .

24

ra

SOLUTION: w- [ 4 _

EXAMPLE 18

A cylindrical reservoir of diameter 4 feet and height 6 feet is half-full of water weighing w pounds
per cubic foot (Figure N8-3). Find the work done in emptying the water over the top.

SOLUTION: The volume of a slice of water is AV = mx?> Ay, where x = 2. A slice at height y is
lifted (6 —y) fi.

W=w+m-4 Ap(6 -y
El

(6 —v) dy =34mw ft-1b.
40

W=4dnw
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FIGURE N8-3
We used 3 as the upper limit since the reservoir is only half full.

The topic “work” is not specifically included in the Topical Outline, but it is an important application of integration.

EXAMPLE 19

A hemispherical tank with flat side up has radius 4 feet and is filled with a liquid weighing w
pounds per cubic foot. Find the work done in pumping all the liquid just to the top of the tank.



(0~

FIGURE N8—4

SOLUTION: In Figure N84, the generating circle has equation x> + 1> = 16. Note that over the
interval of integration y is negative, and that a slice must be lifted a distance of (—y) feet. Then for
the work, W, we have

0 ra
(—y dy =—Ttw

W=nw

Y16 —v¥) dy = 64mw fit-1h.

J—-4 J-4

Chapter Summary

In this chapter we have reviewed how to find the distance traveled by an object in motion along a line
and (for BC students) along a parametrically defined curve in a plane. We’ve also looked at a broad
variety of applications of the definite integral to other situations where definite integrals of rates of
change are used to determine accumulated change, using limits of Riemann sums to create the
integrals required.

Practice Exercises

The aim of these questions is mainly to reinforce how to set up definite integrals, rather than how to
integrate or evaluate them. Therefore we encourage using a graphing calculator wherever helpful.

1. A particle moves along a line in such a way that its position at time ¢ is given by s = £ — 61> + 9¢ +
3. Its direction of motion changes when

(A) £ =1 only
(B) t =2 only
(C) t=3 only

M)r=1landr=3
(E)t=1,2,and 3

2. Abody moves along a straight line so that its velocity v at time ¢ is given by v = 4£> + 3¢2 + 5. The
distance the body covers from ¢ =0 to # = 2 equals



(A) 34
(B) 55
(C) 24
(D) 44
(E) none of these

3. Aparticle moves along a line with velocity v = 37> — 6¢. The total distance traveled from¢ =0 to ¢
= 3 equals

(A)9

(B) 4

(©)2

(D) 16

(E) none of these

4. The net change in the position of the particle in Question 3 is

(A) 2

(B) 4

09

(D) 16

(E) none of these

5. The acceleration of a particle moving on a straight line is given by a = cos ¢, and when ¢ = 0 the
particle is at rest. The distance it covers from¢=0to =2 1s

(A) sin 2
(B) 1 —cos?2
(C) cos 2
(D)sin2 —1
(E) —cos 2
6. During the worst 4-hr period of a hurricane the wind velocity, in miles per hour, is given by v(¢) =
5¢t—1>+100, 0 < ¢ < 4. The average wind velocity during this period (in mph) is

(A) 10

(B) 100
(©) 102
(D) 1043
(E) 1082

7. A car accelerates from 0 to 60 mph in 10 sec, with constant acceleration. (Note that 60 mph = 88
ft/sec.) The acceleration (in ft/sec?) is



(A)5.3

(B) 6

(O)8

(D) 8.8

(E) none of these

For Questions 8—10 use the following information: The velocity v of a particle moving on a curve is
given, at time ¢, by v = ¢, (1 — n). When ¢ = 0, the particle 1s at point (0,1).

Questions 8—13 are BC ONLY.

8. At time ¢ the position vector R is

(A) (£, - 1=0)
{5 R e \

(B) Wz 2 /

C r =2\
© (£,-£=2)
(D) | !__ ] it 4 !
(E) ”2—1 f1= :]:,

9. The acceleration vector at time f =2 1s

(A) (1. 1y
B) (1.-1)
O (1.2
D) (2, -1y

(E) none of these
0. The speed of the particle 1s at a minimum when ¢ equals
(A) 0
).
O 1
D) 1.5
(E) 2

11. A particle moves along a curve in such a way that its position vector and velocity vector are
perpendicular at all times. If the particle passes through the point (4, 3), then the equation of the
curve is

(A) x> +)*=5
(B) x> +)*=25
(C) x> +2)* =34



(D) x*—)*=7
(E) 2x2—3?=23

12. The acceleration of an object in motion is given by the vector zs) = (2:¢. If the object’s initial
velocity was 7o) = 2,0), which is the velocity vector at any time ¢ ?

(A) 5y = {F.e%

B) v =(re+ 1)
(O vty =+ 2.9
D) vy =(r+2-1)
E) sin=0e-1)

13. The velocity of an object is given by ;¢ = (3./; 4. If this object is at the origin when ¢ = 1, where
was itat¢=07?

(A) (=3,-4)
(B) (—2,74)
O (2,4
(D) [%.{1)
(E) [—%.:}]

14. Suppose the current world population is 6 billion and the population¢ years from now is

estimated to be P(f) = 6e%%% billion people. On the basis of this supposition, the average
population of the world, in billions, over the next 25 years will be approximately

(A) 6.75
(B) 7.2
(C) 7.8
(D) 8.2
(E) 9.0

15. A beach opens at 8 AM. and people arrive at a rate of R(¢) = 10 + 40z people per hour, where ¢
represents the number of hours the beach has been open. Assuming no one leaves before noon, at
what time will there be 100 people there?

(A) 9:45
(B) 10:00
(C) 10:15
(D) 10:30
(E) 10:45
16. A stone is thrown upward from the ground with an initial velocity of 96 ft/sec. Its average
velocity (given that a(f) = —32 ft/sec?) during the first 2 sec is



(A) 16 ft/sec
(B) 32 ft/sec
(C) 64 ft/sec
(D) 80 ft/sec
(E) 96 ft/sec

17. Suppose the amount of a drug in a patient’s bloodstream ¢ hr after intravenous administration is
30/(t + 1)? mg. The average amount in the bloodstream during the first 4 hr is

(A) 6.0 mg

(B) 11.0 mg

(C) 16.6 mg

(D) 24.0 mg

(E) none of these

18. A rumor spreads through a town at the rate of (#*> + 10¢) new people per day. Approximately how
many people hear the rumor during the second week after it was first heard?

(A) 1535

(B) 1894

(C) 2000

(D) 2219

(E) none of these

19. Oil is leaking from a tanker at the rate of 1000e " gal/hr, where ¢ is given in hours. The total
number of gallons of oil that will leak out during the first 8 hr 1s approximately

(A) 1271
(B) 3031
(C) 3161
(D) 4323
(E) 11,023

20. Assume that the density of vehicles (number per mile) during morning rush hour, for the 20-mi
stretch along the New York State Thruway southbound from the Tappan Zee Bridge, is given by f
(x), where x 1s the distance, in miles, south of the bridge. Which of the following gives the number
of vehicles (on this 20-mi stretch) from the bridge to a point x mi south of the bridge?

(A) [ sy ar
Jn
(B) | fit) dt

(&) |rxl flx) ex



(D) i_,ﬁ_ ) Aax (Where the 20-mi stretch has been partitioned into 7 equal subintervals)

(E) none of these

21. The center of a city that we will assume is circular is on a straight highway. The radius of the city
1s 3 mi. The density of the population, in thousands of people per square mile, is given
approximately by f(r) = 12 — 2r at a distance » mi from the highway. The population of the city (in
1000s) is given by the integral

1
(A) | (12 = 2r) dr
Ja
. :
B) 2| 12-20 o7 ar
-'l:l
I'3 i
(C) 4 | (12—-2F )9 —r? dr
lo

)
(D) | 212 -2 dr
Y

(E) » |§3 212 -2r) dr
22. The population density of Winnipeg, which is located in the middle of the Canadian prairie,
drops dramatically as distance from the center of town increases. This 1s shown in the following

table:

x = distance (in mi) from the 0 P 4 6 8 10
center

= I h f
f (%) '2dens1ty (hundreds o 50 45 40 30 15 5
people/mi®)

Using a Riemann sum, we can calculate the population living within a 10-mi radius of the center
to be approximately

(A) 608,500

(B) 650,000

(C) 691,200

(D) 702,000

(E) 850,000

23. If a factory continuously dumps pollutants into a river at the rate of 5 tons per day, then the

amount dumped after 7 weeks is approximately -
(A) 0.07 ton

(B) 0.90 ton

(C) 1.55 tons

(D) 1.9 tons

(E) 1.27 tons

24. A roast at 160°F is put into a refrigerator whose temperature is 45°F. The temperature of the
roast is cooling at time ¢ at the rate of (—9¢ %%/ )°F per minute. The temperature, to the nearest



degree F, of the roast 20 min after it is put in the refrigerator is
(A) 45°
(B) 70°
(O) 81°
(D) 90°
(E) 115°
25. How long will it take to release 9 tons of pollutant if the rate at which pollutant is being released
is te -3 tons per week?

(A) 10.2 weeks

(B) 11.0 weeks

(C) 12.1 weeks

(D) 12.9 weeks

(E) none of these
26. What is the exact total area bounded by the curve £ (x) = x> — 4x% + 3x and the x-axis?

(A) —2.25

(B) 2.25

O3

(D) 3.083

(E) none of these

27. Water is leaking from a tank at the rate of (—0.1#> — 0.3¢ + 2) gal/hr. The total amount, in gallons,
that will leak out in the next 3 hr is approximately

(A) 1.00
(B) 2.08
(C) 3.13
(D) 3.48
(E) 3.75

28. A bacterial culture is growing at the rate of 1000e%%% bacteria in¢ hr. The total increase in
bacterial population during the second hour is approximately

(A) 46
(B) 956

(C) 1046
(D) 1061
(E) 2046

29. A website went live at noon, and the rate of hits (visitors/hour) increased continuously for the



first 8 hours, as shown in the graph below.
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Approximately when did the 200th visitor go to this site?
(A) before 2 pM.

(B) between 2 and 3 p.M.

(C) between 3 and 4 pM.

(D) between 4 and 5 p.M.

(E) after 5 pMm.

30. An observer recorded the velocity of an object in motion along the x-axis for 10 seconds. Based
on the table below, use a trapezoidal approximation to estimate how far from its starting point the
object came to rest at the end of this time.

CHALLENGE

t (sec) 0 2 3 5 7 10

v(t) _ _
(units/sec) 2 3 : ! 2 0

(A) 0 units
(B) 1 unit

(C) 3 units
(D) 4 units
(E) 6 units

31. An 18-wheeler traveling at speed v mph gets about (4 + 0.01v) mpg (miles per gallon) of diesel
fuel. If its speed is gL+l mph at time ¢, then the amount, in gallons, of diesel fuel used during the

t+2

first 2 hr 1s approximately
(A) 20
(B) 21.5



(C) 23.1
(D) 24
(E) 25



CHAPTER 9 Differential Equations

Concepts and Skills
In this chapter, we review how to write and solve differential equations, specifically,
« writing differential equations to model dynamic situations;

» understanding a slope field as a graphical representation of a differential equation and its
solutions;

» finding general and particular solutions of separable differential equations;
» and using differential equations to analyze growth and decay.

We also review two additional BC Calculus topics:

* Euler’s method to estimate numerical solutions

» and using differential equations to analyze logistic growth and decay.

A. BASIC DEFINITIONS

Differential e quation

A differential equation (d.e.) is any equation involving a derivative. In §E of Chapter 5 we solved
some simple differential equations. In Example 50, we were given the velocity at time ¢ of a particle
moving along the x-axis:

I .
1-[r;|={—=-1r"—3r . (1)
et

From this we found the antiderivative:
xX0=r-£+C. (2}

If the 1nitial position (at time ¢ = 0) of the particle is x = 3, then
x(0)=0—-0+C=3,

and C = 3. So the solution to the initial-value problem is
Mh=r-7£+3, i3

A solution of a d.e. is any function that satisfies it. We see from (2) above that the d.e. (1) has an
infinite number of solutions—one for each real value of C. We call the family of functions (2) the
general solution of the d.e. (1). With the given initial condition x(0) = 3, we determined C, thus
finding the unique solution (3). This is called the particular solution.

