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Introduction

This text is an introduction to geometric topology and differential geometry via
the study of surfaces, and more generally serves to introduce the student to the
relation of the modern axiomatic approach in mathematics to geometric intu-
ition. The idea of combining geometry and topology in a text is, of course, not
new; the present text attempts to make such a combination of subjects accessi-
ble to the junior/senior level mathematics major at a university or college in the
United States. Though some of the deep connections between the topology and
geometry of manifolds can only be dealt with using more advanced techniques
than those presented here, we do reach the classical Gauss-Bonnet Theorem -
a model theorem for the relation of topology and geometry - at the end of the
book.

The notion of a surface is the unifying thread of the text. Our treatment
of point set topology is brief and restricted to subsets of Euclidean spaces;
the discussion of topological surfaces is geometric rather than algebraic; the
treatment of differential geometry is classical, treating surfaces in R3. The
goal of the book is to reach a number of intuitively appealing definitions and
theorems concerning surfaces in the topological, polyhedral and smooth cases.
Some of the goodies aimed at are the classification of compact surfaces, the
Gauss-Bonnet Theorem (polyhedral and smooth) and the geodesic nature of
length-minimizing curves on surfaces. Only those definitions and methods
needed for these ends are developed. In order to keep the discussion at a
concrete level, we avoid treating a number of technicalities such as abstract
topological spaces, abstract simplicial complexes and tensors. As a result, at
times some proofs seem a bit more circuitous than might be standard, though
we feel that the gain in avoiding unnecessary technicalities is worthwhile.

There are a variety of ways in which this book could be used for a semes-
ter course. For students with no exposure to topology, the first three chapters,
together with a sampling from Chapters IV and V, could be used as a one-
semester introduction to point set and geometric topology, with a taste of smooth
surfaces thrown in. Alternately, Chapters IV-VIII could be used as a quite
leisurely first course on differential geometry (skipping the few instances where
the previous chapters are used, and adding an intuitive discussion of the Euler
characteristic for the Gauss-Bonnet Theorem). Students who have had a se-
mester of point set topology (or a real analysis course in which either R" or
metric spaces are discussed), could cover a fair bit of Chapters II-VIII in one
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semester, though some material would probably have to be dropped. It is also
hoped that the book could be used for individual study.

This book developed out of lecture notes for a course at Bard College
first given in the spring of 1991. I would like to thank Bard students Melissa
Cahoon, Jeff Bolden, Robert Cutler, David Steinberg, Anne Willig, Farasat
Bokhari, Diego Socolinsky and Jason Foulkes for helpful comments on various
drafts of the original lecture notes. Thanks are also due to Matthew Deady,
Peter Dolan, Mark Halsey, David Nightingale and Leslie Morris, as well as to
the Mathematics Institute at Bar-Ilan University in Israel and the Mathematics
Department at the University of Pennsylvania, who hosted me when various
parts of this book were written. It is, of course, impossible to acknowledge every
single topology and differential geometry text from which I have learned about
the subject, and to credit the source of every definition, lemma and theorem
(especially since many of them are quite standard); I have acknowledged in
the text particular sources for lengthy or non-standard proofs. See the section
entitled Further Study for books that have particularly influenced this text. For
generally guiding my initial development as a mathematician I would like to
thank my professors at Reed College and Cornell University, and in particular
my advisor, Professor David Henderson of Cornell. Finally, I would like to
thank Ann Kostant, mathematics editor at Birkhauser, for her many good ideas,
and the helpful staff at Birkhauser for turning my manuscript into a finished
book.



To the Student

Surfaces

Surfaces can be approached from two viewpoints, topological and geometric,
and we cover both these approaches. There are three different categories of
surfaces (and, more generally, "manifolds," a generalization of surfaces to all
dimensions) that we discuss: topological, simplicial and smooth. In contrast
to higher dimensional analogs of surfaces, in dimension two (the dimension
of concern in this book), all three types of surfaces turn out to have the same
topological properties. Hence, for our topological study we will concentrate on
topological and simplicial surfaces. This study, called geometric topology, is
covered in Chapters II-III.

Geometrically, on the other hand, the three types of surfaces behave quite
differently from each other. Indeed, topological surfaces can sit very wildly in
Euclidean space, and do not have sufficient structure to allow for manageable
geometric analysis. Simplicial surfaces can be studied geometrically, as, for
example, in Section 3.9. The most interesting, deep and broadly applicable
study of the geometry of surfaces involves smooth surfaces. Our study of
smooth surfaces will thus be fundamentally different in both aim and flavor
than our study of topological and simplicial surfaces, focusing on geometry
rather than topology, and on local rather than global results. The methodology
for smooth surfaces involves calculus, rather than point-set topology. This
study, called differential geometry, is studied in Chapters IV-VIII. Although
apparently distinct, geometric topology and differential geometry come together
in the amazing Gauss-Bonnet Theorem, the final result in the book.

Prerequisites

This text should be accessible to mathematics majors at the junior or senior level
in a university or college in the United States. The minimal prerequisites are
a standard calculus sequence (including multivariable calculus and an acquain-
tance with differential equations), linear algebra (including inner products) and
familiarity with proofs and the basics of sets and functions. Abstract algebra
and real analysis are not required. There are two proofs (Theorem 1.5.2 and
Proposition 1.6.7) where the Least Upper Bound Property of the real numbers is
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used; the reader who has not seen this property (for example, in a real analysis
course) can skip these proofs. If the reader has had a course in point-set topol-
ogy, or a course in real analysis where the setting is either R" or metric spaces,
then much of Chapter I could probably be skipped over. In a few instances we
make use of affine linear maps, a topic not always covered in a standard linear
algebra course; all the results we need concerning such maps are summarized
in the Appendix.

Rigor vs. Intuition

The study of surfaces from topological, polyhedral and smooth points of view
is ideally suited for displaying the interaction between rigor and geometric in-
tuition applied to objects that have inherent appeal. In addition to informal
discussion, every effort has been made to present a completely rigorous treat-
ment of the subject, including a careful statement of all the assumptions that are
used without proof (such as the triangulability of compact surfaces). The result
is that the material in this book is presented as dictated by the need for rigor, in
contrast to many texts which start out more easily and gradually become more
difficult. Thus we have the odd circumstance of Section 2.2, for example, being
much more abstract than some of the computational aspects of Chapter V. The
reader might choose to skip some of the longer proofs in the earlier chapters
upon first reading.

At the end of the book is a guide to further study, to which the reader
is referred both for collateral readings (some of which have a more informal,
intuitive approach, whereas others are quite rigorous), and for references for
more advanced study of topology and differential geometry.

Exercises

Doing the exercises is a crucial part of learning the material in this text. A good
portion of the exercises are results that are needed in the text; such exercises have
been marked with an asterisk (*). Exercises range from routine computations
(particularly in the chapters on differential geometry) to rather tricky proofs.
No attempt has been made to rate the difficulty of the problems, since doing so
is highly subjective. There are hints for some of the exercises in the back of the
book.
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CHAPTER I

Topology of Subsets of Euclidean Space

1.1. Introduction

Although the goal of this book is the study of surfaces, in order to have the
necessary tools for a rigorous discussion of the subject, we need to start off by
considering some more general notions concerning the topology of subsets of
Euclidean space. In contrast to geometry, which is the study of quantitative
properties of spaces, that is, those properties that depend upon measurement
(such as length, angle and area), topology is the study of the qualitative proper-
ties of spaces. For example, from a geometric point of view, a circle of radius
I and a circle of radius 2 are quite distinct - they have different diameters,
different areas, etc.; from a qualitative point of view these two circles are es-
sentially the same. One circle can be deformed into the other by stretching,
but without cutting or gluing. From a topological point of view a circle is also
indistinguishable from a square. On the other hand, a circle is topologically
quite different from a straight line; intuitively, a circle would have to be cut to
obtain a straight line, and such a cut certainly changes the qualitative properties
of the object.

While at first glance the study of qualitative properties of objects may
seem vague and possibly unimportant, such a study is in fact fundamental to a
more advanced understanding of such diverse areas as geometry and differential
equations. Indeed, the subject of topology arose in the 19th century out of the
study of differential equations and analysis. As usually happens in mathematics,
once an interesting subject gets started it tends to take off on its own, and today
most topologists study topology for its own sake. The subject of topology is
divided into three main areas:

(1) point set topology - the most dry and formal aspect of the three, and
the least popular as an area of research, but the basis for the rest of
topology;

(2) geometric topology - the study of familiar geometric objects such as
surfaces and their generalizations to higher dimensions by relatively
concrete means, and as such the most intuitively appealing branch of
topology (the author's bias);
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(3) algebraic topology - the application of the methods of abstract algebra
(for example, groups) to the study of topological spaces.

In this chapter we will be dealing with some aspects of point set topology;
in Chapters II and III we will be dealing with geometric topology. We will
not be making use of algebraic topology in this book, although for any further
topological study of surfaces and other geometric objects algebraic tools are
quite important.

Throughout this book we will be using the following notation. Let Z, Z+,
Q, R denote the sets of integers, positive integers, rational numbers and real
numbers respectively. Let R" denote n-dimensional Euclidean space. We will
let it I, ... , it, denote the coordinates of R", though for R3 we will often use
x. y, z for readability. Let O" denote the origin in R". If v and w are vectors
in R", let (v, w) denote their inner product, and let Ilvll denote the norm of v.
Finally, we let H" denote the closed upper half-space in R", which is the set

xi

H"= ER"Ix">0 .

X"

The boundary of H" is the set M" C 1131" defined by

x
a 1EII" _ E R" I xn = 0

x
(Observe that 31H1" is just R"-1 sitting inside R").

1.2. Open and Closed Subsets of Sets in R"

We start by recalling the concept of an interval in the real number line.

Definition. Let a, b E R be any two points; we define the following sets:

Open interval:

(a, b) = {.x E R I a < x < b).

Closed interval:

[a,b]=(X ERIa <x <b).
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Half-open intervals:

[a,b)={xERIa<x<b},
(a,b]=(xERIa<x<b).

Infinite intervals:

[a,oo)=(xERIa<x),
(a,oo)=(XERa<x),

(-oo, b] = {x E R I x < b},

(-oo,b) = (X E R I x < b),

(-oo, oo) = R. 0

Observe that there are no intervals that are "closed" at oo or -oo (for
example, there is no interval of the form [a, oo]), since oo is not a real number,
and therefore it cannot be included in an interval contained in the real numbers.
We are simply using the symbol oo to tell us that an interval is unbounded.

The words "open" and "closed" here are used in a very deliberate manner,
reflecting a more general concept about to be defined for all R". Intuitively, an
open set (in this case an interval) is a set that does not contain its "boundary"
(which in the case of an interval is its endpoints); a closed set is one that does
contain its boundary. A set such as a half-open interval is neither open nor
closed. In dimensions higher than 1 the situation is trickier. The closest analog
in R2 to an interval in R would be a rectangle; we could define an open rectangle
(that is, all points (y) E R2 such that a < x < b and c < y < d), a closed
rectangle, etc. See Figure 1.2.1. Unfortunately, whereas intervals account for
a large portion of the subsets of R encountered on a regular basis, rectangles
are not nearly so prominent among subsets of R2. Much more common are
blob-shaped subsets of R2, which can still come in open, closed, or neither
varieties. See Figure 1.2.2. Although the idea of openness and closedness still
refers intuitively to whether a subset contains its boundary or not, one cannot
characterize open and closed sets in R" simply in terms of inequalities.

Let us start with open sets in R"; we will define closed sets later on in terms
of open sets.

Definition. Let p E R" be a point, and let r > 0 be a number. The open ball
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open box
c

d

a

Figure 1.2.1

b

Figure 1.2.2

in R" of radius r centered at p is the set Or(p, R") defined by

Or(P,R")={x ER" I IIx - PII < r}.

More generally, let A c R" be any subset, let p E A be a point, and let r > 0
be a number. The open ball in A of radius r centered at p is the set Or (p, A)
defined by

Or(P,A)= Or(P,R")nA=(x E A I Ilx - PII < r).