Note that the particular solution must not only satisfy the differential equation and the initial



condition, but the function must also be differentiable on an interval that contains the initial point.
Features such as vertical tangents or asymptotes restrict the domain of the solution. Therefore, even
when they are defined by the same algebraic representation, particular solutions with different initial
points may have different domains. Determining the proper domain is an important part of finding the
particular solution.

In §A of Chapter 8 we solved more differential equations involving motion along a straight line. In
§B we found parametric equations for the motion of a particle along a plane curve, given d.e.’s for the
components of its acceleration and velocity.

Rate of Change

A differential equation contains derivatives. A derivative gives information about the rate of change
of a function. For example:
(1) If P 1s the size of a population at time ¢, then we can interpret the d.e.
9P _00325P
dt
as saying that at any time ¢ the rate at which the population is growing is proportional (3.25%) to its
size at that time.
(2) The d.e. # = _(0.000275)0 tells us that at any time ¢ the rate at which the quantity Q 1s decreasing

is proportional (0.0275%) to the quantity existing at that time.

(3) In psychology, one typical stimulus-response situation, known as logarithmic response, is that
in which the response y changes at a rate inversely proportional to the strength of the stimulus x. This
is expressed neatly by the differential equation

dy &k

= ik a constant),
dy x

If we suppose, further, that there is no response when x = x,, then we have the conditiony = 0 when x
= Xo-
(4) We are familiar with the d.e.

L.II. - .
ia=—=-32 ftfsec”
dt”

for the acceleration due to gravity acting on an object at a height s above ground level at time 7. The
acceleration is the rate of change of the object’s velocity.

B. SLOPE FIELDS

In this section we solve differential equations by obtaining a slope field or calculator picture that
approximates the general solution. We call the graph of a solution of a d.e. a solution curve.

The slope field of a d.e. is based on the fact that the d.e. can be interpreted as a statement about
the slopes of its solution curves.

EXAMPLE 1

The d.e. dﬂ =y tells us that at any point (x, y) on a solution curve the slope of the curve is equal to
A
its y-coordinate. Since the d.e. says that y is a function whose derivative is also y, we know that

y=e"



is a solution. In fact, y = Ce* is a solution of the d.e. for every constant C, since y '= Ce* = y.

The d.e. y "=y says that, at any point where y = 1, say (0, 1) or (1, 1) or (5, 1), the slope of the

solution curve is 1; at any point where y = 3, say (0, 3), (In 3,3), or (m, 3), the slope equals 3; and
SO on.

In Figure N9—1a we see some small line segments of slope 1 at several points where y = 1, and
some segments of slope 3 at several points where y = 3. In Figure N9—1b we see the curve of y =
¢* with slope segments drawn in as follows:
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FIGURE N9-1b
Figure N9—Ic i1s the slope field for the d.e. & = . Slopes at many points are represented by small

segments of the tangents at those points. The small segments approximate the solution curves. If
we start at any point in the slope field and move so that the slope segments are always tangent to
our motion, we will trace a solution curve. The slope field, as mentioned above, closely




approximates the family of solutions.
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EXAMPLE 2
The slope field for the d.e. ;ﬁ = L is shown in Figure N9-2.

(a) Carefully draw the solution curve that passes through the point (1, 0.5).

(b) Find the general solution for the equation.
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FIGURE N9-2

SOLUTIONS:

(a) InFigure N9-2a we started at the point (1, 0.5), then moved from segment to segment
drawing the curve to which these segments were tangent. The particular solution curve shown
1s the member of the family of solution curves

y=lnx+C

that goes through the point (1, 0.5).

FIGURE N9-2a
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FIGURE N9-2b
(b) Since we already know that, if %: L then, - |riﬂr_1 = Inx +c, we are assured of having found
b g fEx

the correct general solution in (a).

In Figure N9-2b we have drawn several particular solution curves of the given d.e. Note that the
vertical distance between any pair of curves is constant.

EXAMPLE 3

Match each slope field in Figure N9-3 with the proper d.e. from the following set. Find the
general solution for each d.e. The particular solution that goes through (0,0) has been sketched in.

(A)y'=cosx

B) & _,,

( ) FE 2x

(C) ﬁz I —3
dx

(D) y'=-%
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SOLUTIONS:
(A) goes with Figure N9—3c¢. The solution curves in the family y = sin x + C are quite obvious.

(B) goes with Figure N9—3a. The general solution is the family of parabolas y = x* + C.

For (C) the slope field is shown in Figure N9-3b. The general solution is the family of cubics y
- .3

=x>—3x+C.

(D) goes with Figure N9-3d; the general solution is the family of lines y = - =1+ c.

EXAMPLE 4

a) Verify that relations of the form x2 + 12 = 12 are solutions of the d.e. & = _*
y =

(b) Using the slope field in Figure N9—4 and your answer to (a), find the particular solution to the
d.e. given in (a) that contains point (4, —3).
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SOLUTIONS:

(a) By differentiating equation x> + > = 7 implicitly, we get 2x + 2y dﬂ - o, from which % =—
which is the given d.e. -

(b) x> +y? = r? describes circles centered at the origin. For initial point (4,—3), (4)> + (-3)? =
25. So x? + y* = 25. However, this is not the particular solution.
A particular solution must be differentiable on an interval containing the initial point. This
circle is not differentiable at (—5,0) and (5,0). (The d.e. shows £ undefined wheny = 0, and

the slope field shows vertical tangents along the x-axis.) Hence, the particular solution
includes only the semicircle in quadrants IIT and IV.

Solving x? + y? = 25 for y yields v = £425- 2 The particular solution through point (4,-3) is
2 with domain —5 <x <35.

)
y=—-+25—

Derivatives of Implicitly Defined Functions
In Examples 2 and 3 above, each d.e. was of the form & =f(x)ory'=f (x) We were able to find the

general solution in each case very easily by finding the antlderlvatlve = | f(x) dx.

We now consider d.e.’s of the form T_ f(x,w. where f'(x,y) is an expression in x and y; that is, &

dx

is an implicitly defined function. Example 4 illustrates such a differential equation. Here is another
example.

EXAMPLE 5
Figure N9-5 shows the slope field for

¥=x+y. (1)
At each point (x,y) the slope is the sum of its coordinates. Three particular solutions have been
added, through the points

(a) (00) (b) (0,-1) (c) (0,-2
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FIGURE N9-5

C. EULER’S METHOD

BC ONLY

In §B we found solution curves to first-order differential equations graphically, using slope fields.
Here we will find solutions numerically, using Euler’s method to find points on solution curves.

When we use a slope field we start at an initial point, then move step by step so the slope
segments are always tangent to the solution curve. With Euler’s method we again select a starting
point; but now we calculate the slope at that point (from the given d.e.), use the initial point and that
slope to locate a new point, use the new point and calculate the slope at it (again fromthe d.e.) to
locate still another point, and so on. The method is 1llustrated in Example 6.

BC ONLY

EXAMPLE 6

Let $= 3 Use Euler’s method to approximate the y-values with four steps, starting at point P, (1,
axr X

0) and letting Ax = 0.5.
SOLUTION: The slope at Py = (xg, vo) = (1,0) is %=%= %:3. To find the y-coordinate

of Py (xq,;), we add Ay to y,. Since & _ & we estimate 4, _ % i
dx  ax’ i ]

Ay = (slope at Py) - Ax=3-(0.5)=1.5.

Then
Y=yt Ay=0+15=15
and
P, =(1.5,1.5).
To find the y-coordinate of P, (x,, y,) we add Ay to y;, where
Ay = (slope at Py) - Ac= % - Ax= % (05)=1.0.

Then

V=¥ TAy=15+10=25
and

P, =(2.0,2.5).
To find the y-coordinate of P; (x5, y3) we add Ay to y,, where
Ay = (slope at P,) - Ac= 11 -Ax= 2 .(05)=075.

R

Then



and so on.

V3=y,+Ay=25+0.75=3.25,

Py=(2.5,3.25),

The table summarizes all the data, for the four steps specified, fromx =1 to x = 3:

TABLE FOR & _3
ax X

X ¥ (SLOPE) - (0.5) = Ay TRUE y*
B, l 0 3/ 05) = 15 0
P, 1.5 1.5 (3/1.5)-(05) = 1D 1.216
E, 2.0 2 (3/2y 05y = 075 2.079
P, 25 Lt (3/2.5).(05) = 060 2.749
P 3.0 3.85 (3/3.00-(05) = 050 3.296

*To three decimal places.

The table gives us the numerical solution of

3 using Euler’s method. Figure N9—6a shows the

graphical solution, which agrees with the data ﬁom the table, for x increasing from 1 to 3 by four
steps with Ax equal to 0.5. Figure N9—6b shows this Euler graph and the particular solution of

dx -

.l"l r

4.0

2.0

Pyi1.1)

dy 'i ' passing through the point (1,0), whichis y =3 Inx.

Py3.0385)

1.y 0.5

20 in x

FIGURE N9-6a
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FIGURE N9-6b

We observe that, since y ” for 3 Inx equals 2 the true curve is concave down and below the
X

Euler graph.

The last column in the table shows the true values (to three decimal places) of y. The Euler

approximation for 3 In 3 is 3.85; the true value is 3.296. The Euler approximation with four steps

is not very good! However, see what happens as we increase the number 7 of steps:

n EULER APPROXIMATION ERROR
4 3.85 0.554
10 3.505 0.209
20 3.398 0.102
40 3.346 0.050
80 3.321 0.025

Doubling the number of steps cuts the error approximately in half.

EXAMPLE 7

Given the d.e. ? =x +y with initial condition y(0) = 0, use Euler’s method with Ax = 0.1 to
estimate y whenx = 0.5.

SOLUTION: Here are the relevant computations:

x y (SLOPE) - Ax = (x +) - (0.1) =A y
Plo |o 0(0.1)=0
Pylor|o (0.1)(0.1) = 0.01

P, | 02 | 001 (0.21)(0.1) = 0.021
Py | 03] 0031 | (0.331)(0.1)=0.033




P, | 04 | 0.064 | (0.464)(0.1)=0.046
Ps| 05 | 0110

A Caution: Euler’s method approximates the solution by substituting short line segments in place of
the actual curve. It can be quite accurate when the step sizes are small, but only if the curve does not
have discontinuities, cusps, or asymptotes.

For example, the reader may verify that the curve y——'  for the domain . < 5 solves the

= ]
2x =5

differential equation & — _,* with initial conditiony = —1 whenx = 2. The domain restriction is
dx '

important. Recall that a particular solution must be differentiable on an interval containing the initial
point. If we attempt to approximate this solution using Euler’s method with step size Ax = 1, the first
step carries us to point (3, —3), beyond the discontinuity at x=s and thus outside the domain of the
solution. The accompanying graph (Figure N9—7) shows that this is nowhere near the solution curve
with initial point y = 1 whenx = 3 (and whose domain is . > 3). Here, Euler’s method fails because it
leaps blindly across the vertical asymptote at x =5,

Always pay attention to the domain of any particular solution.

BC ONLY
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D. SOLVING FIRST-ORDER DIFFERENTIAL EQUATIONS
ANALYTICALLY

In the preceding sections we solved differential equations graphically, using slope fields, and
numerically, using Euler’s method. Both methods yield approximations. In this section we review
how to solve some differential equations exact/y.

Separating Variables



A first-order d.e. in x and y is separable 1f it can be written so that all the terms involving y are on
one side and all the terms involving x are on the other.

A differential equation has variables separable if it is of the form
c_f_‘x'_ Flx)
dr o0 v)

or gidy—flx)de =0
The general solution is
|:u|.,-.-:| dy |i_rr_.1 ydx =C (C arbitrary).
EXAMPLE 8
Solve the d.e. :f_‘; = -2, given the initial condition y(0) = 2.
SOLUTION: We réwrite the equation as y dy = —x dx. We then integrate, getting

xdx,

|_'.' dy=-—
J

Pz x4k,

| =

|

—
5
y+xt=_C (where C = 2k).

Since y(0) = 2, we get 4 + 0 = C; the particular solution is therefore x> + y*> = 4. (We need to
specify above that y > 0. Why?)

EXAMPLE 9

If"Tf = st and f =0 whens =1, find s whent=9.

SOLUTION: We separate variables:
then integration yields

Usings=1and r=0,we geto- 2.9+ ¢ s0 C=+2. Then

4

254 = —"* 12 or =T
3 3

When ¢ =9, we find that s12=9 + 1, so s = 100.

EXAMPLE 10

If(Iny) £ -X and y = e whenx = I, find the value of y greater than 1 that corresponds to x = e,

X

SOLUTION: Separating, we get “‘T‘ dy= 2. We integrate:

LS y=Inx|+C.
”

Usingy =e whenx =1 yields ¢= 1 so

|
3 *

Lin y=In|x|+ i
) ¥



When x = ¢*, we have Lty=a+ 1, thus In” y =9 and In y = 3 (where we chose Iny > 0 because y
. 2 >

>1),soy=e’.
EXAMPLE 11

Find the general solution of the differential equation % = e,
SOLUTION: We rewrite ii: Catithas Sl
v e

Taking antiderivatives yields e = e" + C, or u = In(e” + ¢).

E. EXPONENTIAL GROWTH AND DECAY

We now apply the method of separation of variables to three classes of functions associated with
different rates of change. In each of the three cases, we describe the rate of change of a quantity, write
the differential equation that follows from the description, then solve—or, in some cases, just give the
solution of—the d.e. We list several applications of each case, and present relevant problems
involving some of the applications.

Case I: Exponential Growth

An interesting special differential equation with wide applications is defined by the following
statement: “A positive quantity y increases (or decreases) at a rate that at any time ¢ is proportional to
the amount present.” It follows that the quantity y satisfies the d.e.

L) = kv, (1)
dt ’

where k> 0 if y 1s increasing and k < 0 if y is decreasing.
From (1) it follows that

ﬂ = kdt,
¥

| L dy= |;1 dr,
k™
Inyv=k+C (C a constant ).
Then
{where c = £").
If we are given an initial amount y, say y, at time ¢ = 0, then
yozc-ek'ozc- 1 =c¢
and our law of exponential change

y = ce® (2)

tells us that ¢ is the initial amount of y (at time ¢ = 0). If the quantity grows with time, then £ > 0; if it
decays (or diminishes, or decomposes), then £k < 0. Equation (2) is often referred to as the law of



exponential growth or decay.
The length of time required for a quantity that is decaying exponentially to be reduced by half is

called its half-life.
EXAMPLE 12

The population of a country is growing at a rate proportional to its population. If the growth rate
per year is 4% of the current population, how long will it take for the population to double?

SOLUTION: If the population at time ¢ is P, then we are given that% -~ p.04p. Substituting in
equation (2), we see that the solution is
P= PO e0.04t

where P 1s the initial population. We seek # when P = 2P

ZP.-_ = !‘.-_I:'um-..,

2= 0¥
In 2 = 0.041,
2
pm A o g
0.04
EXAMPLE 13

The bacteria in a certain culture increase continuously at a rate proportional to the number
present.

(a) If the number triples in 6 hours, how many will there be in 12 hours?
(b) In how many hours will the original number quadruple?
SOLUTIONS: We let N be the number at time ¢ and N, the number initially. Then

N N :
% = kN, i = kdt, InN=Fkt+C, and InN,=04+C,
at i

hence, C = In N,. The general solution is then N = N, e, with  still to be determined.
Since N = 3N, when ¢ = 6, we see that 3N, = N, e% and that ; - ..:T In 3. Thus
N= NO e(t In 3)/6.
(a) Whent =12, N= N, 23 = N, &3 = N, &9 = 9N,
(b) We let N = 4N, in the centered equation above, and get

o= gl Ind= im 3, and [ = Sn4 =76 hr,
i) In3
EXAMPLE 14

Radium-226 decays at a rate proportional to the quantity present. Its half-life is 1612 years. How
long will it take for one quarter of a given quantity of radium-226 to decay?

SOLUTION: If O(¢) is the amount present at time ¢, then it satisfies the equation



Q(r) = Qe”, (1)

where Q) 1s the initial amount and & 1s the (negative) factor of proportionality. Since it 1s given
that o= 1g, when ¢ = 1612, equation (1) yields

l' K 1612
Ei‘?u = '-:'-.}D"E Leled, 5

We now have
L=l (2)

When one quarter of O, has decayed, three quarters of the initial amount remains. We use this
fact in equation (2) to find ¢

3 ;
Ii}u -— ‘?&E,-um;r i

3
2 = gt
4
3
In—
t= 4 =669 yr.
—0.00043

Applications of Exponential Growth
‘1) A colony of bacteria may grow at a rate proportional to its size.

(2) Other populations, such as those of humans, rodents, or fruit flies, whose supply of food is
unlimited may also grow at a rate proportional to the size of the population.

(3) Money invested at interest that is compounded continuously accumulates at a rate proportional to
the amount present. The constant of proportionality is the interest rate.

(4) The demand for certain precious commodities (gas, oil, electricity, valuable metals) has been
growing in recent decades at a rate proportional to the existing demand.

Each of the above quantities (population, amount, demand) is a function of the form ceX? (with k >
0). (See Figure N9—7a.)

(5) Radioactive isotopes, such as uranium-235, strontium-90, iodine-131, and carbon-14, decay at a
rate proportional to the amount still present.

(6) IfP is the present value of a fixed sum of money 4 due ¢ years from now, where the interest is
compounded continuously, then P decreases at a rate proportional to the value of the investment.

(7) It is common for the concentration of a drug in the bloodstream to drop at a rate proportional to
the existing concentration.

(8) As a beam of light passes through murky water or air, its intensity at any depth (or distance)
decreases at a rate proportional to the intensity at that depth.



Each of the above four quantities (5 through 8) is a function of the form ce *! (k > 0). (See Figure
N9-7b.)

This is exponential growth.

Y

As f—so0, v —00,
FIGURE N9-7a

This is exponential decay.

As t —oo, v =,
FIGURE N9-7b
EXAMPLE 15

At a yearly rate of 5% compounded continuously, how long does it take (to the nearest year) for
an investment to triple?

SOLUTION: If P dollars are invested for ¢ yr at 5%, the amount will grow to 4 = Pe®%% in ¢ yr.
We seek t when 4 = 3P:

= E_,I':-.&'!.r,
;E:_j: =t= 22yr.
EXAMPLE 16

One important method of dating fossil remains is to determine what portion of the carbon content
of a fossil is the radioactive isotope carbon-14. During life, any organism exchanges carbon with
its environment. Upon death this circulation ceases, and the!* C in the organism then decays at a
rate proportional to the amount present. The proportionality factor is 0.012% per year.

When did an animal die, if an archaeologist determines that only 25% of the original amount of!#
C 1s still present in its fossil remains?

SOLUTION: The quantity Q of'* C present at time ¢ satisfies the equation

ﬂ = 0000120
dt

with solution



Q(f) — QO e—0.00012t

(where Q is the original amount). We are asked to find # when Q(¢) = 0.250,,.
0.25Q, = 0,2,

0.25 = o2,

In0.25 = -0.00012¢,
—1.386 =-0.00012¢,
=110

Rounding to the nearest 500 yr, we see that the animal died approximately 11,500yr ago.

EXAMPLE 17

In 1970 the world population was approximately 3.5 billion. Since then it has been growing at a
rate proportional to the population, and the factor of proportionality has been 1.9% per year. At
that rate, in how many years would there be one person per square foot of land? (The land area

of Earth is approximately 200,000,000 mi?, or about 5.5 x 1013 fi?.)

SOLUTION: If P(z) is the population at time ¢, the problem tells us that P satisfies the equation
4P _no1op. Its solution is the exponential growth equation

dt

P(f) — PO 60.019t’
where P 1s the initial population. Letting # = 0 for 1970, we have
3.5 x10°=P(0) =P, e’ = P,
Then
P(t) = (3.5 x 10701,

The question is: for what ¢ does P(¢) equal 5.5 x 1015? We solve
(3.5)(107)e™* = (5.5)10",
e2™ = (1,6)10°,
Taking the logarithm of each side yields
0019 =In16+61In 10 =143,
f =750 yr,
where it seems reasonable to round off as we have. Thus, if the human population continued to

grow at the present rate, there would be one person for every square foot of land in the year
2720.

Case II: Restricted Growth

The rate of change of a quantity y =/ (¢#) may be proportional, not to the amount present, but to a
difference between that amount and a fixed constant. Two situations are to be distinguished: The rate
of change 1s proportional to

(a) a fixed constant A minus the amount of the (b) the amount of the quantity present minus a
quantity present: fixed constant A4:

1O =kA-1 ()] 1O =—klf (1) — 4]



where (in both) £'(¢) is the amount at time ¢ and k and A4 are both positive. We may conclude that
(a) f(¢2) is increasing (Fig. N9—8a): (b) £ (¢) 1s decreasing (Fig. N9—8b):
f(O)y=A—ce™ f(t) =A+ce™

for some positive constant c.

P Amount, fif)

[&

—— fifi= A — e ®

= |

A —cis the initial amount; as ¢ — oo, Fif) — A ;
=0 A is an upper limit on the size of £

FIGURE N9-8a
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A + ¢ 15 the imitial amount; as ¢ — =, {1l — 4 ;
=0 A is a lower limit on the size of £

FIGURE N9-8b

Here 1s how we solve the d.e. for Case Il(a), where 4 —y > 0. If the quantity at time # is denoted
by y and £ is the positive constant of proportionality, then
v =£ =kid-v,
dt '
ﬁ_ =k di,
A=y
-InfA-y)=kt+C,
In(A-v)=-kt-C,
A—y=ghteps
= re, where ¢ = e-F,
and
y=A—ce™

Case II (b) can be solved similarly.



EXAMPLE 18

According to Newton’s law of cooling, a hot object cools at a rate proportional to the difference
between its own temperature and that of its environment. If a roast at room temperature 68°F is
put into a 20°F freezer, and if, after 2 hours, the temperature of the roast is 40°F:

(a) What is its temperature after 5 hours?
(b) How long will it take for the temperature of the roast to fall to 21°F?

SOLUTIONS: This is an example of Case II (b) (the temperature is decreasing toward the
limiting temperature 20°F).

(a) If R(?) 1s the temperature of the roast at time ¢, then

RO _ _MREO-20] and R() =20+ ce™.

dt

Since R(() = 68°F, we have
68 =20 + ¢,
c = 48,
Rif) =20 + 48",

Also, R(2) = 40°F. so 40=20 + 48¢™*
and e’ = ()63,
yielding R(r) =20 + 48(D 65)* (*)
and, finally, R(5) =20 + 48(0 65)° = 26°F.

(b) Equation (*) in part (a) gives the roast’s temperature at time #. We must find # when R = 21:

21 =20+ 48 (0.65),

ife (065,
48

—In 48 = ¢ In(0.65),

i =9 hr,

EXAMPLE 19

Advertisers generally assume that the rate at which people hear about a product is proportional
to the number of people who have not yet heard about it. Suppose that the size of a community is
15,000, that to begin with no one has heard about a product, but that after 6 days 1500 people
know about it. How long will it take for 2700 people to have heard of 1t?

SOLUTION: Let N(¢) be the number of people aware of the product at time . Then we are
given that

N '(¢) = k[ 15,000 — N(¢)],
which is Case Ila. The solution of this d.e. is
M(#) = 15,000 — ce ¥,
Since N(0) =0, ¢ = 15,000 and
M) = 15,000(1 — e7*1).
Since 1500 people know of the product after 6 days, we have



1500 = 150001 — ),
e* =09,
In (0.9

1)

k= = (L.018.

We now seek t when N =2700:
2700 = 15,000(1 — e®#),
0.18 =1 — g0t
et — ) 8

f = 11 days.

Applications of Restricted Growth

(1) Newton’s law of heating says that a cold object warms up at a rate proportional to the
difference between its temperature and that of its environment. If you put a roast at 68°F into an oven
of 400°F, then the temperature at time ¢ is R(¢#) =400 — 332¢ *.

(2) Because of air friction, the velocity of a falling object approaches a limiting value L (rather
than increasing without bound). The acceleration (rate of change of velocity) is proportional to the
difference between the limiting velocity and the object’s velocity. If initial velocity is zero, then at
time ¢ the object’s velocity V(f) = L(1 — e %Y.