The closed ball in A of radius r centered at p is the set Or (P, A) defined by

Or(p,A)={x EA I Ilx - phi 5 r}. 0
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Example 1.2.1. Let A C R2 be the square [0, 41 x [0, 4]. The sets 01((2 ), A),

01( (o ), A) and O, ((o ), A) are shown in Figure 1.2.3 (i). Let B C R2 be the

x-axis R x (0). The sets O, ((o ), B) and O, ((0 0), B) are shown in Figure 1.2.3

(ii) 0

(i)

4

L i 4
4 1 0 1 -1 0 1

Figure 1.2.3

The following definition yields the intuitive concept we are looking for.

Definition. A subset A C R" is an open subset of R" if for each point p E A
there is an open ball centered at p that is entirely contained in A; in other words,
for each p E A, there is a number r > 0 such that 0,(p. R") C A. 0

One of the simplest examples of an open subset of R" is R" itself. We
also consider the empty set to be an open subset of every R"; the empty set
contains no points, and therefore there is no problem assuming that for each
point p E 0 there is an open ball centered at p which is entirely contained in 0.
(You might worry that by similar arguments one could prove almost anything
about the empty set, but that isn't really an objection; further, it works out quite
conveniently to have the empty set open.) A more interesting example of open
sets is seen in the following lemma, in which it is proved that open balls in R"
are indeed open sets.

Lemma 1.2.2. An open ball in R" is an open subset of R".

Proof. Let X E R" be a point and let r > 0 be a number. To prove that O, (x, R")
is an open set, we need to show that for each point y E O,(x, R") there is a
number e > 0 such that O,(y, R") C Or (x, R"). For given y, we choose f
to be any positive number such that c < r - 11y - xli. See Figure 1.2.4. If
z E Of (y, R") is any point, then using the triangle inequality we have

IIz-x1l 5I1z-yll+l1y-x1l <(r-Ily-xII)+Ily-xll=r.
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Figure 1.2.4

Hence z E Or(x, R"), and the result is proved.

An example of a non-open set is any closed or half-open interval in R.
Consider for example the closed interval [a, b]. It is seen that any open ball of
the form Or (b, lit) contains values greater than b, and so is not contained inside
the interval [a, b]; similarly for the point a. Hence [a, b] is not open.

The following lemma summarizes the most important properties of open
subsets of R. In the more general setting of topological spaces these properties
are taken axiomatically as the properties that the collection of all open subsets
of the topological space must satisfy. Observe that in part (ii) of the lemma the
union may be infinite.

Lemma 1.2.3.

(i) ' and 0 are open in R".
(ii) The union of open subsets of 1R" is open.

(iii) The intersection of finitely many open subsets of R" is open.

Proof. (i). This was dealt with above.

(ii). Let {U; },E, be a collection of open subsets of R", and let x E UiE1 U; be
a point. Then x E Uk for some k E 1. By the openness of Uk there is a number
r > 0 such that 0,(x, IR") C Uk. Hence O,(x, ') C UiE, U;, and it follows
that U,,., U; is open in R".

(iii). Let (U,,... , be a finite collection of open subsets of R", and let
x E f ; " _ , U, be a point. Then X E U; for all i E (1, ... , m ). By the openness of
U; there is a number ri > O such that 0,.,(x. R") C U, . If r = min(r,, ... , r }

then O,(x, R") C U; for all i, and hence O,(x, R") c n,i=i U. Thus l"' i U,
is open in IR". (Note where the finiteness was used.)
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Since we wish to study subsets of R", such as surfaces, we need to look a
little more closely at open sets. Consider the closed interval [0, 2] c R. The
subset (1, 2] is certainly not open in R, but consider it as a subset of [0, 2]. The
obstacle to (1, 2) being open in R is that there is no open ball in R centered at
2 and entirely contained in (1, 21. If, however, we think of [0, 2] as our entire
universe, then we cannot really have the same complaint against (1, 2], since
we can have as much of an open ball centered at 2 in (1, 2] as in [0, 2]. A set
which is not open in R can still be viewed as open in some sense when sitting
in a proper subset of R. The same considerations hold for R".

Definition. Let A C R" be a set. A subset S C A is a relatively open subset
of A, often referred to simply as an open subset of A, if for each point p E S,
there is an open ball in A centered at p that is entirely contained in S. In other
words, for each p E S, there is a number r > 0 such that Or(p, A) C S. If
p E A is a point, then an open neighborhood in A of p is an open subset of A
containing p. 0

Example 1.2.4. The set

A=((Y)ERZIx>Oandv>0)

is an open subset of the closed upper half-plane H2 (though it is not open in
R2). The reader can supply the details. 0

The above definition makes it clear that we cannot simply speak of an
"open set" without saying in what it is open. The following lemma gives a
useful characterization of relatively open sets.

Lemma 1.2.5. Let A C R" be a set. A subset S C A is an open subset of A if
there exists an open subset U of R" such that S = U n A.

Proof. Suppose first that S is an open subset of A. By hypothesis, for each
p E S there is a number rp > 0 such that Oro (p, A) C S. It is not hard to see
that

S=UOr,(p,A).
PES

Let U C R" be defined by

U=UOro(p,R").
pES
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By Lemmas 1.2.2 and 1.2.3 it follows that U is an open subset of R". Further,

UnA= [U0,(p.R")]nA=U[Or,(p,R")nA]
pES PES

=UOr,(p,A)=S.
PES

Now suppose that there exists an open subset U of R" such that S = U n A.
Every point p E S is also in U, and hence for each such p there is a number
r > 0 such that Or (p, R") C U. Hence

Or(p,A) = Or(p,R")nAC UnA =S,

and it follows that S is open in A.

As seen in Example 1.2.4, if A C R" is a set and U is an open subset of A,
then it does not necessarily follow that U is an open subset of R". If, however,
the set A is itself open in R", then, as seen in the following lemma, everything
works out as nicely as possible.

Lemma 1.2.6. Let A C B C C C R" be sets. If A is an open subset of B, and
B is an open subset of C, then A is an open subset of C.

Proof. By Lemma 1.2.5 there exist sets A', B' C R" which are open in R" and
suchthatA = A'nBandB = B'nC. ThenA = A'n(B'nC) = (A'nB')nC.
Since A' n B' is an open subset of R" by Lemma 1.2.3, it follows from Lemma
1.2.5 that A is open in C.

The properties stated in Lemma 1.2.3 for open subsets of R" also hold for
open subsets of any subset of R". The following lemma is proved similarly to
Lemma 1.2.3, and we omit the proof.

Lemma 1.2.7. Let A C R" be any set.

(i) A and 0 are open in A.
(ii) The union of open subsets of A is open in A.

(iii) The intersection of finitely many open subsets of A is open in A.

The following lemma is a relative version of Lemma 1.2.5.

Lemma 1.2.8. Let A C B C R" be subsets. A subset U C A is open in A iff
there is an open subset V of B such that U = V n A.

Proof. Suppose U is an open subset of A. By Lemma 1.2.5, there is an open
subset U' of 1R" such that U = U' n A. If we define the set V to be V = U' n B,
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then V is an open subset of B, and V n A = (U' n B) n A = U' n (B n A) =
U' n A = U as desired.

Now suppose that U is a subset of A such that U = V n A for some open
subset V of B. Then there exists an open subset V' of R" such that V = V' n B.
Therefore U = V n A = (V' n B) n A = V' n (B n A) = V' n A, which
means that U is an open subset of A. 0

The following lemma discusses the behavior of open sets in products and
will be technically important later on.

Lemma 1.2.9. Let A C R" and B C RI be sets.

(i) If U C A and V C B are open subsets, then U x V is an open subset
of A x B.

(ii) If W C A x B is an open set, then for every point (pi, P2) E W there
are numbers E1, E2 > 0 such that OE1(p1, A) x OE2(p2, B) C W.

Proof. Exercise 1.2.7. 0
We now turn to closed sets, once again starting with the non-relative case.

Although we have an intuitive notion of a closed set as one that contains its
boundary, the easiest way to define a closed set is as follows, entirely ignoring
the notion of boundary.

Definition. A subset C C R" is dosed in R" if the complement of C, namely
R" - C, is an open subset of R". 0

As seen in the following example, it is important to realize that a set in R"
can be open, closed, both, or neither. Hence one cannot demonstrate that a set
is closed by showing that it is not open.

Example 1.2.10. It is seen in Exercise 1.2.1 that the complement of a single
point in R" is an open subset of R"; hence a single point in R" is a closed
subset. A closed interval in R is a closed subset, since the complement in R
of an interval of the form [a, b] is the set (-oo, a) U (b, oo), and this latter
set is open in R. A half-open interval (a, b] in R is neither open nor closed,
as the reader can verify. The set R" is both open and closed in R"; we have
already seen that it is open, and observe that R" - R" = 0, which is also open in

R. 0

The following lemma is the analog for closed sets of Lemma 1.2.3.
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Lemma 1.2.11.

(i) R" and 0 are closed in R".
(ii) The union of finitely many closed subsets of R" is closed.

(iii) The intersection of closed subsets of R" is closed.

Proof. Exercise 1.2.9. 0

Based upon our experience with relatively open sets, two possible ways of
defining relatively closed sets come to mind: complements of relatively open
subsets and intersections with closed sets of R". The following lemma shows
that these two methods yield the same results.

Lemma 1.2.12. Let C C A C R" be sets. Then the set A - C is open in A iff
there exists a closed subset D of R" such that C = D n A.

Proof. Since A - C is open in A, by Lemma 1.2.5 there exists an open
subset U of R" such that A - C =u n A. Observe that A - U = C. Let
D = R" - U, which is closed in R" by definition. Using standard properties
of set operations we now have

DnA=[R"-U]nA=[R"nA]-U=A-U=C.

.o=. By hypothesis there exists a closed subset D of R" such that C = D n A.
Let U = R" - D, which is open in R" by definition. Hence

A-C=A-[DnA]=A-D=An[R"-D]=AnU,
where the last set is open in A by Lemma 1.2.5. 0

We can now make the following definition in good conscience.

Definition. Let A C R" be a set. A subset C C A is a relatively closed
subset of A, often referred to simply as a closed subset of A, if either of the two
conditions in Lemma 1.2.12 holds. p

Example 1.2.13. The interval (0, 1] is a closed subset of the interval (0, 2),
since the set (0, 2) - (0, 11 _ (1, 2) is open in (0, 2). Q

The properties stated in Lemma 1.2.11 for closed subsets of R" also hold
for closed subsets of any subset of R"; as before, we omit the proof.
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Lemma 1.2.14. Let A C R" be any set.

(i) A and 0 are closed in A.
(ii) The union of finitely many closed subsets of A is closed in A.

(iii) The intersection of closed subsets of A is closed in A.

Consider the interval (0, 1) C R. Certainly (0, 1) is not closed in R, though
it is contained in a variety of closed subsets of R, such as [-17, 25.731 ]. There
is, however, a "smallest" closed subset of R containing (0, 1), namely [0, 1].
The following definition and lemma show that there exists a smallest closed
subset containing any given set.

Definition. Let D C A C R" be sets. The closure of D in A, denoted D, is
defined to be the intersection of all closed subsets of A containing D. 0

Two comments about the above definition. First, since A is closed in itself
and contains D, there is at least one closed subset of A containing D, so the
intersection in the definition is well-defined. Second, given any set D, the
closure of D in one set containing it need not be the same as the closure of D
in some other set containing it. For example, the closures of (0, 1) in each of
(0, 1 ] and [0, 1) are not the same. Although the set in which the closure is taking
place is not mentioned in the notation D, this set should always be clear from
the context. That D is indeed the smallest closed set containing D is shown by
the following lemma.

Lemma 1.2.15. Let D C A C R" be sets. The set D is a closed subset of A
containing D and is contained in any other closed subset of A containing D.

Proof. Exercise 1.2.14. 0

Exercises

1.2.1*. Show that the following sets are open in R2:

(1) the complement of a single point in R";

(2) the open upper half-plane in R2 (that is, the set { (XY ) E R2 I y > 0) _

1112 - all);
(3) the set (1, 2) x (5, 7).
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1.2.2*. Find an example to show that the phrase "finitely many" is necessary
in the statement of Lemma 1.2.3 (iii).