(3) If a tire has a small leak, then the air pressure inside drops at a rate proportional to the
difference between the inside pressure and the fixed outside pressure O. At time ¢ the inside pressure
P(t) =0+ ce ¥,
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Case III: Logistic Growth

The rate of change of a quantity (for example, a population) may be proportional both to the amount
(size) of the quantity and to the difference between a fixed constant 4 and its amount (size). If y = f(z)
1s the amount, then

v o= EkwA -, (1)
where k and A4 are both positive. Equation (1) is called the logistic differential equation; it is used to
model logistic growth.

The solution of the d.e. (1) is
g
T L gee ™

for some positive constant c.

In most applications, ¢ > 1. In these cases, the initial amount A/(1 +¢) is less than A/2. In all
applications, since the exponent of e in the expression for f'(¢) is negative for all positive ¢, therefore,
as t — oo,

(1) ce™ — 0;

(2) the denominator of f (1) — 1;

(3) f(r) — A.

Thus, 4 is an upper limit of / in this growth model. When applied to populations, 4 is called the
carrying capacity or the maximum sustainable population.



Shortly we will solve specific examples of the logistic d.e. (1), instead of obtaining the general
solution (2), since the latter is algebraically rather messy. (It is somewhat less complicated to verify
that y "in (1) can be obtained by taking the derivative of (2).)

Unrestricted Versus Restricted Growth
A

]

0 Time
FIGURE N9-9a

A e e s e e S ——————————— — — ————

Time
FIGURE N9-9b
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In Figures N9-9a and N9-9b we see the graphs of the growth functions of Cases I and IIl. The
growth function of Case I is known as the unrestricted (or uninhibited or unchecked) model. It is not
a very realistic one for most populations. It is clear, for example, that human populations cannot
continue endlessly to grow exponentially. Not only is Earth’s land area fixed, but also there are
limited supplies of food, energy, and other natural resources. The growth function in Case III allows
for such factors, which serve to check growth. It is therefore referred to as the restricted (or
inhibited) model.

The two graphs are quite similar close to 0. This similarity implies that logistic growth is
exponential at the start—a reasonable conclusion, since populations are small at the outset.

The S-shaped curve in Case Il is often called a logistic curve. 1t shows that the rate of growth y .
(1) increases slowly for a while; 1.e.,y "> 0;

(2) attains a maximum when y = 4/2, at half the upper limit to growth;

(3) then decreases (v " <0), approaching 0 as y approaches its upper limit.

It is not difficult to verify these statements.

Applications of Logistic Growth



(1) Some diseases spread through a (finite) population P at a rate proportional to the number of
people, M(?), infected by time ¢ and the number, P — N(¢), not yet infected. Thus N (¢) = kN(P — N)
and, for some positive ¢ and k,

Nt =

1+ce ™’

(2) A rumor (or fad or new religious cult) often spreads through a population P according to the
formula in (1), where M(¢) 1s the number of people who have heard the rumor (acquired the fad,
converted to the cult), and P — N(¢) is the number who have not.

(3) Bacteria in a culture on a Petri dish grow at a rate proportional to the product of the existing
population and the difference between the maximum sustainable populationand the existing
population. (Replace bacteria on a Petri dish by fish in a small lake, ants confined to a small
receptacle, fruit flies supplied with only a limited amount of food, yeast cells, and so on.)
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(4) Advertisers sometimes assume that sales of a particular product depend on the number of TV
commercials for the product and that the rate of increase in sales is proportional both to the existing
sales and to the additional sales conjectured as possible.

(5) In an autocatalytic reaction a substance changes into a new one at a rate proportional to the
product of the amount of the new substance present and the amount of the original substance still
unchanged.

EXAMPLE 20

Because of limited food and space, a squirrel population cannot exceed 1000. It grows at a rate
proportional both to the existing population and to the attainable additional population. If there
were 100 squirrels 2 years ago, and 1 year ago the population was 400, about how many
squirrels are there now?

SOLUTION: Let P be the squirrel population at time . It is given that

P
L _kP(1000 —P) (3)
dt

with P(0) = 100 and P(1) =400. We seek P(2).
We will find the general solution for the given d.e. (3) by separating the variables:



L B k dt.
PLODD - P)
It can easily be verified, using partial fractions, that

1 1 1
= + 5
F(lOoOo— Py 1000 100001000 — P)

Now we integrate:

[ dP i dP fk ;
= = i
] T000P " ) Toooco00 -y~ J*°
getting
In P —In(1000 — P) = 1000kt + C
g 1000 — P
8= - 000k + ),
P
1000-P _ ce" ™" (where ¢ = %),
P
1000
msainiur N, R e
P
i =14 cg l0NE
P 1
1000 1+ ce ™’
and, finally (!),
1000
P[IJ = e (4)
i R

Please note that this is precisely the solution “advertised” in equation (2), with 4 equal to 1000.

Now, using our initial condition P(0) = 100 in (4), we get
100 1

kit o= and c=9,
o 1+4+¢

Using P(1) =400, we get
1000

} 4 Qa1

| +92 =35

400 =

. 1.5 l ,
g0k _ i (5)

? &

Then the particular solution is
1000
P()= —— (6)
I +9(1/6)

and P(2) —~ 800 squirrels.
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FIGURE N9-10

Figure N9-10 shows the slope field for equation (3), with £ = 0.00179, which was obtained by
solving equation (5) above. Note that the slopes are the same along any horizontal line, and that
they are close to zero initially, reach a maximum at P = 500, then diminish again as P approaches
its limiting value, 1000. We have superimposed the solution curve for P(¢) that we obtained in
(6) above.
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EXAMPLE 21

Suppose a flu-like virus is spreading through a population of 50,000 at a rate proportional both
to the number of people already infected and to the number still uninfected. If 100 people were
infected yesterday and 130 are infected today:

(a) write an expression for the number of people M(¢) infected after ¢ days;
(b) determine how many will be infected a week from today;
(c) indicate when the virus will be speading the fastest.

SOLUTIONS:

(a) We are told that N (¢) =k - N - (50,000 —N), that N(0) = 100, and that N(1) = 130. The d.e.
describing logistic growth leads to

50,000
N(1) = | + cg o0
From N(0) = 100, we get
00 = 30.000
l +¢
which yields ¢ =499. From N(1) = 130, we get
[+ 4989

1301 + 499°%%%) = 50 D0,
= T



Then

q
N = —————— DI
1+499(0.77)
(b) We must find N(8). Since ¢ = 0 represents yesterday:
50,000
N(@§)=————_ =798 people.
= T 9077 i

(¢) The virus spreads fastest when 50,000/2 = 25,000 people have been infected.

Chapter Summary and Caution

In this chapter, we have considered some simple differential equations and ways to solve them. Our
methods have been graphical, numerical, and analytical. Equations that we have solved analytically—
by antidifferentiation—have been separable.

It is important to realize that, given a first-order differential equation of the type dﬂ — F(ry). 1t 1s the
: .

exception, rather than the rule, to be able to find the general solution by analytical methods. Indeed, a
great many practical applications lead to d.e.’s for which no explicit algebraic solution exists.

Practice Exercises

Part A. Directions: Answer these questions without using your calculator.
In Questions 1-10, a(?) denotes the acceleration function, v(¢) the velocity function, and s(¢) the
position or height function at time z. (The acceleration due to gravity is —32 ft/sec?.)

1. Ifa(?)=4¢t—1 and v(1) =3, then v(¢) equals

(A) 22— ¢
B)2:2—t+1
(C) 22 —t+2
(D) 2£2 + 1
(E) 22 +2
2. Ifa(t) =20 —6t,s (—1) =2, and s(1) = 4, then v(¢) equals
INYEEES

(B) 5¢*— 32+ 1
(C) 5¢*—32+3
Dr—1r+t+3

(E)r—-r+1
3. Givenaf(?), s (—1), and s(1) as in Question 2, then 5(0) equals
(A)0

(B) 1



(C) 2
(D) 3
(E) 4

4. A stone is thrown straight up from the top of a building with initial velocity 40 ft/sec and hits the
ground 4 sec later. The height of the building, in feet, is

(A) 88
(B) 96
(C) 112
(D) 128
(E) 144

5. The maximum height is reached by the stone in Question 4 after
(A) 4/5 sec
(B) 4 sec
(C) 5/4 sec
(D) 5/2 sec
(E) 2 sec

6. If a car accelerates from 0 to 60 mph in 10 sec, what distance does it travel in those 10 sec?
(Assume the acceleration is constant and note that 60 mph = 88 fi/sec.)

(A) 40 ft
(B) 44 ft
(C) 88 ft
(D) 400 ft
(E) 440 ft

7. A stone is thrown at a target so that its velocity after ¢ sec is (100 — 20¢) ft/sec. If the stone hits
the target in 1 sec, then the distance from the sling to the target is

(A) 80 ft
(B) 90 ft
(C) 100 ft
(D) 110 ft
(E) 120 ft

8. What should the initial velocity be if you want a stone to reach a height of 100 ft when you throw
it straight up?

(A) 80 ft/sec
(B) 92 ft/sec



(C) 96 ft/sec
(D) 112 fi/sec
(E) none of these

9. If the velocity of a car traveling in a straight line at time ¢ is v(¢), then the difference in its
odometer readings between times f =a and t = b is

A [ peofar
(B)

(C) the net displacement of the car’s position fromz=atot=>b

da
b

it dt

(D) the change in the car’s position from¢t=atot=5b
(E) none of these

10. Ifan object is moving up and down along the y-axis with velocity v(7) and s (¢) = v(), then it is
false that ") ar gives

(A) s(b) — s(a)
(B) the net distance traveled by the object betweent=a and t = b
(C) the total change in s(¢) betweent=a and t = b
(D) the shift in the object’s position from¢=atot=>
(E) the total distance covered by the object fromt=ator=5b
11. Solutions of the differential equation y dy = x dx are of the form
(A)x*—)y*=C
B)x*+)y?=C
(C) y* = Cx?
(D) x% — Cy2 =0
(B) x*=C~y?

12. Find the domain of the particular solution to the differential equation in Question 11 that passes
through point (=2, 1).

(A)x<0
(B)—2<x<0
(©) yc_3
(D) |4 <3
(E) 1y >3
13. If% =2 and y =1 when x = 4, then

2«_‘ I

(A) y2= ayx -7
B) 1ny=ayx -3




(C) lny= +x-2

D) y= e
(E) ,_ i
14. If% _.»and y =0 whenx = 1, then
(A) y=Inx]
(B) y=1In[2 — x|
OCer=2—x
(D) y =—In x|
(E)eV=x-2
I5. If2 - 7 ~—and y =5 whenx =4, then y equals
(A) Jora 5
(B) Jo 1
(O 2J04 2 =5

(D) VO +xt +5

)

(E) none of these
16. The general solution of the differential equation x dy =y dx is a family of
(A) circles
(B) hyperbolas
(C) parallel lines
(D) parabolas
(E) lines passing through the origin
17. The general solution of the differential equation % —y1s a family of
(A) parabolas
(B) straight lines
(C) hyperbolas
(D) ellipses
(E) none of these
18. A function f'(x) that satisfies the equations /' (x)f (x) =x and /' (0) =1 is
(A) foy= Va7 +1
B) = i-x*
(O f(x)=x
(D) f(x) =¢*



(E) none of these
19. The curve that passes through the point (1,1) and whose slope at any point (x, ) is equal to 2*

has the equation
(A)3x—2=y
(B) y° =x
Q) y=x
(D) 3y?=x*+2
(E) 3y —2x=1
20. What is the domain of the particular solution in Question 19?

(A) all real numbers

(B) k=1
O)x£0
(D) x<0
(E)x>0
21. If?:ikaconstant, and ify =2 whenx = 1 and y =4 when x = e, then, when x = 2, y equals
Ay X
(A) 2
(B) 4
(C)In8
M) In2+2
(E)In4 +2
22. The slope field shown below is for the differential equation
A)y'=x+1
(B)y '=sinx
(C)y '=-sinx
D)y '=cosx
(E) y '=—cos x
L, T, e ML S (B R T T Koy )
b R NN BUE # X)X = f
ST TR T U A B W S
Fr s X N2 HE e XN Y =7
Fd =y Assfll oAy ={
R AR R
RS SRR
porw A Vy e AN NN o9
FEREELE AR R
AN W N N S A I U T Y )
AR T W W S A IV A T W S '
LA A T T W O A B A, W W
P e NY NPl a XY=
L =Ny N eiflf= WX Ah=1
Fr e g el ¥R N n g

[2m, 2m] = [-1.5, 1.5]

23. The slope field below is for the differential equation



(A)y ' '=2x

B)y '=2x—4
(C)y'=4-2x
D)y '=y
(E)y'=x+ty

[-4,4] % [-12, 12]
24. A solution curve has been superimposed on the slope field shown below. The solution is for the
differential equation and initial condition

(A)y '=tanx; y(0) =0
(B)y '=cotx, y(n/4) =1
(C)y'=1+x%y(0)=0
D), =L 1}'[£] =

1+ x° 4
(E)y'=1+y%»(0)=0

E &

' i H /

TTERY A Y SR .l/ T I I S T T B S B B
L [ ) i I ) [ ) [ i s ¢ r )
(- [ 1 I. I 1 1l 10 10
(IF i ] ] } 1 1 L 1 1 | ] I 1 I
) R AR € N 3 F 0w A

[4. 4] % [—44]
The slope fields below are for Questions 25-30.



[-5.5]1=[-5.5]

41

[-2,2]1=[-2,2]

v
25. Which slope field is for the differential equationy "=y ?

(A) 1
(B) 11

(C) III

(D) IV

(E) V
26. Which slope field is for the differential equat

=2
¥

on y’

(D) IV
(E) V

(Al
(B) 1I
(C) I

?

=Smx

(A) 1

27. Which slope field is for the differential equationy '



B)1I

(O) 11

(D) IV

(E) V

28. Which slope field is for the differential equationy '=2x ?

(A) 1

B) 11

(O) 111

(D) IV

(E) V

29. Which slope field is for the differential equationy '= e X7
(A1
(B) II
(O I
D) v
(E)V

30. A particular solution curve of a differential equation whose slope field is shown above in II
passes through the point (0,—1). The equation is

(A)y=—¢
(B)y=—¢"
(©y=x*—1
(D) y=-—cos x
E) - _Ji-y

31. If you use Euler’s method with Ax = 0.1 for the d.e. y ' =x, with initial value y(1) =5, then,
when x = 1.2, y is approximately

(A) 5.10
(B) 5.20
(C) 5.21
(D) 6.05
(E) 7.10
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32. The error in using Euler’s method in Question 31 is
(A) 0.005



¥
y+2
y

A)y'=yr+2)
B)y'=x(+2)
¥y+2

(B) 0.010
(C) 0.050
(D) 0.500
(E) 0.720
33. Which differential equation has the slope field shown below?
Oy '=xy+2

(D) v' =
(E) »' =

t 1s equal to

3

2
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B)y=1—-Inx
O y=1+Inx
M)yy=1+¢€

(E)y=1+tanx

(A) y=1-1

34. Which function is a possible solution of the slope field shown?

Some of the following questions require the use of a graphing calculator.

¢|and if s = 1 when ¢ = 0, then, when

X,
12

s'm:(

ds
dt

Part B. Directions
If

35.



(A) L
B) T
©1
D)2
E) -2

36. If radium decomposes at a rate proportional to the amount present, then the amount R left after ¢
yr, if R 1s present initially and c is the negative constant of proportionality, is given by

(A) R=R,ct

(B) R=Ry e
(C) R=Ry+ ~cr
(D) R =efo a
(E) R = oRo et

37. The population of a city increases continuously at a rate proportional, at any time, to the
population at that time. The population doubles in 50 yr. After 75 yr the ratio of the population P
to the initial population Py is

0
(4) -
(B) 3
©) %

(D) 22
l

(E) none of these

38. If a substance decomposes at a rate proportional to the amount of the substance present, and if
the amount decreases from40 gto 10 gin 2 hr, then the constant of proportionality is

(A) —In2

!
(B) -2
(o

4
(D) ]ﬂ-lLL
(E) ]né

39. If (g '(x))? = g(x) for all real x and g(0) = 0, g(4) = 4, then g(1) equals
(VR
4

(B) -



©) 1

(D)2
(E) 4
40. The solution curve of y '= y that passes through point (2, 3) is
(A)y=e"+3
(B) y= 42x+5
(C) y =0.406¢€"

(D) y=e"—(e*+3)
(E) y = &* /(0.406)

41. At any point of intersection of a solution curve of the d.e. y ' =x +y and the line x +y = 0, the
function y at that point

(A)isequal to 0
(B) is a local maximum
(O) 1s a local minimum
(D) has a point of inflection
(E) has a discontinuity
42. The slope field for F (x) = e is shown below with the particular solution F(0) = 0
superimposed. With a graphing calculator, lim F(x) to three decimal places is
(A) 0.886
(B) 0.987
(C) 1.000
(D) 1.414
(E) o0

R

T T R

——————————————————
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———————————————
ffffffffffffff

[-2, 21X [-2, 2]
13. The graph displays logistic growth for a frog population F. Which differential equation could be
the appropriate model?

(A) % = 1.5F — 0.003F
[t

(B) % = 1.5F* —0.003F



(&) % = 3F — 0.003F*
(D) % = 3F* — 0.003F

(E) % = 0.003F? —3F
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]

44. The table shows selected values of the derivative for a differentiable function f.

X 2 3 4 5 6 7
f(x) 2.0 2.5 1.0 —0.5 —-1.5 0.!
Given that (3) = 100, use Euler’s method with a step size of 2 to estimate f'(7).
(A) 101.5
(B) 102.5
(C) 103
(D) 104
(E) 104.5

45. A cup of coffee at temperature 180°F is placed on a table in a room at 68°F. The d.e. for its
temperature at time ¢ is % = 0.11(v—68); ¥(0) = 180. After 10 min the temperature (in °F) of the

coffee 1s
(A) 96
(B) 100
(C) 105
(D) 110
(E) 115

16. Approximately how long does it take the temperature of the coffee in Question 45 to drop to

75°F?
(A) 10 min



(B) 15 min
(C) 18 min
(D) 20 min
(E) 25 min

47. The concentration of a medication injected into the bloodstream drops at a rate proportional to
the existing concentration. If the factor of proportionality is 30% per hour, in how many hours will
the concentration be one-tenth of the initial concentration?

(A) 3
(B) 4=

3

© h%
(D) 72

3

(E) none of these

48. Which of the following statements characterize(s) the logistic growth of a population whose
limiting value is L ?

I. The rate of growth increases at first.

II. The growth rate attains a maximum when the population equals £

III. The growth rate approaches 0 as the population approaches L.
(A) I only

(B) IT only

(C) I and I only

(D) IT and III only

(E) I, II, and III
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49. Which of the following d.e.’s is not logistic?
(A)P'=P-P*
(B) L) = 0.01p(100 - v)
dt
©) “PT;‘ = 0.8x — 0,004
(D) & _ y.166350- )
dt
(E)f'(t)=kf(¢t) - [A4—f(¢)] (where k and A are constants)

50. Suppose P(¢) denotes the size of an animal population at time # and its growth is described by the
d.e. % - 0.002P(1000 — P). The population is growing fastest

(A) initially



(B) when P = 500
(C) when P = 1000
(D) When £ =1

dt

(E) when &P _
di-

51.  According to Newton’s law of cooling, the temperature of an object decreases at a rate
proportional to the difference between its temperature and that of the surrounding air. Suppose a
corpse at a temperature of 32°C arrives at a mortuary where the temperature is kept at 10°C. Then
the differential equation satisfied by the temperature 7 of the corpse ¢ hr later is

A) L _ 10
At

B) 4L _wir_32)
dt

(C) &L _ 3y,
dr

D) L _ 7 —10)
dt

(E) % = kT(T - 32)

cdt

52. If the corpse in Question 51 cools to 27°C in 1 hr, then its temperature (in °C) is given by the
equation

(A)Tzzkﬁm&

(B) T= 10e!-163

(C) T=10 +22¢ 70258
(D) T= 300169t

(E) T=32— 10e 009



CHAPTER 10 Sequences and Series

Concepts and Skills

In this chapter, we review infinite series for BC Calculus students. Topics include
* tests for determining convergence or divergence,

» functions defined as power series,

» MacLaurin and Taylor series,

» and estimates of errors.

All of Chapter 10 is BC ONLY.

A. SEQUENCES OF REAL NUMBERS*

Al. Definitions.
An infinite sequence is a function whose domain is the set of positive integers, and is often
denoted simply bya,. The sequence defined, for example, by, = L is the set of numbers

;L L 1 The elements in this set are called the terms of the sequehce, and the nth or general

term of this sequence is 1,

n

A sequence a,, converges to a finite number L 1f lim a, = L.

If a, does not have a (finite) limit, we say the sequence is divergent.

EXAMPLE 1

Does the sequence ,_ - L converge or diverge?
]

SOLUTION: 1im L =0. hence the sequence converges to 0.
EXAMPLE 2

Does the sequence 4 - 4”“—”9 converge or diverge?

At — Ta® +

SOLUTION: jj, 3" +5 _3

a
nse 4t —Tat +9 4

. hence the sequence converges to i

iTopic will not be tested on the AP examination, but some understanding of the notation and terminology is helpful.

EXAMPLE 3

Does the sequence 4 =1+ 2" converge or diverge?
n

SOLUTION: im 1 + &Y — 1. hence the sequence converges to 1.

Ao |

Note that the terms in the sequence o, 1 E S i 7 ... are alternately smaller and larger than 1. We



EXAMPLE 4

Does the sequence = n* =1 converge or diverge?
d,
"

SOLUTION: Since 1im " ! - = the sequence diverges (to infinity).

n

EXAMPLE 5

Does the sequence a, = sin n converge or diverge?

SOLUTION: Because lim sin n does not exist, the sequence diverges. However, note that it does
not diverge to infinity.

EXAMPLE 6

"+ 1 converge or diverge?

Does the sequence a,, = (—1)

SOLUTION: Because lim (-1)* does not exist, the sequence diverges.

Note that the sequence 1, —1, 1, —1,... diverges because it oscillates.

B. INFINITE SERIES
B1. Definitions.

Infinite series

If a, 1s a sequence of real numbers, then an infinite series is an expression of the form

E_i-l'k:i-l'_-+i|'g+h'_—~ g i i
k=1

The elements in the sum are called terms; a,, 1s the nth or general term of the series.

EXAMPLE 7

A series of the form iﬂ% is called a p-series.

=1

The p-series for p =2 is Zf:=%+%+—+“-+L+----

Tl SR "

EXAMPLE 8

The p-series with p =1 is called the harmonic series:

5 o A
ke i )

k=1

EXAMPLE 9

A geometric series has a first term, a, and common ratio of terms, r:



Em'*‘" =a+ar+ar® +--+ar" +
k=1

If there is a finite number S such that

U
lim Z-f.!k =5,
LR =1
then we say that infinite series is convergent, or converges to S, or has the sum S, and we write, in
this case,

iﬂk =5,
=1

When there is no source of confusion, the infinite series (1) may be indicated simply by

z a, or Z”-«‘

EXAMPLE 10
Show that the geometric series 1 + —+—+..4——+... CONVErges to 2.

SOLUTION: Let S represent the sum of the series; then:

.S:Iimtl +%+%+%+_ : _++HJ:

; H Artl |”

e 1
—S:Iim[ —+—+—+---+—J
2 i N "
Subtraction yields

bgo [_ 1
ES—i:ml

v | EHH i

=

Hence, 5§ = 2.

EXAMPLE 11
Show that the harmonic series | +

1.1t il diverges.
2003 7

SOLUTION The terms in the series can be grouped as follows:

1 (1 l] {l 1 1 l] J I
[+—+| =+ — |+ =+ —+—+= [+ =+
2 \3 4 5 6

—t .+—]
7 8) \9 10 16
(7 5)
B
17 32
This sum clearly exceeds
l+Tl+ Et%ﬁﬂé—ﬁ H{L'
which equals

B T
Since that sum is not bounded, it follows that ZL diverges to .

B2. Theorems About Convergence or Divergence of Infinite Series.
The following theorems are important.



THEOREM 2a. If ¥ 4, converges, then lim a,=0.