1.2.3*. Prove that the complement of a finite subset of R" is open.

1.2.4*. Prove that a subset of R" is open if it is the union of open balls.

1.2.5*. Let A C I[8" be a set. Show that for any point p E A and any number
r > 0, the open ball O, (p, A) is an open subset of A.

1.2.6*. Let A C R". Show that a subset U C A is open in A if for each point
p E U there is an open subset V C A containing p.

1.2.7*. Prove Lemma 1.2.9.

1.2.8. Show that the following sets are closed in

(1) the straight line R x (0);

(2) H2;

(3) the set [1, 2] x [5, 7].

1.2.9*. Prove Lemma 1.2.11.

m

1.2.10*. Find an example to show that the phrase "finitely many" is necessary
in the statement of Lemma 1.2.11 (ii).

1.2.11*. Prove that a finite subset of ]l8" is closed in 118".

1.2.12*. Let A C 1[8" be a set of points, possibly infinite, for which there exists
a number D > 0 such that fix - yll > D for all points x, y E A. Prove that A
is a closed subset of R. Find an example to show that the following weaker
condition does not suffice to guarantee that a set is closed in R n : A C 18" is
a set of points, possibly infinite, such that for each point x E A there exists a
number D > 0 such that llx - yll > D for all points y E A.

1.2.13*. Let A C B C C C R" be sets. Show that if A is a closed subset of
B, and B is a closed subset of C, then A is a closed subset of C.

1.2.14*. Prove Lemma 1.2.15.

1.2.15*. Let A C R" be a set. Show that for any p E A and any number
r > 0, the closed ball O, (p, A) is a closed subset of A.

1.2.16*. Let A C 11" be any set. If U C A is open in A, and if x E U is any
point, show that U - (x} is open in A.
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1.2.17*. Let S C R be a closed set that is bounded from above. Show that S
contains its least upper bound. Similarly for greatest lower bounds.

1.2.18*. (i) Let A C R2 be a non-empty set contained in a straight line in R2.
Show that A is not open in R2.

(ii) Let B C R2 be contained in a closed half-plane (that is, all points in R2
that are either on, or on a given side of, a straight line in R2). Suppose that B
intersects the boundary of the closed half-plane. Show that B is not open in R2.

(iii) Let R1, ... , RP C R2 denote p distinct rays from the origin, and let
Tp=R1U...URp,as in Figure 1.2.5.Assume p>3.Let CCT,,xRCR3
be such that C is entirely contained in (R1 U R2) x R, and C intersects the z-axis
in R3. Show that C is not open in Tp x R. (This example may seem far-fetched,
but it turns out to be useful later on.)

Figure 1.2.5

1.3. Continuous Maps

Continuous maps are to topology what linear maps are to vector spaces, namely
maps that preserve the fundamental structures under consideration. Intuitively,
continuous maps are those maps that do not "tear" their domains. A continuous
map should thus have the property that if two points in the domain get closer and
closer to each other, then so do their images. There are a number of equivalent
rigorous definitions of continuous maps of subsets of Euclidean space; we will
use the standard topological definition of continuity in terms of open sets, rather
than the a-S definition used in calculus and real analysis (though we will refer
to the a-S in Proposition 1.3.3, Example 1.3.4 and a few exercises).
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We start with an example of a non-continuous map. Let f : R -> 1[1 be
defined by

x, ifx < 0;
f(x) - t x+l, ifx>0. (1.3.1)

Intuitively, this function is not continuous since there is a "tear" at x = 0,
represented by a gap in the graph of the function; see Figure 1.3.1. Now, take
any open interval containing f (0) = 0, for example (-1,

Z
), thinking of this

interval as being contained in the codomain. The inverse image of this interval
is

1 1 1

f-'((-2, 2)) = (-2,0].

Figure 1.3.1

x

Observe that the inverse image of an open interval is not open. On the other
hand, if we take any open interval in R which does not contain f (0) (note that
x = 0 is the only point of non-continuity of the function), then its inverse image
is in fact an open interval. Continuity or lack thereof thus appears to be detected
by looking at the openness or non-openness of inverse images of open intervals;
we take this observation as the basis for the following definition. We cannot
"prove" that the following definition corresponds exactly to our intuition, since
we cannot prove intuitive things rigorously. The best one can hope for is that
all desired intuitively reasonable properties hold, and all examples work out as
expected; such is the case for the following definition.

Definition. Let A C iR" and B C R' be sets, and let f : A -+ B be a map. The
map f is continuous if for every open subset U C B, the set f (U) is open
in A. 0
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In the above definition it is only required that if a set U is open then f -'(U)
is open; it is not required that whenever f -' (U) is open that U be open.

Example 1.3.1. (1) Let A C R" be a set, and let f : A -+ RI be the constant
map given by f (x) = c for all x E A, where c is some point in R"'. If W C R"'
is any set that contains c then f -' (W) = A, and if W does not contain c then
f -' (W) = 0. Since A and 0 are both open in A, we see that the inverse image of
any open subset of the codomain is open in the domain; hence the constant map
is continuous. (Note, however, that inverse images of non-open subsets of the
codomain are also seen to be open in the domain, and so even for a continuous
map the openness of the inverse image of a subset of the codomain does not
imply that the subset itself is open.

(2) Let A C R" and B C R°` be sets. The projection maps 7r1: A x B -+ A and
ir2: A x B -> B are both continuous maps. Let U C A be an open set. Then
(7ri)-' (U) = U x B, and Lemma 1.2.9 (i) implies that this latter set is open in
A x B. Hence 7r1 is continuous. The other case is similar. 0

The following lemma gives a useful variant on the definition of continuity.

Lemma 1.3.2. Let A C R" and B C Pt be sets, and let f : A -+ B be a map.
The map f is continuous iff for every closed subset C C B, the set f -' (C) is
closed in A.

Proof. First assume f is continuous. Let C C B be closed. Then B - C is
open in B, and so f -' (B - C) is open by hypothesis. Using standard properties
of inverse images, we have

f-'(B-C)= f -'(B) - f-'(C) = A - f-'(C).

Since A - f -' (C) is open, it follows that f -' (C) is closed. We have thus
proved one of the implications in the lemma. The other implication is proved
similarly. 0

We now show that the above definition of continuity in terms of open sets
is equivalent to the e-3 definition from real analysis, given in part (3) of the
following proposition.

Proposition 1.3.3. Let A C R" and B C R' be sets, and let f : A -+ B be a
map. The following statements are equivalent.

(1) The map f is continuous.
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(2) For every point p E A, and every open subset U C B containing f (p),
there is an open subset V C A containing p such that f (V) C U.

(3) For every point p E A and every number c > 0, there is a number
S > 0 such that if x E A and IIx - pII < S then II f (x) - f (p) 11 < E.

Proof. Statement (3) is equivalent to the following statement:

(3) For every point p E A and every number E > 0, there is a number S > 0
such that

f (Os (p, A)) C OE (f (p). B).

We now prove (1) (2) (3') (1).

(1) = (2). Let P E A and U C B containing f (p) be given. By assumption,
the map f is continuous, so that f -I (U) is an open subset of A. Observe that
p E f -1(U). By the definition of openness there is thus some open ball of
the form 03 (p, A) contained in f-I (U). It follows that f(O8(p, A)) C U.
By Exercise 1.2.5 the open ball Oa (p, A) is an open subset of A, so let V =
06 (p, A).

(2) (3'). Let P E A and c > 0 be given. By Exercise 1.2.5 the open ball
OE (f (p), B) is an open subset of B. By assumption, there is an open subset
V C A containing p such that f (V) C Of (f (p), B). By the definition of
openness there is some open ball of the form Os (p, A) contained in V. It
follows that f (Oa (p, A)) C OE (f (p), B).

(3') (1). Let U C B be an open subset; we need to show that f -I (U) is open
in A. Let p E f - 1 (U) be any point; observe that f (p) E U. Since U is open
there is an open ball of the form OE (f (p), B) contained in U. By hypothesis
there is a number S > 0 such that f (Oa (p, A)) C Of (f (p), B). It follows that
f(06(p, A)) C U, and thus 06 (p, A) C f(U). It follows that f-'(U) is
open in A. 0

Example 1.3.4. Let m and b be real numbers such that m 54 0. We will use
condition (3) of Proposition 1.3.3 to show that the map f : R --> R defined by
f (x) = mx + b is continuous. For each p E R and each number E > 0 we
need to find a number S > 0 such that if x E R is a number and Ix - pI < S,
then If (x) - f (p) I < e. For given p and c we choose S to be S = m , in which
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case Ix - PI < 8 implies

If(x)-f(P)I =I(mx+b)-(mp+b)I =lmlIx - PI
< ImIS=ImIImI =e.

This proves the continuity of f. 0

The most important method of combining functions is by composition.
The following lemma shows that continuity behaves nicely with respect to
composition.

Lemma 1.3.5. Let A C R", B C Rm and C C RP be sets, and let f : A -+ B
and g: B -+ C be continuous maps. The composition g o f is continuous.

Proof. Let U C C be an open set. Then g-' (U) is an open subset of B, and
hence f -' (g-' (U)) is an open subset of A. By a standard result concerning
inverse images, we know that (g o f )-' (U) = f (g-' (U)), and the lemma
follows. 0

Suppose we have a function f : A -+ B, and we have A broken down as a
union A = A1 U A2, where A 1 and A2 might or might not be disjoint. Suppose
we know further that f I A 1 and f I A 2 are both continuous; can we conclude
that f is continuous? The answer is no, as seen using the function given by
Equation 1.3.1. As mentioned, this function is not continuous. However, we
can write R = (-oo, 0) U (0, oo), and certainly f I(-oo, 0] and f I(0, oo) are
continuous. Fortunately, as seen in the following lemma, we can rule out such
annoying examples by putting some restrictions on the sets A 1 and A2.

Lemma 1.3.6. Let A C It" and B C RI be sets, and let f : A -+ B be a map.
S u p p o s e that A = A 1 U A2, and f J A I and f I A2 are both continuous. If A l and
A2 are both open subsets of A or both closed subsets of A, then f is continuous.

Proof. Suppose that both Al and A2 are open subsets of A. Let U C B be an
open set. Then f-1 (U) = (fIA1)-'(U)U(fIA2)-'(U). Theset(fIA1)-'(U)
is an open subset of A 1, and since A 1 is open in A it follows from Lemma 1.2.6
that (f I A 1)-' (U) is open in A. Similarly for (f I A2)-' (U). It now follows
easily that f -' (U) is open, and this suffices to prove that f is continuous. The
case where both A, and A2 are closed is similar, using Exercise 1.2.13. 0

The following corollary is easily deducible form Lemma 1.3.6, and we omit
the proof.
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Corollary 1.3.7. Let A C R and B C R', and suppose that A = A, U A2,
where A, and A2 are both open subsets of A or both closed subsets of A.
Suppose further that a function f : A -+ B is defined in cases by

f
I

f,(x), ifx E A,;
(X)

f2(X), ifX E A2,

where fl: A, -* B and f2: A2 -+ B are continuous functions, and f, (x) _
f2(x) for all x E A, fl A2. Then f is continuous.

The following lemma shows that the matter of the continuity of a map into
a product space works out as nicely as possible. If A,, ... , Ak are subsets of
Euclidean space, let iri: A, x ... x Ak --* A; be the projection map for each
iE(1, ..,p}.
Lemma 1.3.8. Let A, A,,... , Ak be subsets of Euclidean space, and let

f:A-->A,x...xAk
be a function. Let fi : A -+ A; be defined by fi = f oTri for each i E (1, ... , p }.

Then f is continuous if all the functions fi are continuous.