This provides a convenient and useful test for divergence, since it is equivalent to the statement: If
a, does not approach zero, then the series ¥ 4, diverges. Note, however, particularly that the converse
of Theorem 2a is not true. The condition that a, approach zero is necessary but not sufficient for the
convergence of the series. The harmonic series 'L is an excellent example of a series whose nth
term goes to zero but that diverges (see Example 1 above). The series Y - diverges because

n+l

lim u, = 1. not zero; the series ¥ " does not converge (as will be shown shortly) even though lim a,=0.

at +1

THEOREM 2b. A finite number of terms may be added to or deleted from a series without affecting
its convergence or divergence; thus

i a, and i a,
=1 i=m

(where m is any positive integer) both converge or both diverge. (Note that the sums most likely will
differ.)

THEOREM 2c. The terms of a series may be multiplied by a nonzero constant without affecting the
convergence or divergence; thus

=] o

Z a, and ZL'H* (c=0

both converge or both diverge. (Again, the sums will usually differ.)
THEOREM 2d. If Y a,and ¥ b, both converge, so does Y (a, +b,) -

THEOREM 2e. If the terms of a convergent series are regrouped, the new series converges.

B3. Tests for Convergence of Infinite Series.
THE nth TERM TEST
If]imu,, =0, then z a, diverges-

NOTE: When working with series, it’s a good idea to start by checking the nth Term Test. If the
terms don’t approach 0, the series cannot converge. This is often the quickest and easiest way to
identify a divergent series.

(Because this 1s the contrapositive of Theorem 2a, it’s always true. But beware of the converse!
Seeing that the terms do approach 0 does not guarantee that the series must converge. It just means
that you need to try other tests.)

EXAMPLE 12
" . )
Does y’ -"— converge or diverge®
SOLUTION: Since lim zntl = % =0, the series } 5 H”H diverges by the nth Term Test.

THE GEOMETRIC SERIES TEST
A geometric series z”,-" converges if and only if |r| < 1.

If |r| <1, the sumis li

-

The series cannot converge unless it passes the nth Term Test; lima” = 0 only if || < 1. As noted



earlier, this is a necessary condition for convergence, but may not be sufficient. We now examine the
sum using the same technique we employed in Example 10:

S=limla+ar+ar*+ar’+---+ar");
H—ses i
rS = lim|ar +ar® + ar'+--+ar"+ar**');
(1=r)5=limla- ar**! )
=a- IIIEE{H"'” (and remember: | r| < 1)

=,

EXAMPLE 13
Does 0.3 +0.03 + 0.003 + - - - converge or diverge?

SOLUTION: The series 0.3 +0.03 +0.003 + - - - is geometric witha = 0.3 and » =0.1. Since |r| <
1, the series converges, and its sum is
a 03 _ 03

_ 03 _ 1
[-r 1-0.1 09 3
NOTE: 1 =0.333 ..., which is the given series.

B4. Tests for Convergence of Nonnegative Series.

The series ¥ 4, is called a nonnegative series if a,, > 0 for all n.

THE INTEGRAL TEST

If /(x) is a continuous, positive, decreasing function and f'(n) = a,,, then ¥ 4 converges if and only if
the improper integral |:ﬁ_;'[_1 ) dx converges.

EXAMPLE 14

Does } —"— converge?

At +1
SOLUTION: The associated improper integral is
|”° xdx
v a4l

which equals

B
= {0

N —
mgin[.t +11

1

The improper integral and the infinite series both diverge.

EXAMPLE 15
Test the series Z% for convergence.



o 2 [k
X " = : =

| —dx = lim | xe *dy = lim —e " (1 + x)
x B

Pl e IF

b

(1+b 2\ _2

SOLUTION: ==l =S

€ )

by an application of L’Hopital’s Rule. Thus Zfi converges.

THE p-SERIES TEST
A p-series ZL converges if p > 1, but diverges if p < 1.

This foliéws immediately from the Integral Test and the behavior of improper integrals of the form
1

| —dx.

EXAMPLE 16
1

Does the series 1+,3LJ,+?—l 4ot converge or diverge?
L h fl

SOLUTION: The series 1 +z++-+-=+- is a p-series with p = 3;
A n

hence the series converges by the p-Series Test.

EXAMPLE 17

Does the series ¥ — converge or diverge?

~ 1

SOLUTION: ¥ - diverges, because it is a p-series with , -

i
W H 2

THE COMPARISON TEST

We compare the general term of ¥ 4, the nonnegative series we are investigating, with the general
term of a series known to converge or diverge.

(1) If $ «, converges and a,, = u,, then ¥ 4 converges.

(2) If S, diverges and a,, = u,,, then ¥ 4, diverges.

Any known series can be used for comparison. Particularly useful are p-series, which converge if
p > 1 but diverge if p = 1, and geometric series, which converge if [r| < 1 but diverge if [r| = 1.

EXAMPLE 18
Does zl L__ converge or diverge?
+ 1l
SOLUTION: Sincel L _ . L and thep-series YL converges, El L converges by the
+ 1 fl " +f
Comparison Test.
EXAMPLE 19

Does the series L+ L, L ..., ... converge or diverge?

N2 45 B Jan -1



SOLUTION: L+ _+ L +...+ 1 4. . diverges, since

W 2 \.'5 x'S \.'.3?? -1
P | 1
= - T - T 5
Vin—1 </ 3n V3"

the latter 1s the general term of the divergent p-series b= where ¢ = Lﬂ and p=_.

N

Remember in using the Comparison Test that you may either discard a finite number of terms or
multiply each term by a nonzero constant without affecting the convergence of the series you are
testing.

EXAMPLE 20

Show that ¥ L _1 +2Lj+%3+...+%+... converges.
fl FRUEET i

SOLUTION: For n>2, in and EELH 1s a convergent geometric series with , -

i
i 2

THE LIMIT COMPARISON TEST

If im 2x is finite and nonzero, then '+ and ¥ » both converge or both diverge.
b Z " Z n g g

] —— n

This test 1s useful when the direct comparisons required by the Comparison Test are difficult to
establish. Note that, if the limit is zero or infinite, the test is inconclusive and some other approach
must be used.

EXAMPLE 21

1 ‘ 9
Does ¥ ——— converge or diverge?

SOLUTION: This series seems to be related to the divergent harmonic series, but 1 i 1. so
L+ n

the comparison fails. However, the Limit Comparison Test yields:

lirm = lim —==
n—e= | mca 2+ 1 2

fl

Since ¥ L diverges, I also diverges by the Limit Comparison Test.
5 3 £Cs by mp

n+1

THE RATIO TEST

Let jim ? _ 1, if it exists. Then ¥ 4, converges if L <1 and diverges if L > 1.

n

If L =1, this test is inconclusive; apply one of the other tests.

EXAMPLE 22
Does Z% converge or diverge?
| i
SOLUTION: jip Zea _ g 24D _ ey 2! __ i L,
nse o, e atee(A41)]  areni 41

n!

Therefore this series converges by the Ratio Test.



EXAMPLE 23

Does Zﬂ converge or diverge?
nl

SOLUTION: &%=« _ (+D™ . al _ (2D
fl'l

1 (n+1)! n" a"
and

(n+1y po e
lim(——) =lim(1+—) = e
A—rco " ! A—kaay Fi .

(See §E2.) Since e > 1, ZZ— diverges by the Ratio Test.

EXAMPLE 24

If the Ratio Test 1s applied to any p-series, ZLP then

l
A _ (1417 _(" n ')"'
a, iz \i+1)
HP

I o "
| =1 forall p.
n+1 o= I

and  lim|
fi—ea

But ifp > 1 then ¥ converges, while ifp = I then ¥ L diverges. This illustrates the failure of
the Ratio Test to resolve the question of convergence when the limit of the ratio is 1.

THE nth ROOT TEST
Letlimgfa, =1 if it exists. Then ¥ 4 converges if L <1 and diverges if L > 1.

If L =1 this test is inconclusive; try one of the other tests.
Note that the decision rule for this test is the same as that for the Ratio Test.

EXAMPLE 25
The series Z(ﬁ] converges by the nth Root Test, since

yn
il 1

o - —
l]—[ﬂ"?l_ﬁnﬂ_ _lﬂﬁrrﬂ_ﬁ‘

BS. Alternating Series and Absolute Convergence.

Any test that can be applied to a nonnegative series can be used for a series all of whose terms are
negative. We consider here only one type of series with mixed signs, the so-called alternating series.
This has the form:

K+l k+1
SNi—™a, =a —ay +ay, —a, + -+ =D ag
k=l

where a;, > 0. The series

is the alternating harmonic series.



THE ALTERNATING SERIES TEST

An alternating series converges if:
(1)a, +<a, for all n, and
(2) .J.iln a,=0

EXAMPLE 26

. n+l .
Does the series 5 (=™ converge or diverge?
l

SOLUTION: The alternating harmonic series (=™ converges, since
f

for all n and

(2) l’i& ~ =0.
EXAMPLE 27
Does the series 12 +i_ ... converge or diverge?
SOLUTION: The series 1 _§ %_. - diverges, since we see that lima,= lim F is 1, not 0. (By the

nth Term Test, if a, does not approach 0, then § 4, does not converge.)

DEFINITION

Absolute
convergence

A series with mixed signs is said to converge absolutely (or to be absolutely convergent) if the
series obtained by taking the absolute values of its terms converges; that is, ¥ 4 converges absolutely
ifE_|.fe“|:|.ﬂJ +|a| +:++]|a,|+ - converges.

A series that converges but not absolutely is said to converge conditionally (or to be

conditionally convergent). The alternating harmonic series converges conditionally since it
converges, but does not converge absolutely. (The harmonic series diverges.)

When asked to determine whether an alternating series is absolutely convergent, conditionally
convergent, or divergent, it is often advisable to first consider the series of absolute values. Check
first for divergence, using the nth Term Test. If that test shows that the series may converge,
investigate further, using the tests for nonnegative series. If you find that the series of absolute values
converges, then the alternating series 1s absolutely convergent. If, however, you find that the series of
absolute values diverges, then you’ll need to use the Alternating Series Test to see whether the series
is conditionally convergent.

EXAMPLE 28
Determine whether Z —1)'n’ converges absolutely, converges conditionally, or diverges.
nt+9
SOLUTION: We see that 1im —1, not 0, so by the nth Term Test the series zi 1S
n—i<e ﬂ + J'! +9



divergent.

EXAMPLE 29

. Al
Determine whether y ST converges absolutely, converges conditionally, or diverges.

"

SOLUTION: Note that, since =1 1im
e g

- AL
e ﬂ{ "5 _ . the series passes the nth Term Test.
sin . ;

sin 2
i ]

.F‘l}'

1 .
= — forall a
2

Also,

But# is the general term of a convergent p-series (p = 2), so by the Comparison Test the
nonnegative series converges, and therefore the alternating series converges absolutely.

EXAMPLE 30
Determine whether % [‘E converges absolutely, converges conditionally, or diverges.
yn+1
SOLUTION: ¥ : is a p-series with p = % so the nonnegative series diverges.
i+

We see that — -

; I
o =
Min+1)+1 Un+l and 1"“ 31 0,

== an+1
=+

1s conditionally convergent.

so the alternating series converges; hence 3 1=
Wn+1

APPROXIMATING THE LIMIT OF AN ALTERNATING SERIES

Evaluating the sum of the firstn terms of an alternating series, given by i[—l]*“.f.r*. yields an

=1

approximation of the limit, L. The error (the difference between the approximation and the true limit)
1s called the remainder after n terms and is denoted by R,. When an alternating series is first shown

to pass the Alternating Series Test, it’s easy to place an upper bound on this remainder. Because the
terms alternate in signand become progressively smaller in magnitude, an alternating series
converges on its limit by oscillation, as shown in Figure N10-1.

Approximati on o
2

FIGURE N10-1

after n = 4 terms

Error bound

Because carrying out the approximation one more term would once more carry us beyond L, we



see that the error is always less than that next term. Since |R, | <a, ; |, the error bound for an
alternating series is the first term omitted or dropped.

EXAMPLE 31

The series i[_ t;h! passes the Alternating Series Test; hence its sum differs from the sum
Joml

by less than 1, which is the error bound.

EXAMPLE 32

How many terms must be summed to approximate to three decimal places the value of
|_ |_ |_ [_lJn+1

o

AT T S A A i

(n+1) n* PR
therefore after summing a number of terms the remainder (error) will be less than the first omitted
term.