Proof. Suppose that f is continuous. Since we know that the projection maps
Jr,: A, x ... x Ak -* Ai are continuous (as seen in Example 1.3.1, which works
with any number of factors), it follows from Lemma 1.3.5 that the functions
fi = iri o f are continuous. Now suppose that the functions fi are continuous.
We will show that f is continuous by showing that condition (2) of Proposition
1.3.3 holds. Let p E A be a point and let U C A, x . . . x AP be an open set
containing f (p) = (f, (p),... , fk(p)). Applying Lemma 1.2.9 (which works
for any number of factors) we deduce that there are numbers E,, ... , Ek > 0
such that Of, (f, (p), A,) x ... x Of, (fk (p), Ak) C U. See Figure 1.3.2. Let

V = f-1(Of,(fi(p), A,) x ... x Of,(fk(p). Ak)).

By a standard property of inverse images of maps, we see that

k

v = n(f r'(of,(fi(p). A,)).
i=1

By hypothesis on the maps fi, the sets (fi)-' (OE, (fi (p), Ai )) are open in A. It
follows from Lemma 1.2.7 that V is open in A. It is straightforward to see that
V works as required in condition (2) of Proposition 1.3.3. 0
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A

Figure 1.3.2

We take this opportunity to mention another type of map which we will
need later on, though the concept is not nearly as important as continuity.

Definition. Let A C R" and B C R"' be sets, and let f : A -+ B be a map. The
map f is an open map if for every open subset U C A, the set f (U) is open in
B. The map f is a closed map if for every closed subset C C A, the set f (C)
is closed in B. 0

As seen in Exercise 1.3.11, there exist maps that are any given combination
of continuous or not, open or not, and closed or not.

Exercises

1.3.1*. Let B C A C R" be sets. Show that the inclusion map is B -+ A is
continuous.

1.3.2. Find two discontinuous functions f : A -> B and g: B --* C such that
the composition g o f is continuous. (Thus the converse of the above Lemma
1.3.5 does not hold.)

1.3.3*. Let B C A C R" and C C Rm be sets, and let f : A -+ C be a
continuous map. Show that f I B: B --> C is continuous.
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1.3.4. Let B C A C 1R" be sets. Show that if B is an open (respectively,
closed) subset of A, then the inclusion map is B -+ A is an open (respectively,
closed) map.

1.3.5*. Let A C 1R" and B C R' be sets, and let f : A -> B be a bijective
map. Prove that f is open iff f is closed. (Note that bijectivity is crucial, since
Exercise 1.3.11 shows that a non-bijective map can be open but not closed or
vice-versa.)

1.3.6. Let U C IR"+"' = RR" x 1R"' be an open set. Show that the projection
maps Try : U -+ IR" and 7r2: U -+ 1R' are open maps.

1.3.7*. Let A C IR" and B C R"' be sets. A map f : A -> B is called uniformly
continuous if for every number c > 0 there exists a number S > 0 such that if
.r, %, E A are any two points then fix - 1, 11 < 3 implies II f (x) - f (y) 11 < E.
(The point of uniform continuity is that the 8 only depends upon e, not upon
the particular points of A.) Find an example of a continuous function that is not
uniformly continuous. (See [BT, § 16] for a solution.)

1.3.8. Let f, g: IR - IR be continuous functions. Define the functions
max(f, g) and min{ f, g) by setting

max(f. g)(x) _
f (x). if f (x) ? g(x)

8(x), if g(x) f (x),

min( f, g}(.r) =
r f (x), if f (x) g(x)

l g(x). if g(x) f W.

Prove that max(f, g) and min(f, g) are continuous.

1.3.9*. Let a be a non-zero real number. Show that the map f : R - (0) --3-
R - (0) defined by f (x) = is continuous. (Use the E-8 definition of conti-
nuity. See [SK2, Chapter 6] for a solution.)

1.3.10*. Let F: R" -+ IR' be an affine linear map (as defined in the Appendix).
Show that F is continuous. (Use the E-8 definition of continuity.)

1.3.11. A map from one subset of Euclidean space to another can be any
combination of continuous or not, open or not, and closed or not (there are eight
such possibilities). Find one map for each of the eight types.
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1.4. Homeomorphisms and Quotient Maps

Just as two vector spaces are considered virtually the same from the point of
view of linear algebra if there is a linear isomorphism from one to the other, we
now define the corresponding type of map between subsets of Euclidean space,
the existence of which will imply that two sets are virtually the same from the
point of view of topology.

Definition. Let A C R" and B C R' be sets, and let f : A -+ B be a map.
The map f is a homeomorphism if it is bijective and both it and its inverse are
continuous. If f is a homeomorphism, we say that A and B are homeomorphic,
and we write A -- B. Q

A few remarks on homeomorphisms are needed. First, if two spaces are
homeomorphic, there may be many homeomorphisms between the spaces. For
example, the two maps f, g: (-1, 1) -* (-2, 2) given by f (.r) = 2x and
g(x) = -2x are both homeomorphisms. Second, the relation of "homeomor-
phic" is seen to be an equivalence relation on the collection of all subsets of
Euclidean spaces. Third, a reader who has seen abstract algebra should be
careful not to confuse the similar sounding words "homeomorphism" and "ho-
momorphism." Homeomorphisins are to topological spaces what isomorphisms
are to groups; homomorphisms play the analogous role for groups as continuous
maps do for topology.

Example 1.4.1. Any open interval (a, b) in R is homeomorphic to R. We con-
struct the desired homeomorphism in two stages, first constructing a homeo-
morphism f : (a, b) (- z ,

2
), and then constructing a homeomorphism

g: (- i , i) R; the composition g o f will be the desired homeomorphism
(a, b) -+ R. The map f is given by the formula

f(x) =
7r x - n(b+a)

b-a 2(b-a)
This map is continuous by Example 1.3.4. It is left to the reader to verify that
f has an inverse, and that the inverse is also continuous. The map g is given
by g(x) = tan x. That g and its inverse are continuous (on the given domain)
is also standard. 0

Recall that a linear isomorphism of vector spaces is defined to be a linear
map that is bijective. Any bijective map has an inverse map simply as a map
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of one set to another; it can be proved that if a linear map is bijective then its
inverse - which is not a priori linear - will in fact be a linear map. Does the
analog hold for continuous maps? That is, if a continuous map is bijective, is the
inverse map necessarily continuous? If the answer were yes, then the definition
of homeomorphism would be redundant. The following example shows that
the answer is no; thus continuous maps do not behave as nicely as linear maps.

Example 1.4.2. Let g: [0, 11 U (2.3] -+ [0, 2] be defined by

x, ifxE[0,1),
g(x)- (x-1, ifxE(2,3].

The map g slides the interval (2, 3] to the left one unit. It is easy to verify
that g is bijective and continuous. However, we can show that the the inverse
map g-1: [0, 2] -+ [0, 11 U (2, 3] is not continuous. Using Lemma 1.2.5 it can
be verified that the set U = (0, 11 is an open subset of the set [0. 11 U (2, 3].
However, the set (g-')-(U) = (0, 11 is not an open subset of [0. 2]. Hence
g-1 is not a continuous map. 0

The following lemma gives a useful characterization of homeomorphisms.

Lemma 1.4.3. Let A C R" and B C Rm be sets, and let f : A --> B be a map.
Then f is a homeomorphism ii f is bijective and for every subset U C B, the
set U is open in B iff f - 1 (U) is open in A.

Proof. Exercise 1.4.2. 0
In addition to homeomorphisms we need to introduce another type of map,

inspired by the idea of gluing things together. To make a cylinder out of a piece
of paper, we cut out a rectangular strip and then glue two of the opposing sides
together. See Figure 1.4.1. Although in practice one would probably have the
two sides overlap a little bit if one were using glue, let us assume that the edges
are glued together with no overlap (as could be done with tape).

Figure 1.4.1
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In the example of the cylinder each point in one of the vertical edges of
the original rectangle is glued to a point on the other vertical edge, and all
other points in the rectangle are left alone. One way of thinking about the
relation of the cylinder to the rectangle is that corresponding pairs of points on
the vertical edges in the rectangle become transformed into single points in the
cylinder; points in the rectangle not in the vertical edges stay single points in
the cylinder. We can thus view the gluing process as breaking up the rectangle
into subcollections of points, each subcollection of points being collapsed to
one point as the result of the gluing process. The following definition gives the
most general way possible to break up a set into a collection of disjoint subsets.

Definition. Let X C R" be a set. A partition of X is a collection P = (A;) jEI
such that U;E,A; =XandA;nA, =0foralli 96 j. 0

Given a set X C R" and a partition P = (A1 };E, of X, we are looking for a
set Y C RI that is intuitively the result of collapsing each set A; in the partition
to a single point. We want Y to be a set such that there exists a surjective map
q: X --> Y with the property that if a, b E X are points, then q(a) = q(b) iff a
and b belong to the same set A,; equivalently, the collection of sets of the form
q-1 (y) is the same as the original partition P. Although this requirement on
the map q is certainly necessary, it is unfortunately not sufficient. The problem,
as seen in the following example, is essentially the same as that encountered in
Example 1.4.2.

Example 1.4.4. Let X = [0, 1 ] U (2, 4], and let P be the partition of X contain-
ing the set A = [3, 41, with every other set in P a one-element set. A logical
choice for a space Y and a map q: X -* Y as above would be Y = [0, 1 ] U (2, 3]
and

x, if x e [0, 1] U (2, 3];
q(x) - { 3, if x E [3, 4].

It is straightforward to see that {q (y) I y E Y} = P. On the other hand, let
Y, = [0, 2] and let q, : X --- Y1 be given by

x, if x E [0, 1];

q, (x) = x - 1, if x E (2,3];

2, if x E [3, 41.

The map q, also has the property that {q, 1(y) I y E Y) = P. The set Y,
is, however, not what we would like to call the result of collapsing the part-
ition P. 0
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To rule out maps such as q, in the above example, we use Lemma 1.4.3 as
inspiration. Observe that the maps under consideration are not injective, so we
cannot use the definition of homeomorphisms as a guide, since a non-injective
map has no inverse.

Definition. Let A C W' and B C JR' be sets. A map q: A --+ B is a quotient
map if f is surjective and if, for all subsets U C B, the set U is open in B iff
q-1 (U) is open in A. If X C 1R" is a set and P is a partition of X, a set Y C RI
is an identification space of X and P if there is a quotient map q: X - * Y such
that {q-' (),) I y E Y} = P. 0

Observe that quotient maps are automatically continuous. Not every con-
tinuous surjection is a quotient map, as can be seen from Example 1.4.2.

It is not at all evident from the above definition that for any set X C H8"
and for any partition P of X there is an identification space of X and P. In the
general setting of arbitrary topological spaces it can be shown that identification
spaces always exist, but these spaces are abstractly defined and it is not always
clear whether such a space can be found sitting in some Euclidean space. We
do not tackle this question in general, though we do prove in Chapter II that
identification spaces do exist in the particular cases we will use to construct
surfaces. The following lemma says that identification spaces are uniquely
determined if they exist.

Lemma 1.4.5. Let X C It" be a set and let P be a partition of X. If Y C 1R'
and Z C RP are identification spaces of X and P, then Y -- Z.

Proof. Let q: X -+ Y and r: X Z be quotient maps such that

{q-'(y) IyEY}=P=(r-'(z)IzEZ).
Define a map h: Y -+ Z as follows. For each y E Y, the set q- 1 (y) equals some
set in P, and this set in P also equals r- (z) for some unique z E Z; define
h(y) = z. It is straightforward to see that h o q = r. Since r is continuous
and q is a quotient map it follows from Exercise 1.4.5 that h is continuous. A
similar construction with the roles of Y and Z reversed can be used to construct
the analogous map g: Z -+ Y, which is continuous and, as can be verified, is
the inverse map of h. Thus h is a homeomorphism. 0

Example 1.4.6. Let X = [0. 1 ] and let P be the partition of X containing the set
10, 1), with all other members of P single-element sets. Then the identification
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space of X and P is the circle S1, which can be seen using the quotient map
q: [0. 1] -- SI given by

_ cos 2Trx
q(x) sin 2,rx

That q is a quotient map could be verified directly, though we will take the
easy route and use a more general result given in Proposition 1.6.14. Intu-
itively q simply takes the interval [0, 11 and glues the endpoints together. It is
straightforward to verify that the sets q-I (y) are precisely the sets in P. 0

One important way of producing identification spaces is to attach two sets
along homeomorphic subspaces; for example, we might wish to make a sphere
out of cloth by taking two pieces of cloth shaped like unit disks and sewing
them to one another along their boundaries. See Figure 1.4.2.