We seek n such that g = ﬁ <001, Thus 7 must satisfy (n + 1)? > 1000, or n > 30.623. Therefore
fl+

31 terms are needed for the desired accuracy.

SOLUTION: Since —— < — and lim — =0, the series converges by the Alternating Series Test;

C. POWER SERIES
C1. Definitions; Convergence.

An expression of the form

N g L | ] &
Zn‘kﬂ. —if,_l +-f|!._.k+|!4'i.1. = '+-f|!:.k 4t i1}

ol

where the a’s are constants, is called a power series in x; and

e

& v 3 " \
ZH*[.T—{E] =iy +i (X —al+a,(x—day +-- -+-f.!ﬁ[.'l.'—-f.!_ln+--- (2)
ol

is called a power series in (x — a).

If in (1) or (2) x is replaced by a specific real number, then the power series becomes a series of
constants that either converges or diverges. Note that series (1) converges ifx = 0 and series (2)
converges if x = a.

RADIUS AND INTERVAL OF CONVERGENCE

If power series (1) converges when [x| <r and diverges when [x| > r, thenr is called the radius of
convergence. Similarly, r is the radius of convergence of power series (2) if (2) converges when [x —
a| <r and diverges when [x —a|>r.



The set ofall values ofx for which a power series converges is called its interval of
convergence. To find the interval of convergence, first determine the radius of convergence by
applying the Ratio Test to the series of absolute values. Then check each endpoint to determine
whether the series converges or diverges there.

EXAMPLE 33

Find all x for which the following series converges:

S TS T o, P (3)

SOLUTION: By the Ratio Test, the series converges if

m+l
Jim}ﬂ{ :]ilnnH =lim|x|=|x| < 1.
S i, Ly [ B

Thus, the radius of convergence 1s 1. The endpoints must be tested separately since the Ratio Test
fails when the limit equals 1. Whenx =1, (3) becomes 1 + 1 + 1 + - - - and diverges; when x = —1,
(3) becomes 1—1 + 1—1 + --- and diverges. Thus the interval of convergence is —1 <x < 1.

EXAMPLE 34

For what x does Z 7 converge?

SOLUTION: |.l['ﬂ H = lim }7
i nes gy 42

The radius of convergence is 1. Whenx = 1, we have %_% +% ——+--, an alternating convergent

series; when x = —1, the series is _+_1+£ +..., which diverges. Thus, the series converges if — 1 <

=lim|x|=|x| <L
A—soo

x=1.

EXAMPLE 35

For what values of x does ¥~ converge?
Y

n+l ¥

SOLUTION: jim [%as1] — 1y |2 . ]

==a | == |(g4+1)! x°

which is always less than 1. Thus the series converges for all x.

EXAMPLE 36

Find all x for which the following series converges:

T ()

|u =) . |x—2] |x-2

; — = lim =
mee | g -“-"“| 2 (x—2) = 2 2

SOLUTION: “m}”ﬂ

which is less than 1 if [x — 2| < 2, that is, if 0 <x < 4. Series (4) converges on this interval and



diverges if [x —2|> 2, that s, if x <0 or x > 4.

Whenx =0, (4)is1 —1+1—-1+---and diverges. Whenx =4, (4)is 1 +1+1+---and
diverges. Thus, the interval of convergence is 0 <x <4.

EXAMPLE 37

Find all x for which the series i nlx" CONVerges.

SOLUTION: i ax" converges only at x = 0, since

. W :
lim— =lim{n+ Dx ==

LT A—pe
n

unless x = 0.

C2. Functions Defined by Power Series.
Let the function f be defined by

flx)= z-f.!k'.’l'— a)t
ki)

=a,+a(r—a)+-+alx—a)+--; (1)

its domain is the interval of convergence of the series.

Functions defined by power series behave very much like polynomials, as indicated by the
following properties:

PROPERTY 2a. The function defined by (1) is continuous for each x in the interval of convergence
of the series.

PrROPERTY 2b. The series formed by differentiating the terms of series (1) converges to f (x) for
each x within the radius of convergence of (1); that is,

f{x)= Z ka, (x —a)*™
1

m=-l -
=a +2a,(x—a)+---+naix—ay +---- (2)

Note that power series (1) and its derived series (2) have the same radius of convergence but not
necessarily the same interval of convergence.

EXAMPLE 38

2

= K = 2 A’
L/et f'[-T}':Z X k| X S X

' = +— +
= kk+1y 12 2.3 aln+ 1)

Find the intervals of convergence of the power series for f (x) and f (x).

SOLUTION: jjy| ¥ (Dl _ .

-E—M|[.ri'+l]l[ri'+2] x |

also,

1 l l
ly=—+—+ ...+ +
s 1-2 = 2-3 n+1)




and

i I 1 -1
fl—1)=- + e
-2 23 ala+1)

Hence, the power series for f converges if —1 =x = 1.

o k-1 i i | a1
For the derivative /x)=% = s
e=fkr1 23 4 n+1

x n+l
lim e
el 42 x

also,
and

Hence, the power series for f ' converges if —1 =x < 1.

Thus, the series given for f (x) and f '(x) have the same radius of convergence, but their intervals
of convergence differ.

PrOPERTY 2c. The series obtained by integrating the terms of the given series (1) converges to
" #t) ar for each x within the interval of convergence of (1); that is,

: a(x—a)  a,(x—ay a(x—a)™
fitidr = da,(x—a) + = + —= + o
 Fi 2 3 n+l

_ i lr—a)
Z k+1
EXAMPLE 39

Let fiy = n; Show that the power series for |rf-r__mf_1 converges for all values of x in the interval

- Xy

k+1

of convergence of the power series for f (x).

SOLUTION: Obtain a series for by long division.

(1- x)p*

1t 2x 432 Fd4x ...
[-2x+x*)l

Tr—=dx 4 2x°
3y — 2z

x —6x +3x°

4x’ =3x"
Then,

l 5
T=14+2x+3x" +- -+ (n+1)x" 4+
(I— x)

It can be shown that the interval of convergence is —1 <x < 1.
Then by Property 2¢



[l+2.1.'+3.1.2+- o {n+Dx" 4+ 4] dx

ro1 TTiE
| (1— xP i

o

l
l—:r+.x+.x’+.x-‘+---+.t““+----

Since when x = 0 we see that c = 1, we have

—51 1 sl R R et SRR

| —x

Note that this is a geometric series with ratio » =x and witha = 1; if x| < 1, its sumis 2 - _!

l-r 1-x

C3. Finding a Power Series for a Function: Taylor and Maclaurin
Series.
If a function f (x) is representable by a power series of the form
cotci(x—a)+e,(x—a)+-+c, (x—a) +-

on an interval [x — a| < r, then the coefficients are given by

(a)
l'.n—

il

Taylor series

The series

Jr.r.r[ )

~(x—a)’ +- -+
2! Pl

is called the Taylor series of the function f about the number a. There is never more than one power
series in (x —a) for f (x). It 1s required that the function and all its derivatives exist atx = a if the
function f'(x) is to generate a Taylor series expansion.

When a = 0 we have the special series

f™{a) .
- \Xx—a)y +---

flx)=fla)+ flladx—a)+

) i 1)
X4 4 -t
2! il

F(x)= FI0)+ F(D)x+
called the Maclaurin series of the function f; this is the expansion of f'about x = 0.

EXAMPLE 40
Find the Maclaurin series for f'(x) = e*.
SOLUTION: Here f'(x) =¢*, ..., f™ (x) = ¢*, ..., for all n. Then
fO=1,..,f®0=1,...,

for all n, making the coefficients ¢ = ﬁ:

" VR i " b
e =1l+x4+—+—+:-F—+4-
21 3l il
EXAMPLE 41

Find the Maclaurin expansion for f (x) = sin x.



f(x) =sinx; Joy =0

F(x)=cosx; Floy=1;
f7(x) =—sinx; F7(0) = 0;
FP(xy=—cos x; 20 =-1
SOLUTION: N x)=sinx; 0 =0.
Thus,
sinx = .1'—£+'1;— o (=) T 1
S (2n—1)!
EXAMPLE 42
Find the Maclaurin series for ) = ﬁ |
SOLUTION:
flx)=(1-x)7"; FO) =1;
FiEy=0-xy"; Flo=1
Frix)y=21-a% o =2
0 =31-x" £y =3
e =nil— 2= Fo0)=nl.
Then
l—l.r =l+x+xX +x 4+ X"+

Note that this agrees exactly with the power series in x obtained by different methods in Example
39.

EXAMPLE 43
Find the Taylor series for the function /' (x) = In x about x = 1.
SOLUTION:



fix)=Inx;
fix) = %
=L
N (x)= 3—3

—3!
f‘ilﬂ |:1|-_:| = = :
X

(x—1) 1)

fily=Inl=0;
=1

f”[l._:l — —I.:

M=z

¥y =-3r

(0 ==0"(n=1)".

4

« (-1)"'(n—1)!
Frifays ————
X
Then
Inx=(x-1)- el +

2

—13" =1
L EDTY =

A

COMMON MACLAURIN SERIES

We list here for reference some frequently used Maclaurin series expansions together with their

intervals of convergence:

3 4

INTERVAL OF
FUMCTION MACLAURIMN SERIES CONVERGENCE
3 5 WA=l 2r-1
_ : : i :
sin X 1—L+1 — =1y —oo & X & oo Y
3! 5! i2n—13!
.4 4 wa—-1 __rn—-2
X X (-1 x
oS X - —t—- = S (2)
21 4l (2n—=2)!
; x"
e’ l+ x4+ —+—+ +—+ —oo £ X = oo (3
3! il
2 | 4 =1 R
In(l + x) 1_L+L_L+ (—1)" x +oe -l=x=1 ()
2 3 4 i
B 0 _1..': 3 (—1 :In ._k.'i.v—'. o
tan~ x f——t—— —+ + + -1 =x =1 ()
3 5 7 2n—1

FUNCTIONS THAT GENERATE NO SERIES.

Note that the following functions are among those that fail to generate a specific series in (x — a)

because the function and/or one or more derivatives do not exist at x = a:




SERIES IT FAILS

FUNCTION TO GENERATE
In x about 0

In(x—1) about 1

Vx-—2 about 2

Jx=2 about 0

tan x about %

W+ x about —1

C4. Approximating Functions with Taylor and Maclaurin

Polynomials.
The function f'(x) at the point x = a is approximated by a Taylor polynomial P, (x) of order n:

f(a) F"a)

| (x—a)’ +---+

fix)y=FP(x)= fla)y+ flaix—a)+ (x—a).

il
The Taylor polynomial P, (x) and its firstn derivatives all agree ata withf and its firstn

derivatives. The order of a Taylor polynomial is the order of the highest derivative, which is also the
polynomial’s last term.

In the special case where a = 0, the Maclaurin polynomial of order n that approximates f'(x) is

If-u[ {}'I 5 fl:“i I'{} 'I .
e e X .
2! !

P(x)= f(0)+ f10)x +

The Taylor polynomial P (x) atx = 0 is the tangent-line approximation to f'(x) near zero given by

J &) =Py (x) =1 (0) +1(0)x.

It is the “best” linear approximation to f at 0, discussed at length in Chapter 4 §L.

A NOTE ON ORDER AND DEGREE

A Taylor polynomial has degree n if it has powers of (x —a) up through the nth. If f ) (a) = 0,
then the degree of P, (x) is less thann. Note, for instance, in Example 45, that the second-order
polynomial P, (x) for the function sinx (which 1s identical with P; (x)) 1S r+0- ;L_ or justx, which
has degree 1, not 2. )

EXAMPLE 44
Find the Taylor polynomial of order 4 at 0 for f'(x) = e *. Use this to approximate f(0.25).

SOLUTIONS: The first four derivatives are —e ¥, e™*, —e” * and e * ; at a = 0, these equal —1, 1,
—1, and 1 respectively. The approximating Taylor polynomial of order 4 is therefore

y Py
] e e e e g
TR TR

With x = 0.25 we have



" 1 - 1 ; l
~025 . - o 253t - & sl AL] fioet a5y
& 1-0.25+ Ertﬂ.uﬁj 3![(}..,:5,1 + r (0.235)

= ().T788.