Figure 1.4.2

Definition. Let X, Y C R" be disjoint sets. Suppose that X' C X and Y' C Y
are sets, and h: X' -+ Y' is a homeomorphism. Define a partition P(h) on X U Y
to be the collection of all pairs (x, h(x)) for x E X', and all single-element sets
(z) for z E (X - X') U (Y - Y'). A set W C Rm is the result of attaching X
and Y via the map h, denoted XUtiY, if W is an identification space of X U Y
and P(h). 0

As with identification spaces in general, it is not at all evident that for any
X, Y and h as in the above definition there is an attaching space XUtiY; again,
we will prove in Section 2.6 that identification spaces do exist in the particular
case we will be using to construct surfaces.

Example 1.4.7. Let X = [-2, -11 and Y = [1, 2], let X' = (-2, -1) and
Y' = (1, 2), and let h: X' -+ Y' be defined by h(-2) = 2 and h(- 1) = 1. Then
the circle S' is an attaching space XUhY. One can construct the appropriate
quotient map from X U Y to S1 by mapping X to the lower half-circle of SI and
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Y to the upper half-circle of S', by a map such that -2 and 2 are sent to (o )

and -1 and I are sent to (01). 0

Exercises

1.4.1. Show that any open disk in R2 is homeomorphic to R2. Show that any
open rectangle (a, b) x (c, d) is homeomorphic to R2.

1.4.2*. Prove Lemma 1.4.3.

1.4.3. Let A C R" and B C R'° be sets, and let f : A -+ B be a continuous
bijection. Show that f is a homeomorphism if it is an open map iff it is a closed
map.

1.4.4*. Let f : A -> B be a continuous bijection such that for every a E A there
is an open subset U C A containing a such that f (U) is open in B and f JU is
a homeomorphism from U onto f (U). Show that f is a homeomorphism.

1.4.5*. Let X, Y and Z be subsets of Euclidean space, and let f : X --> Y
and g: Y -+ Z be maps. Suppose that f is a quotient map. Show that g is
continuous if g o f is continuous.

1.4.6. Find the identification space in each of the following cases (the result
will be a familiar object).

(1) Let X be the unit disk in R2, and let A be the partition of X containing
the unit circle as one member, with all other members of A single-element
sets.

(2) Let Y = RI and let B be the partition of Y containing the closed unit disk
as one member, with all other members of B single-element sets.

(3) Let Z = R, and let C be the partition of Z into subsets of the form x + Z
for X E R.

1.4.7. Find the result of attaching in each of the following cases (the result
will be a familiar object).

(1) Let X = [0, 2] and Y = [3, 5], let X' = [1, 2] and Y' = [3,41, and let
h:X' - Y' be defined by h(x) =x+2.

(2) Let X=O,((o),R2)and Y=O,((o),R2),let X'=(o)and V'=(o),
and let h: X' -+ Y' be defined by h(X') = Y'.
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I.A.P. This exercise generalizes the concept of attaching via a homeo-
morphism; it may seem unlikely, but it will be of use in Section 2.4. Let
X C R" be a set, let A i, B1 .., AP, B, C X be sets (not necessarily disjoint)
and let hi : A; - B; be a homeomorphism for each i E (l , ... , p). For con-
venience let ho = i X. For each point x E X let [x] be the subset of X defined
by

[x]=(yEX Iy=h}'o...h}t(x)forsome it,...i,E(I....,p)).
Show that the collection of sets [x] for all x E X form a partition of X. This
partition will be denoted P(h,, ... , hr,).

1.4.9*. For each i = 1, 2, let X; , Y; C R" be disjoint sets, let X; C X;
and Y, C Y; be sets and let hi: X' -+ Y, be homeomorphisms. Suppose that
X, U,,, Y, exists. Suppose further that there exist homeomorphisms f : X2 X,

andg:Y2-+Y,such that f(X2)=Xi,g(Y2)=Y'andh,ofIXZ=gIY2oh2;
this last condition is expressed by the commutativity of the following diagram.

X2 h2 Y2

X'
"'

Y'

Show that X 2U,,, Y2 exists and is homeomorphic to X, U,,, Y1.

1.5. Connectedness

Intuitively, a subset of Euclidean space is connected if it is made up of "one
piece." The following definition nicely captures this notion.

A B

R, B2

unconnectedconnected

Figure 1.5.1
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Definition. Let A C R" be a set. We say that A is connected if it cannot be
expressed as the union of two non-empty disjoint subsets each of which is open
in A. If A can be expressed as the union of two non-empty disjoint open subsets,
we say A is disconnected. 0

The requirement for both subsets being open and non-empty in the defini-
tion of connectedness is absolutely crucial. For example, the interval [0, 2] is
the union of the disjoint subsets [0, 1], and (1, 2], the first of which is closed
(though not open) in [0, 2] and the second of which is open in [0, 21, and yet the
set [0.2] is certainly intuitively connected. (We will see shortly that [0, 2] is
indeed connected by our definition.) The following lemma gives some alternate
characterizations of connectedness.

Lemma 1.5.1. Let A C R" be a set. The following are equivalent:

(1) A is connected;
(2) A cannot be expressed as the union of two non-empty disjoint subsets

each of which is closed in A;
(3) the only subsets of A that are both open and closed in A are 0 and A.

Proof. Exercise 1.5.1. O

The following theorem shows that not only are intervals in R connected, but
that they are the only connected subsets of R. The proof of this theorem makes
crucial use of the Least Upper Bound Property of the real numbers; consult
[HM, p. 38], or most introductory real analysis texts, for a discussion of this
property. We note that an interval in the rational numbers is not connected, and
it is thus necessary to use a property of the real numbers that does not hold for
the rationale, of the which the Least Upper Bound Property is an example.

Theorem 1.5.2. A non-empty subset of R is connected iff it is an interval (of
any sort).

Proof First suppose that J C R is an interval. We will assume that J is not
connected and derive a contradiction. By assumption, we can write J = B1 UB2,
where B, and B2 are non-empty disjoint open subsets of J. Then B, and B2
are also both closed in J. Choose points b, E B, and b2 E B2. Without loss of
generality assume that b, < b2. Since J is an interval of some sort we know that
[h, , b2] C J. Since the set B fl [b, , b2] is bounded above by b2, the Least Upper
Bound Property of the real numbers implies that there is a point w defined by
uw=lub{B,n[b,,b2])
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Is w in B, or B2? On the one hand, since B, fl [b,, b2] is closed in [b,, b2]
and hence in R, it follows from Exercise 1.2.17 that w E B1. Since b2 is an
upper bound for B fl [b,, b2] it follows that w < b2; because b2 0 B, it must be
the case that w < b2. It now follows from the definition of w as a least upper
bound that (w, b2] c B2. However, since B2 is closed it can be deduced that
w E B2, a contradiction. Thus J must be connected.

Now suppose that J C R is connected. If J is bounded below let a = glb J,
which exists by the Least Upper Bound property of the real numbers; if J is not
bounded below let a = -oo. (Infinity is not a real number, and "oo" should
be treated as a symbol only.) Similarly, if J is bounded above let b = lub J;
if J is not bounded above let b = oo. The points a and b may or may not be
contained in J. Note that J C [a, b], where we leave the interval open at a
or b if they are -oo or oo respectively. We will show that (a, b) C J, and it
will then follow that J is one of (a, b), [a, b), (a, b] or [a, b], depending upon
which of a and b are contained in J.

Suppose (a, b) Q J, so there is some point z E (a, b) that is not contained
in J. Let A, = (-oo, z) fl J and A2 = (z, oo) fl J. The sets A, and A2 are
disjoint open subsets of J, and A, U A2 = J. Neither A, nor A2 is empty, since
A, being empty would mean that z is a lower bound for J, in contradiction to the
definition of a, and similarly for A2. Hence J is not connected, a contradiction
to our hypothesis on J. Thus (a, b) C J. 0

There is, unfortunately, no analog of Theorem 1.5.2 for higher dimensional
Euclidean spaces. The higher dimensional analogs of intervals are rectangular
boxes (that is, products of intervals), and these are connected by Exercise 1.5.3,
but they are certainly not the only connected subsets of Euclidean space. For
example, we will see later on that R" with a point removed is connected.

Though not every subset of Euclidean space is connected, every discon-
nected space is made up of connected pieces. See Figure 1.5.1. The following
definition makes this notion precise.

Definition. Let A C R" be a set. A subset C C A is a component of A if it is
non-empty, connected, and not a proper subset of a connected subset of A. 0

For example, the set B shown in Figure 1.5.1 has two components. Observe
that if a set A C R" is connected then the only component of A is itself. Some
properties of components are given in Exercise 1.5.4.
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The following theorem shows that connectedness behaves quite nicely with
respect to continuous maps.

Theorem 1.5.3. Let A C 18" and B C ]Rt be sets, and let f : A - B be a
continuous map. If A is connected then so is f (A).

Proof. Suppose that f (A) is not connected, so we can write f (A) = V U W,
where V and W are non-empty disjoint open subsets of f (A). Then A =
f - I (f (A)) = f - I (V) U f - I (W) by standard properties of inverse images.
The sets f -I (V) and f -I (W) are non-empty disjoint subsets of A, and by
the continuity of f they are open subsets of A. Thus A is not connected, a
contradiction. 0

We can now use our results about connectivity to prove the following two
important theorems. The first is familiar from calculus (where it is usually
presented without proof); the second is the one-dimensional version of a result
that holds in all dimensions (the two-dimensional case of which, a much more
difficult result, will be proved in Section 3.6).

Theorem 1.5.4 (Intermediate Value Theorem). Let [a, b] c R be an interval,
and let f : [a, b] -+ R be a continuous map. For any real number z between
f (a) and f (b) there is some c e [a, b] such that f (c) = z.

Proof. By Theorem 1.5.2 the interval [a, b] is connected, by Theorem 1.5.3 the
set f ([a, b]) is connected, and by Theorem 1.5.2 the set f ([a, b]) is an interval.
Since f (a) and f (b) are both contained in f ([a, b]), it follows that any point
in Ig between f (a) and f (b) is also contained in f ([a, b]). The result now
follows. 0

Theorem 1.5.5 (One-dimensional Brouwer Fixed Point Theorem).
Let [a, b] C 1E be an interval, and let f : [a, b] -> [a, b] be a continuous
map. Then there is a point d E [a, b] such that f (d) = d.

Proof. Exercise 1.5.6. 0
In both Theorems 1.5.4 and 1.5.5, we are only told that some point with

certain desired properties exists; we are not told anything additional about these
points, neither that they are unique (which they need not be), nor how to find
them.

There is another way to approach the issue of whether a subset of Euclidean
space is made up of one or more pieces. Intuitively, if a set is made up of one
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piece then there should be a path from any one point in the set to any other point
in it (very much like drawing something without lifting your pencil from the
page).

Definition. Let A C R" be a set and let x, y r: A be points. A path in A from
x to y is a continuous map c: [0, 1] -+ A such that c(0) = x and c(1) = y.
The set A is path connected if for any pair of points x, y E A there is a path in
A from x to y. (Some books use the terms "pathwise connected" or "arcwise
connected.") 0
Example 1.5.6. The space R is path connected for all n. Between any two
points x, y E R" there is, among many paths, the straight line path; more
specifically, if

fx, y,

x and y=
xn V.

the straight line path in R" from x to y is the map c: [0, 1] -+ R" given by

Yt - xi x,

c(t)=t + 0

Yn - xn xn

As might be expected, path connectivity and connectivity are not unrelated.

Proposition 1.5.7. A path connected subset of Euclidean space is connected.

Proof. Let A C R" be a path connected set. Assume that A is not connected.
By assumption we can write A as A = A, U A2, where A, and A2 are non-empty
disjoint open subsets of A. Let x be a point in A,, and let y be a point in A2.
By hypothesis there exists a continuous map c: [0, 1] --p A such that c(0) = x
and c(1) = y. Consider the subset c([0, 1]) C A. We see that

co, 1]) = (co, 1]) n A,) u (co, 1]) n A2).

The sets c([0, 1]) n A, and c([0, 1]) n A2 are non-empty disjoint open subsets
of c([0, 1]), so that c([0, 1]) is not connected. On the other hand, Theorems
1.5.2 and 1.5.3 together imply that c([0, 1]) is connected, a contradiction. 0

Using the proposition just proved and Exercise 1.5.7, we deduce that R"
with a point removed is connected. Although path connectedness implies con-
nectedness, somewhat surprisingly the reverse implication does not hold in
general. The following clever example is a standard one.
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Example 1.5.8. Let p denote the point (0) E R2. The "deleted comb space" is
the subset K C R2 made up of p and a collection of line segments as follows:

00
1K=(p) U([0,1]x(0})UU(_) x[0,1].

N=I
?I

See Figure 1.5.2. Intuitively it might appear as if the point p were "isolated" in
K, though in fact K is connected (but not path connected). Suppose K is not
connected. We can thus write K = A U B, where A, B C K are disjoint non-
empty open subsets of K. The point p must be in one of A or B, and without
loss of generality suppose that it is in A. If p is not the only point in A, then we
can write K - (p) = (A - (p)) U B, and the sets A - (p) and B are disjoint,
non-empty, open subsets of K - (p). Hence K - (p) is not connected, which
yields a contradiction, since K - ( p) is clearly path connected. The only other
possibility is that p is the only point in A. The openness of A in K implies that
there is some number c > 0 such that 0, (p, K) is contained in A; if A = (p}
then OE (p, K) = (p), which is clearly not true from the construction of K,
again a contradiction. Thus K is connected.

00
Figure 1.5.2

(.J

To see that K is not path connected, suppose otherwise. Then there is a
path in K from the point p to q = ( ); let c: [0, 1 ] K be such a path. It may
or may not be the case that c([0, l]) intersects [0, 11 x (0). Let us first suppose
not. Consider the function iri o c: [0, 11 -+ R, where 7r, is projection from
R2 onto the x-axis. This composition is continuous (since both Jr, and c are
continuous), and we have 7ri o c(0) = 0 and ir, oc(l) = 1. Let r be any irrational
number between 0 and 1. By the Intermediate Value Theorem (Theorem 1.5.4)
there is some number z E (0, 1) such that iri o c(z) = r. Hence c(z) has an
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irrational x-coordinate, a contradiction to the fact that the x-coordinates of all
points in K - ([0, 1] x {0}), which contains the image of c, are rational by the
construction of K.

Next we need to consider the case where the image of c does intersect
[0, 1] x (0). The set c- 1 ([0, 1] x (0)) is a closed subset of [0, 1) by the continuity
of c. It follows from Exercise 1.2.17 that c-1 ([0, 1] x 10}) contains its greatest
lower bound, denoted w. Since c(0) = p we see that w > 0. If ire denotes
projection from R2 onto the y-axis, it follows that 1r2 oc(0) = I and ire oc(w) =
0. By the Intermediate Value Theorem there is a number d E (0, w) such that
n2 o c(d) = 2. Using the definition of w we deduce that c([0. d]) does not
intersect [0, 1 ] x {0). The same type of reasoning as in the previous paragraph
can now be applied to ci[O, d], again yielding a contradiction. Thus K is not
path connected. 0

Exercises

1.5.1*. Prove Lemma 1.5.1.

1.5.2*. Let A C fl8" be a set, and suppose that A can be written as the union
A = UIE/ Ai of connected sets A; C R", where the indexing set I is arbitrary.
This hypothesis alone does not guarantee that A is connected. Show that if all
the sets A, have at least one point in common, so that

I iel A; 0, then A is
connected.

1.5.3*. Show that the product of finitely many connected subsets of Euclidean
space is connected. Conclude as a corollary that, given intervals [a;, bi] C
for i E { 1.... , n), the box [a,, b1] x x [a", b"] C R" is connected.

1.5.4*. Let A C R" be a set. Show that the components of A are disjoint
closed subsets of A and that A is the union of its components. If A has finitely
many components, show that the components are open subsets of A; give an
example showing that components are not necessarily open subsets in general.

1.5.5. Is the property of being disconnected preserved by continuous maps?

1.5.6*. Prove Theorem 1.5.5.

1.5.7*. Show that the following sets are path connected, and hence connected:

(1) any open ball in IR", and any closed ball in R";
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(2) any open ball in R" from which a point has been removed, when n > 2;

(3) the unit circle S' C R2.

1.5.8. Let U C R2 be an open, path connected set, and let x E U be a
point. Show that U - (x ) is path connected. Find an example to show that the
hypothesis of openness cannot be dropped.

1.5.9*. Let A C R" and B C R'" be sets, and let f : A -+ B be a continuous
map. Show that if A is path connected then so is f (A).

1.5.10*. Let A C R" be a set, and let x. y, z E A be points. Prove the following
three properties of paths (if you are familiar with equivalence relations these
properties should look familiar). Recall that, as we have defined them, paths
always have domain [0, 1].

(i) There is a path from x to itself.

(ii) If there is a path from x to y then there is a path from y to x.

(iii) If there is a path from x to y and a path from y to z, then there is a path
from x to z.

1.5.11*. Let A C R" be a set, and let a E A be a point. Suppose that U C A
is an open subset of A containing a such that U is path connected but U - (a)
is not path connected. Show that if V C U is an open subset of A containing
a, then V - (a) is not path connected.

1.5.12*. Let A C R" be a set, and let C C A be a connected subset. Show
that C is contained in a single component of A.

1.5.13*. Let A C R" be a set. If B C A is a subset that is both closed and
open in A, show that B is the union of components of A.

1.6. Compactness

The concept of compactness, crucial in our treatment of surfaces, is less intu-
itively appealing than connectedness. One way of viewing compactness is as
a generalization of the notion of finiteness to the topological setting, where the
sets under consideration almost always have infinitely many points, but where
we can define a notion of finiteness nonetheless.

To state the definition of compactness, we start with the following tools.
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Definition. Let A C R" be a set. A cover of A is a collection of subsets
of A whose union is all of A (such a collection may be finite or infinite). If
U = {U; },E, is a cover of A, a subcover of U is a subcollection of the sets in
U that is itself a cover of A (any subcover is of the form {Uj }jEJ for a subset
J c 1). A finite cover is a cover of A with finitely many sets. An open cover
of A is a cover of A such that all the sets in the cover are open subsets of A. 0

Intuitively, if a set has an open cover with no finite subcover, then the set has
something "topologically infinite" about it. The following definition, reflecting
this observation, should be read with care.

Definition. Let A C R". We say that A is compact if every open cover of A
has a finite subcover. 0

To show that a set is compact it is not sufficient to find some open cover of
the set that has a finite subcover. It has to be shown that any open cover has a
finite subcover, which of course is much harder since one cannot usually write
down explicitly all the possible open covers of the set. Proving that a set is
not compact, on the other hand, is sometimes easier since it suffices to find one
open cover for which there is no finite subcover.

Example 1.6.1. (1) Any finite set of points in Euclidean space is compact. Let
A = { pl, ... , p.) C R", and let U = { U, },E , be an open cover of A. For each
k E 11, 2, ... , ml, the point pk is contained in at least one set in U, say U;t .

Then Uk=i U;l = A, and so U has a finite subcover.

(2) The open interval (0, 1) is not compact. Consider the open cover V =
{ (0, 1), (0,

i
), (0, 1), (0,

s
), ... } of (0, 1). For any finite subcollection of

V there is some positive integer n such that (0,+1) is the largest interval in
the subcollection, hence no finite subcollection covers the entire interval (0, 1).
Thus (0, 1) is not compact. (There are certainly open covers of (0, 1) that have
finitesubcovers,forexamplethe open cover {(0, 1

2 2
), (1, 1), (0, 3), (3, 1), (0, a),

(4 , 1), ... } of (0, 1), but to prove that a set is compact we need to show that all
open covers have finite subcovers, and that is not the case for (0, 1).)

Let us compare the intervals [0, 1 ] and (0, 1). Both intervals have infinitely
many points, but they behave rather differently from a topological point of view.
The open cover V that we used with (0, 1) does not work with [0, 1), since it
misses the endpoints of [0, 1]. We could try the open cover {[0, Z), [0, 3),

[0,
q
), [0, 1), ... (a, 11
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for any choice of a such that 0 < a < 1. But no matter what our choice of a is,
eventually a < ""+i for large enough n, and then it will be the case that

[0,1]_[0,2)U[0,3)U[0,-)U[0,5)U...U[0,n+1)U(a,1],
4

which is a finite union. Of course, it might be that some more complicated
method will work for [0, 1], but we will later see that this is not the case. We
thus see a type of "finiteness" in sets with infinitely many points.

(3) The space IR" is not compact for any n. Cover IR" with the union of all open
balls of integer radius centered at the origin. Clearly this open cover has no
finite subcover. 0

More examples of compact sets will have to wait until we have proved some
facts about compactness; we start with the following simple fact.

Lemma 1.6.2. The union of finitely many compact sets is compact.

Proof. Exercise 1.6.1.

The word "finite" cannot be dropped from Lemma 1.6.1 (see Exercise
1.6.2).

It would be nice to have a less abstract characterization of compact sets
than given directly by the definition. From Example 1.6.1 (2), it should not be
surprising that there is a relationship between compactness and closedness, as
expressed in the following lemma. Part (ii) of this lemma does not imply that
all closed sets are compact (for example IR is a closed subset of R2, but it is
not compact). It should also be pointed out that part (i) of the following lemma
does not hold as stated for general topological spaces, though it does hold if the
topological space is assumed to be Hausdorff (a certain property of topological
spaces).

Lemma 1.6.3.

(i) Let A C R" be a set, and let B C A be a compact subset. Then B is a
closed subset of A.

(ii) Let A C ]R" be compact, and let C be a closed subset of A. Then C is
compact.

Proof. (i). Assume that A - B is non-empty (otherwise the result is trivial).
We need to show that A - B is open in A. Let x E A - B be a point. Using
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Exercise 1.2.15 it can be verified that the collection of sets

{B n (A - A))}fEz

is an open cover of B. See Figure 1.6.1. By compactness of B there is some
finite subcover of this open cover. Let N be the largest positive integer for
which B n (A - OI/N(x, A)) is in the finite subcover. It follows that B C
A - OI/N(x, A), and hence Oi/N(x, A) C A - B. Thus A - B is an open
subset of A.

Figure 1.6.1

(ii). Let U = ((J f },E, be an open cover of C. By Lemma 1.2.8, for each i E I
there is an open subset Uj of A such that U, = U, nC. See Figure 1.6.2. Observe
that C C U;EI U; . It now follows that the collection of sets {U; },E, U (A - C)
is an open cover of A, since A - C is an open subset of A. This open cover
has a finite subcover by the compactness of A. This finite subcover might or
might not contain the set A - C; suppose that the rest of the finite subcover is
{ U;,, ... , Uj. }. It must be the case that C C U;, U ... U U;., since even if A - C
were in the finite subcover, the set A - C does not contribute any points in C.
It is now straightforward to verify that (U11.... , Uj, } is a cover of C. Since
what we did applies to any open cover U of C, it follows that C is compact. 0

Though any compact set is closed in any set containing it, the converse is
not true; to find necessary and sufficient conditions for compactness we need
the following definition.

Definition. Let A C Bt" be a set. Then A is bounded if there is some
non-negative real number R such that A is contained in the open ball of
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Figure 1.6.2

radius R centered at the origin. A subset of R" that is not bounded is called
unbounded. 0

Example 1.6.4. Any open ball of the form Or(x, R") is bounded in R", since

0, (x, R") C O1rli+r(0n, R").