—0.25 ;

This approximation of e is correct to four places.

In Figure N10-2 we see the graphs of /' (x) and of the Taylor polynomials:

Blxi=1
Bix)=1-x
X
Bx)y=1=d4-—
) 2!
: X
Bixy=l—wd— = —;
' 21 3
: 4
X i x
ﬁ[_[]: ST FL T 1 S
20 3 4l
|rl._-||'.'l."|
_ e — o Poix)
"
e
e,
i ~
MH""-. --"'--________ -“,-,[.1'1
\ =
i A
Pi(x)
; =t P\I —

[0,1.3] % [0,1]
FIGURE N10-2

Notice how closely P, (x) hugs f (x) even as x approaches 1. Since the series can be shown to
converge for x > 0 by the Alternating Series Test, the error in P4 (x) is less than the magnitude of the

first omitted term, 1_7 o ﬁ atx = 1. In fact, P, (1) = 0.375 to three decimal places, close to el ~
0.368. S

EXAMPLE 45
(a) Find the Taylor polynomials P, P;, Ps, and P atx = 0 for f'(x) = sin x.
(b) Graph f'and all four polynomials in [—27,27] x [-2,2].
(c) Approximate sin% using each of the four polynomials.
SOLUTIONS:
(a) The derivatives of the sine function at 0 are given by the following table:



order of
deriv 0 |
deriv of
sin X sinx |cosx | =Sinx|—cosx |sinx | cosx | —sinx | —Ccosx
deriv of
sinx at () 0 l 0 -1 0 l 0 |

From the table we know that

(]
4
=
Lh

i)

|

P(x)=x;

k|

ey b2
P;[.U—.t—?.

[-2n2x] = [-2.2]

FIGURE N10-3a

[2rn2x] x[-2,2]

FIGURE N10-3b
(¢) To four decimal places, sin 7 = 0.8660. Evaluating the polynomials at EJ . we get

rg(%)zlmu_ jﬁ(%)=ﬂ.ﬂﬁﬁﬂ_ a(%j]:n.amﬁ_ ﬂ[:.—I;j:|=ﬂEﬁ(ﬂ.

We see that P, 1s correct to four decimal places.

EXAMPLE 46
(a) Find the Taylor polynomials of degrees 0, 1, 2, and 3 generated by f (x) =Inx atx = 1.
(b) Graph f and the four polynomials on the same set of axes.

(c) Using P,, approximate In 1.3, and find a bound on the error.



SOLUTIONS:

(a) The derivatives of Inx at x = 1 are given in the table:

order of deriv 0 l 2 3
deriv of In x In x 1 —# i
x ek x*
deriv at x = 1 0 1 -1 2
From the table we have
B(x)=0;
Bix)=(x—1)
_lr.
Bix)=(x-1)- Sl
(x—1° (x—1V7
Bixy=(x-1)— £ J

2 3

(b) Figure N10—4 shows the graphs of Inx and the four Taylor polynomials above, in [0,2.5] X
[-1.1].

[0,2.5] x [=1,1]

FIGURE N10-4
(©In13=P,(1.3)=(13—1)—(13-1] _ . —0.045=0.255.

For x = 1.3 the Taylor series converges by the Alternating Series Test, so the error is less than
the magnitude of the first omitted term:

; WX
[3-1
': 2 ) =0.009

R,(1.3) <

EXAMPLE 47
For what positive values of x is the approximate formula
In(1+x)=,_%

correct to three decimal places?
SOLUTION: We can use series (4) of Common Maclaurin Series:



e
Inf] B —— ==
2 3

For x > 0, this is an alternating series with terms decreasing in magnitude and approaching 0, so
the error committed by using the first two terms is less thanli_ If Ji{nﬂmi then the given

approximation formula will yield accuracy to three decimal places. We therefore require that |x* <
0.0015 or that [x| <0.114.

CS5. Taylor’s Formula with Remainder; Lagrange Error Bound.

When we approximate a function using a Taylor polynomial, it is important to know how large the
remainder (error) may be. If at the desired value of x the Taylor series is alternating, this issue is
easily resolved: the first omitted term serves as an upper bound on the error. However, when the
approximation involves a nonnegative Taylor series, placing an upper bound on the error is more
difficult. This 1ssue is resolved by the Lagrange remainder.

TAYLOR'S THEOREM. If a function f and its first (n + 1) derivatives are continuous on the interval |x
— a| <r, then for each x in this interval
" a)

(x—a) +-- 4=
2! !

7

fixi= fla)y+ Fladx—a) +

(x—a) + R (x).

where

lr'-:nf.:['_-_:”: x—a :I.Tf'.

R(x)="-

(n+1)!
and c 1s some number between a and x. R, (x) is called the Lagrange remainder.

Note that the equation above expresses f (x) as the sum of the Taylor polynomial P, (x) and the
error that results when that polynomial is used as an approximation for f'(x).

When we truncate a series after the (n + 1)st term, we can compute the error bound R,, according
to Lagrange, if we know what to substitute for c. In practice we find, not R, exactly, but only an upper
bound for it by assigning to ¢ the value between a and x that determines the largest possible value of
R,. Hence:

F0 () x—a)™ |
(n+1)! |

R_(x) < max
the Lagrange error bound.

EXAMPLE 48
Estimate the error in using the Maclaurin series generated by e* to approximate the value of e.

SOLUTION: From Example 40 we know that f (x) = ¢* generates the Maclaurin series

" X x
e =l+x+—+---+—+4:-:-
2! n!

The Lagrange error bound is

E"r I::_J.' ::I.'HL

(n+1)! (0<c<x)

R (x)< max

To estimate e, we use x = 1. For 0 < ¢ < 1, the maximum value of e€ is e. Thus:



1 1 1 :
e=l+14+ 77 + 37 +---+ — with error less than

S
i in+1)!-

EXAMPLE 49
Find the Maclaurin series for In (1 + x) and the associated Lagrange error bound.
SOLUTION:

flxy=In(l+x); J(0)y =0;
Fia—= i l_-. =1
o ] i
1 {.1‘}=—“+ ”_,'. Fooy=-1;
2
(@)= s ) : o =2
i n-1 I ¥
Ty = M F"0) = 1 =D
1+ x)"
m+l} ':_l-]"""i'j
il .
: { T
Then
S o
Infle2)=r——4 et (=1 e H (),
( 2 3 4 LU 1 g

where the Lagrange error bound is

lleay
|[]+L-]"+’ .ri'+]|'

R (x) < max

NOTE: For 0 <x < 1 the Maclaurin series is alternating, and the error bound simplifies to
R.(%) < ‘_””l the first omitted term. The more difficult Lagrange error bound applies for —1 < x <O0.
4+

EXAMPLE 50
Find the third-degree Maclaurin polynomial for g, cos ('_I-J,%]_ and determine the upper bound on
the error in estimating f°(0.1). -

SOLUTION: We first make a table of the derivatives, evaluated at x = 0 and giving us the
coefficients.



I'.lz]
a : (1]
n d_lrl'ﬂll[_'l__:l __Irl'ﬂll[ﬂ_] o= .f I .:I
!
e r['J N2 J2
s | x4 = No No
L o] > 3
f 3\ I f
Coly| R /2 2
; sin{ ¥+ ) y 7
| '? II';
2 —cm[.r+£) =N pinie
= | 4 | ) 7.3
i Iu; |';
3 -:m|.r+—) s N
\ 2 2.3!

¥ e 5 e 4 i T3

Since this is not an alternating series for x = 0.1, we must use the Lagrange error bound:

@
f |.ILJ-:'1'I1 ;

where x =0.1 and 0 <¢ <0.1.

K50 < max

Note that g = L‘ﬂ_r.;[l:_-+%lj is decreasing on the interval 0 <c¢ < 0.1, so its maximum value occurs at

¢ = 0. Hence:

L‘ﬂﬁ|llt'+%.) ) mﬁ(ﬂ’f%) : 2
ar C T ar P a e

R,(x) < max

C6. Computations with Power Series.

The power series expansions of functions may be treated as any other functions for values of x that lie
within their intervals of convergence. They may be added, subtracted, multiplied, divided (with
division by zero to be avoided), differentiated, or integrated. These properties provide a valuable
approach for many otherwise difficult computations. Indeed, power series are often very useful for
approximating values of functions, evaluating indeterminate forms of limits, and estimating definite
integrals.

EXAMPLE 51

Compute L to four decimal places.

SOLUTION: We can use the Maclaurin series,

; T ._3 1.-1
& =l+x+—+—+—+:::
21 3 4l
and let y= _L to get

1 1 L

I

+ e
42 83 164 32:5!
= 1 - 0.50000 + 0,12500 — 0.02083 + 0.00260 — 0.00026 + R,
= 0.60651 + R, .

e’ =1- + R,

l
2

Note that, since this series converges by the Alternating Series Test, Rs 1s less than the first term
dropped:



R, < —— < 0.00003,
> 646!

S0 — = 0.6065, correct to four decimal places.

‘\i

EXAMPLE 52
Estimate the error if the approximate formula
r X
vi+x=1+—

is used and [x| < 0.02.
SOLUTION: We obtain the first few terms of the Maclaurin series generated by f,y = 1+ .

Fix) =l x; Foy =1

s | -12 "
Fix) :E“ £ T fi0 ==
- ¥ l -2 54
£7(x) = = 1+ 27 FU0)=—=
e -1 —5i7 e
i () = 21+ 27, Vaud (1) =
Then
|_+1 ]+l_l£+ii_...
2 42 86

Note that for x < 0, the series is not alternating, so we must use the Lagrange error bound. Here
. where —0.02 < ¢ <0.02. With [x| < 0.02, we see that the upper bound uses ¢ = —0.02:

|R| is ,f fn'. }'1.
IR|<— 292 0.00005.
R(1—0.02)"
EXAMPLE 53
Use a series to evaluate jjy, 50F
x—0 X
SOLUTION: From series (1) in Common Maclaurin Series,
3 .l.-‘n
sinx =x—-—+4——--::
38
Then
unE [ ! ]
lim =slmjl—-——+——---1=1,
=0 x x| 3§

a well-established result obtained previously.

EXAMPLE 54

Inix + 1)

Use a series to evaluate i
SOLUTION: We can use series (4) in Common Maclaurin Series, and write



lim — i —
20 Iy *03 & 9
i
T3
EXAMPLE 55
| &
= fptgi ]_]
—1 ; 21 3l
limm —= lim =
x—=0 x x—=i 1
—1‘:+% 2 A
-t~ F =ty )
——=
EXAMPLE 56

Show how a series may be used to evaluate n.

SOLUTION: Since % =tan” 1. a series for tan~! x may prove helpful. Note that

~  dt
fan " x = -
o 14¢#
and that a series for __ is obtainable easily by long division to yield

1+
l
L4

If we integrate this series term by term and then evaluate the definite integral, we get

== gt = ges

- .l."' _._..* .l'.l (=1 ]n—'. _"_;,:_;
tan” X=X ————— i —

3 5 7 2n—1
(Compare with series (5) in Common Maclaurin Series and note especially that this series
converges on —1 <x <1.)

For x =1 we have:

1 1
—+—_—+.
15 7
Then ﬂ:—[ T
§ 3R N
and _
n=4/1 —%+%—%+...],

Here are some approximations for w using this series:

25

number of
ferms |

2 | s ‘ 10 50 | 59 ‘ 60
approximation | 4 | 267 | 334 | 304 | 3.8 | 3.2 | 3.6 | 3.12

Since the series is alternating, the odd sums are greater, the even ones less, than the value of w. It is
clear that several hundred terms may be required to get even two-place accuracy. There are series

expressions for w that converge much more rapidly. (See Miscellaneous Free-Response Practice,
Problem 12.)

EXAMPLE 57



. i o
Use a series to evaluate | ~* 4 to four decimal places.
S

~* 4. cannot be expressed in terms of elementary functions, we can write

a series for e*, replace u by (—x?), and integrate term by term. Thus,

4 .ll.b
S B R I
213
50 ol A 5 T 0.l
e dy=x_2 X X
Jo 3 521 TN 0
0001  0.00001 0.0000001
=0.1- + - +
3 10 42
= 0.1 — 0L00033 + 0.000001 + K,
= 009967 + R,.

Since this