On the other hand, R is definitely unbounded as a subset of itself. 0

The property of being bounded is not preserved by homeomorphisms, not to
mention arbitrary continuous maps; for example, we saw that any open interval
is homeomorphic to R, and yet finite intervals are bounded, whereas R is not.
Boundedness is still a very useful property, an indication of which is given in
the following result.

Lemma 1.6.5. Let A C R" be a compact set. Then A is bounded.

Proof For each positive integer n. let U" = A n On(O.. R"). The collection
{ U" }"EZ, is an open cover of A. By compactness A is covered by finitely many
of the sets U. If N is the radius of the largest of these finitely many sets U",
then A is contained in the open ball with radius N centered at the origin. 0

We have thus seen two properties of any compact set in R", namely that
it is closed in any set containing it (including R"), and that it is bounded. As
long as we are only dealing with subsets of Euclidean space these two properties
actually characterize compactness, where "closed" here means closed as a subset
of Euclidean space, and not relatively closed in some subset of Euclidean space.
This characterization of compactness definitely does not hold in the more general
setting of topological spaces (or even metric spaces).
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Theorem 1.6.6 (Heine-Borel Theorem). A subset A C R" is compact ((f it is
closed in W and bounded.

A typical application of the Heine-Borel Theorem is to deduce that all
closed balls in R" are compact. In order to prove the Heine-Borel Theorem,
we need the following two propositions, the first of which is really the crucial
step. It makes use of the Least Upper Bound Property of the real numbers.

Proposition 1.6.7. A closed interval in R is compact.

Proof. Let [a, b] be an interval in R; assume a < b (since the case a = b is
trivial). Let U = { Ui },E, be an open cover of [a, b]. Define S C [a, b] to be

S = (x E [a, b] I [a, x] is covered by finitely many sets in U}.

The set S is non-empty, since a E S. Because U is a cover of [a, b] there
must be some U, containing a, and thus there is some number c > 0 such that
[a, a + E) C U,; hence a + 1 E S, so S contains elements greater than a.
Further, the set S is bounded above by the number b. The Least Upper Bound
property of the real numbers now tells us that S has a least upper bound, say z.
Certainly a < z. We claim that z E S; that is, that [a, z] is covered by finitely
many sets in U. To verify this claim, let U, be a member of U containing z. By
the openness of U, in [a, b] it follows that the half-open interval (z - E, z] is
contained in U, for some small enough number e > 0. Since z = lubS, there
must be some element y E S contained in (z - E, z) (or otherwise z - E would
be an upper bound for S). See Figure 1.6.3. By definition [a, y) can be covered
by finitely many sets in U,1,... , Uip E U, and therefore [a, z] can be covered
by U,, Ui,,... , Ui,. Therefore Z E S.

S

a z-Ey z b

Figure 1.6.3

We now claim that in fact z = b, which would prove the proposition.
Assume that z b, so that z < b. The set U, will then contain the open interval
(z - E, z + E) for some (possibly smaller) E > 0. It then follows that [a, z + z]
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is covered by the sets U U,, , ... , U;,, contradicting z being the least upper
bound of S. Hence z = b. 0
Proposition 1.6.8. The product of futilely many compact subsets of Euclidean
space is compact.

Proof Let A C 1W' and B C RI be compact sets. We will show that the
product A x B C R"+"' is compact. The result for products of more than
two compact sets would then follow by induction of the number of factors in
the product. Let U = {U; }tEl be an open cover of A x B. Let a E A be a
point. The sets {U; fl ((a) x B) ),.I form an open cover of (a) x B. The set
(a) x B is homeomorphic to B, and hence is compact by Exercise 1.6.3. Hence
some finite subcollection of the sets {U; fl ((a) x B)}1E, cover (a) x B, say
U, fl ((a) x B), ... , Ut, fl ((a) x B). Therefore (a) x B C U, U ... U Ut,.

We claim that there exists an open subset Wa C A containing a such that

WaxBCU,U...UUP.

See Figure 1.6.4. Assuming that the claim is true for each a E A, then the
collection (W )QEA forms an open cover of A, since a E W. for each a E A.
By the compactness of A it follows that A is covered by finitely many of the
W,,, say W,,,, ... , W,,,. Thus the sets Wa, x B,... , Wa, x B cover A x B. By
the claim each set Wa, x B is contained in the union of finitely many members
of U, and hence so is A x B, which proves the proposition.

Wa

Figure 1.6.4

A

To prove the claim we state it more generally: If a E A is a point, and
V C A x B is an open set containing (a) x B, then there is an open subset
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W C A containing a such that W x B C V. Let a E A be fixed. Using Lemma
1.2.9 it follows that for each point (a, b) E (a) x B there are numbers Sh, Eh > 0
such that Osb (a, A) x OEb (b, B) C V. The collection 1 0,, (b, B) }hE s forms
an open cover of B. By the compactness of B it follows that B is covered by
finitely many of the OEh (b, B), say OEh, (b,, B), ... , OEbt (b$, B).

Let the number S be defined by S = min{Sh, , ... , Sh, }. Observe that S > 0.
We now define the set W to be W = 06(a, A). By definition a E W, so it
remains to be seen that W x B C V. Using standard results on sets we compute
that

W x B = Oj(a, A) x [OEbj (b,, B) U ... U OEh, (b$. B)]

_ [O(a. A) x OEb, (b,, B)] U ... U [O(a, A) x OEbt (b5, B)]

C [Ob, (a, A) x OEh, (b,, B)] U ... U [Oh(a, A) x OEb, (b.t, B)].

Since each of the terms in the last expression is contained in V, the claim is
proved.

An example of the use of the above proposition, in combination with Propo-
sition 1.6.7, is to show that any closed rectangle in R2 (that is, a set of the form
[a. b] x [c, d]) is compact.

Proof of Theorem 1.6.6. If the set A is compact, then it is closed and bounded
by Lemmas 1.6.3 (i) and 1.6.5. Now suppose A is closed and bounded. Since A
is bounded, there is some non-negative real number R such that A is contained
in the open ball of radius R centered at the origin. Hence A is also contained in
the set

[-R, R] x . . . x [-R, R] C 111".

n times

By Propositions 1.6.7 and 1.6.8 it follows that this product of intervals is com-
pact. Since A is closed in R" it is also closed in the product of intervals by
Lemma 1.2.12. Hence A is a closed subset of a compact set, and it follows from
Lemma 1.6.3 (ii) that A is compact.

Our final application of compactness is the following result.

Theorem 1.6.9 (Lebesgue Covering Lemma). Let A C R" be a compact set,
and let U = { U; },E, be an open cover of A. Then there is a number c > 0
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such that for every a E A the set OE (a, A) is contained in a member of U. (The
number E is called the Lebesgue number of the cover U.)

Proof. We follow [DU}. For each point a E A there is some i E I such that
a E U; (if there is more than one such i, choose one). By the definition of
openness there is some number r(a) > 0 such that Or(a)(a, A) C U;. The
collection of sets

{Or(a)/2(a, A) I a E A)

is an open cover of A; by compactness we can find a finite subcover, which has
the form

{Or(al)/2(aI, A),... , Or(ao)/2(ap, A)}.

Define the number c to be

r(al) r(ap)
E = min{

2
.. , 2

which is certainly positive. To demonstrate that c is as desired, let x E A be
any point, and we will show that OE(x, A) is contained in one of the sets Ui.
Observe that there is a number k E ( 1. ... , p) such that x E Or(ax)/2(ak, A).
Let Z E OE (x, A) be any point. Using the triangle inequality, we compute

Ilz-akII5IIz-xll+llx-akll <E+r(2k) <r(ak)

Hence Z E Or(ak)(ak, A), and it follows that

0, (x, A) C Or(a*)(ak, A).

This latter set is contained in one of the sets U, by choice of r(ak). 11

Finally, we turn to the effect of continuous maps on compactness. The
following theorem shows that compactness behaves nicely with respect to con-
tinuous maps, just as connectedness does. The proof of this theorem shows the
power of the rather abstract definition of compactness.

Theorem 1.6.10. Let A C R" and B C Rm be sets, and let f : A -- B be a
continuous map. If A is compact then so is f (A).

Proof. Let U = { U; }IEI be an open cover of f (A); we need to show that U has
a finite subcover. By Lemma 1.2.8, for each i E I there is an open subset U,
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of B such that U; = Uj fl f (A). Since f is continuous it follows that each set
f - ' (U;) is an open subset of A. It is not hard to see that the collection

V= t

If-'((

`UI)}iEl

is an open cover of A. By the compactness of A we deduce that V has a finite
subcover, so that there are indices i j , ... , im E I such that

A= f-'(U,,)U...U f-(U,').

Applying f to both sides of this equation, and using standard results concerning
functions, we obtain

f(A) = f(f-`(ui',) u ... Li f-'(u; )) = f(f-'(U;,)) U ... U f(f-'(Ui')).

It can be verified that Uj = f (f (U,)) for all i E 1. Hence f (A) = Ui, U
U UU,,, , and thus { Ui, , ... , Ui_ } is a finite subcover of U. 0

The above theorem can be used to prove the Extreme Value Theorem, used
in Calculus.

Proposition 1.6.11. Let A C R be a compact set. Then A has a maximal
member and a minimal member, that is, there are points x1, x2 E A such that
x1 <x <x2forallx E A.

Proof. Exercise 1.6.8. 0

Proposition 1.6.12. Let A C R" be a compact set, and let f : A -- R be a
continuous map. Then f has a maximum value on A and a minimum value on
A, that is there are points x,., xmin E A such that f (Xmin) f (X) S f (Xmas)
for all x E A.

Proof. Combine Theorem 1.6.10 with Proposition 1.6.11. 0

Theorem 1.6.13 (Extreme Value Theorem). Let [a, b] be a closed interval in
R, and let f : [a, b] -+ R be a continuous function. Then f has a maximum
value on [a, b] and a minimum value on [a, b].

Proof This follows immediately from Propositions 1.6.7 and 1.6.12. 0

We saw in Example 1.4.2 that a continuous bijection need not be a homeo-
morphism, and a continuous surjection need not be a quotient map. The fol-
lowing proposition, also of use later on, shows that no such examples can be
found with compact domains. (As stated, this proposition does not hold for
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general topological spaces, though it does hold if the codomain is assumed to

be Hausdorff.)

Proposition 1.6.14. Let A C R and B C R'" be sets, jnd let f : A -+ B be a
continuous map. Then

(i) if A is compact, then f is a closed map;
(ii) if A is compact and f is surjective, then f is a quotient map;

(iii) if A is compact and f is bijective, then f is a homeomorphism.

Proof. (i). Let C be a closed subset of A; we need to show that f (C) is a
closed subset of B. By Lemma 1.6.3 (ii) the set C is a compact subset of A. By
Theorem 1.6.10 the set f (C) is a compact subset of B, and by Lemma 1.6.3 (1)
we deduce that f (C) is a closed subset of B.

(ii) & (iii). Because the map f is continuous, we know that if U C B is open,
then f -' (U) is open in A. By Lemma 1.4.3 and the definition of quotient
maps, it will suffice to show that for any subset U C B, if f -' (U) is open
in A then U is open B. So, suppose U C B is such that f -' (U) is open in
A. Then A - f''(U) is a closed subset of A. By part (1) the map f is a
closed map, so that f (A - f -' (U)) is a closed subset of B. However, using
the fact that f is surjective (in both cases (ii) and (iii)), it is not hard to show
that f (A - f -' (U)) = B - U. Therefore B - U is closed in B, so that U is
open in B. 0

Exercise 1.6.4 shows that the hypothesis of compactness in Proposition
1.6.14 cannot be replaced with the weaker hypothesis of closedness.

Exercises

1.6.1*. Prove Lemma 1.6.2.

1.6.2. Give an infinite collection of compact sets whose union is not compact.
Give an infinite collection of compact sets whose union is compact.

1.6.3*. Prove that if two subsets of Euclidean space are homeomorphic, and
one is compact, then so is the other.

1.6.4. Find sets A C R" and B C R'", with A a closed subset of R", and a
continuous bijection f : A -- B, such that f is not a homeomorphism. Convince
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yourself that this example will also show that there is a continuous surjection
f : A -+ B with A closed in R", such that f is not a quotient map.

1.6.5*. (Refer to Exercise 1.3.7.) Let A C R" be a compact set. Prove that
any continuous function f : A -+ R" is uniformly continuous. (See [BT, § 16]
for a solution.)

1.6.6. Prove that a closed interval in R is not homeomorphic to R.

1.6.7*. Let a, b, E E R be numbers with a < b and E > 0. Suppose the
function

f:[a,b] x (-E,E)-+ R
is continuous, and f ((o )) > 0 for all s E [a, b]. Show that there are numbers
M. 8 > O such that 8 < E and f((! )) ? M for all (") E [a, b] x (-8, 8).

1.6.8*. Prove Proposition 1.6.11.

1.6.9. If A C R is a compact connected set, show that A is a closed interval
(possibly of the form [a, a]). If A C R is a compact set, show that it is the
union of disjoint closed intervals.

1.6.10*. Let [a, b] be a closed interval in R, and let f :[a, b] -* R be
a continuous function such that f (a) = f (b). Show that there is a point
x E (a, b) such that f is not injective on any open neighborhood of x.

1.6.11*. Let A, B C R" be disjoint compact sets. Show that there is a number
m > 0 such that Ila - bll > m for all a E A and b E B.

1.6.12*. Let A C R" be a compact, connected set, and let p, q E A be points.
If U = I Ui ),E, is an open cover of A, show that there are sets U;, ... U,, in U
such that p E U;, , q E Ui, and U;4 fl U,, , 0 for i = 1, ... , r - I.

1.6.13*. Let U C R2 be an open set and let c1, c2, cpi, (p2: [a, b] -- R be
continuous maps for some closed interval [a, b] such that `' (s)) E U for all

c2 (s)
S E [a, b]. Show that there is some number E > 0 such that

C1 (S) + t(pi(s)
E U)CAS) + U PAS)

for all (s, t) E [x, y] x (-E, E).
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Endnotes

Notes for Section 1.5

(A) Theorems 1.5.4 and 1.5.5 tell us of the existence of some point with certain
desired properties; we are not told how to find these points, and as such these
theorems are what are known as "existence theorems." Existence theorems,
one of the hallmarks of modern mathematics, were given particular prominence
when D. Hilbert proved such a theorem in 1888 in connection with algebraic
geometry. (This theorem can be found in [KN, pp. 119-120].) There are some
mathematicians who do not accept existence proofs, though they are in the
minority.

(B) In Example 1.5.8, the proof that K is not path connected makes direct use of
the Least Upper Bound Property of the real numbers (via Exercise 1.2.17). It is
possible to give a proof that K is not path connected without directly invoking the
Least Upper Bound Property, but our proof is more straightforward intuitively.
See [MU2, §3-2] for an alternate proof.

Notes for Section 1.6

In Proposition 1.6.8 we restricted our attention to finite products of compact sets.
The same result also holds for infinite products, and is known as the Tychonoff
Theorem. The proof of the Tychonoff Theorem is substantially more difficult
than the proof in the finite product case, making use of the axiom of choice (see
[MU2, §5-1 ] for a good discussion).



CHAPTER II

Topological Surfaces

2.1 Introduction

If we wish to be able to make interesting geometric statements about subsets
of Euclidean space, we need to restrict our attention to a reasonable class of
geometric objects. One of the most widely studied type of geometric objects
are manifolds; the two-dimensional version of a manifold is a surface, which
we will define rigorously in the next section.

Two of the most well-known examples of surfaces are the plane R2 and the
unit sphere in R3; this sphere is denoted S2 and is defined by

S2={xER3IIIxIi=1}.

Since any two objects that are homeomorphic to one another are essentially
interchangeable from a topological viewpoint, we will refer to any subset of
Euclidean space homeomorphic to S2 as a sphere. If we let SI denote the unit
circle in R2, that is

S'=JXER2IIIxII=1},
then S' X R C R3 is an infinite right circular cylinder, which is a surface; see
Figure 2.1.1. Another important surface is the torus, denoted T2, which is the
surface of a bagel; the torus is hollow, like an inner tube. See Figure 2.1.2. This
surface will be described analytically in Section 5.3 as a surface of revolution.
We will refer to any subset of Euclidean space homeomorphic to T2 as a torus.
It can be seen that S' x S' C R2 x R2 = R4 is a torus. Of course, not everything
in R3 is a surface, for example the objects pictured in Figure 2.1.3.

There is, actually, more than one definition of a surface, depending upon
which types of propertie s one is interested in discussing. We will discuss the
three main types of surfaces: topological, simplicial and smooth. Topological
surfaces will be treated in the present chapter, simplicial surfaces will be treated
in the next chapter, and smooth surfaces will be treated in Chapters V-VIII. In
a certain sense, to be made more precise later on, every surface of one of the
three types can be converted into either of the other types (something that does
not hold in higher dimensions).
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T

I

Figure 2.1.1

T2

Figure 2.1.2

(i)

Figure 2.1.3

Our study of surfaces, similar to a botanist's study of plants, occurs on two
levels: macro (what are all the types of plants in the world, and how does one
identify them) and micro (how does an individual plant operate). On the micro
level we study geometric properties of smooth surfaces in R3. On the macro
level we wish to find a list of all possible surfaces, and find a convenient way
to distinguish between different surfaces. We start with the macro question,
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known as classification, which will be discussed in this chapter and the next.
The micro questions will be addressed in the rest of the book. Before proceeding
to surfaces, we discuss some crucial topological tools in Section 2.2.

2.2 Arcs, Disks and 1-Spheres

The three types of objects studied in this section are all fundamental building
blocks of surfaces. A rigorous analysis of these objects requires two of the most
important (and difficult) theorems on geometric topology, Invariance of Domain
and the Schonflies Theorem; we will only give references for the proofs of these
results. In contrast to much of our discussion in Chapter 1, where analogs of
most of our concepts and results hold in the more general setting of topological
spaces, the first of these two theorems holds only in IR", and the second holds
only in !R2.

We start with some notation: Let D2 and int D2 denote the standard closed
and open unit disks in R2, that is,

D2=(xER2IIlxPI<1)
int D2 = {x E R2 I IIxII < 1) = 01(02, R2).

The disk D2 is the union of two disjoint subsets, namely int D2 and S',
which we will refer to as the interior and boundary of D2.

Definition. A subset of R" that is homeomorphic to the closed interval [-1, 11
is an arc; a subset of R" that is homeomorphic to the disk D2 is a disk; a subset
of R" that is homeomorphic to the unit circle S' is a 1-sphere (also known as
a simple closed curve).

Given that D2 has a well-defined interior and boundary, it would be rea-
sonable to expect that any disk B C R" also has an interior and a boundary. If
h : D2 --+ B is a homeomorphism, it would be plausible to define the interior and
boundary of B to be the sets hint D2) and h(S') respectively. Since there are
many homeomorphisms D2 -). B, we would need to verify that the definition of
interior and boundary of B does not depend upon the choice of homeomorphism;
to do so we need the following theorem, that is of fundamental importance in
geometric topology. Consider a subset of R2 that is homeomorphic to R2, such
as the interior of a square; intuitively, any such set appears to be open in R2. (By
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contrast, the interior of a square sitting in R3 is not open in R3.) The following
theorem shows that our intuition is correct.

Theorem 2.2.1 (Invariance of Domain). Let U C R" be homeomorphic to
R". Then U is open in R".

Proofs of Invariance of Domain can be found in [MU3], [MS2] or [H-W,
p. 951. The first two proofs cited use algebraic topology; the third is more
elementary (though not necessarily simpler). Different references use different
(though equivalent) statements of Invariance of Domain.

The converse to Invariance of Domain is not true; there are many open
subsets of R" which are not homeomorphic to R". An immediate corollary of
Invariance of Domain is the following theorem, which may seem obvious, but
is not trivial to prove.

Theorem 2.2.2. Let n and m be positive integers that are not equal. Then
Rn c Rm

Proof Without loss of generality assume that n < in. We consider R" to be a
subset of Rm by identifying R" with the space of all vectors of the form

It can be verified directly from the definition of openness that R" is not an open
subset of R. By Invariance of Domain a subset of RI that is not open in RI
cannot be homeomorphic that Rm.

The following lemma is the result we wanted concerning disks.

Lemma 2.2.3. Let B C R" be a disk, and let h, , h2: D2 -+ B be homeo-
morphisms. Then h, (int D2) = h2(int D2) and h, (S') = h2(S').

Proof. Since h, and h2 are bijections it suffices to show that hI(intD2) =
h2 (int D2), and showing this fact is equivalent to showing that h2 1 oh, (int D2) =
int D2. The map h21 o h,: D2 -)- D2 is a homeomorphism, and thus the set
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h2 1 oh, (int D2) is homeomorphic to int D2. Since int D2 is homeomorphic to R2
(by Exercise 1.4.1), it follows from Invariance of Domain that h2 1 oh, (int D2) is
open in R2. Suppose that h21 oh, (int D2)f1S' 96 0; let x E h21 oh, (int D2)f1S'
be any point. It is not hard to verify that any open ball centered at x must contain
points outside of D2, and hence it must contain points outside of h2 oh, (int D2).
This conclusion would contradict the openness of h21 o h, (int D2), and hence it
must be the case that h21 o h, (int D2) fl s' = 0; thus h21 o h, (int 02) C int D2.

By reversing the roles of h, and h2 one could also conclude that h, 1 o
h2(int D2) C int D2. Applying the appropriate inverse maps to both sides
of this inclusion it follows that int D2 C h21 o h, (int D2). Combining this
inclusion with the result of the previous paragraph gives the desired result. 0

The analog for arcs of the above lemma is given in Exercise 2.2.3. We are
now able to make the following definition.

Definition. Let B C R" be a disk. The Interior and boundary of B, denoted
int B and 8B respectively, are the sets h(int D2) and h(S') respectively for
any homeomorphism h: D2 -+ B. Let J C R" be an arc. The interior and
boundary of J, denoted int J and aJ respectively, are the sets h((-1, 1)) and
h ((-1 ) U (1)) respectively for any homeomorphism h: [-1, 1] -+ J.

The following figure shows some disks and arcs together with their bound-
aries.

A

J,

8J,

Figure 2.2.1

Observe that the boundary of any disk is a 1-sphere. Does the converse
hold? That is, for any 1-sphere C C R" is there a disk B C R" such that
C = aB? The answer in general is no. Consider the curve C C R3 shown in
Figure 2.2.2. This curve is known as the trefoil knot, and it can be shown using
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the techniques of knot theory that there is no disk B C R3 such that aB is this
knot; see [RO, p. 52] for a proof. By contrast, it turns out that any 1-sphere in 182
is the boundary of a disk in R2; this result should not be taken as entirely obvious,
since an arbitrary 1-sphere in R2 can be quite complicated, as in Figure 2.2.3.
We will deduce this fact from the following result, the Schdnflies Theorem,
stated below.

Figure 2.2.2

Figure 2.2.3

Definition. Let h: 182 -> 182 be a homeomorphism. The function h is the
identity map outside a disk if there is some disk A C R2 such that h I (R2 -int A)
is the identity map.

Theorem 2.2.4 (Schdnflies Theorem). Let C C R2 be a I -sphere. Then there
is a homeomorphism H: R2 -+ R2 such that H (S') = C and H is the identity
map outside a disk.

See [BI], [CA2], [MO] or [TH] for proofs; different books state the Schdnflies
Theorem differently, though all variants, including the version we use, are equiv-
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alent. From the Schonflies Theorem we can now deduce the following result,
the first part of which is the well known Jordan Curve Theorem (one of those
results in topology that seem obvious intuitively but are surprisingly hard to
prove), and the second part answers our question about I -spheres in R2 being
the boundaries of disks. Actually, it is not quite fair to claim that we have
deduced the Jordan Curve Theorem from the Schonflies Theorem, since proofs
of the latter theorem usually make use of the former.

Corollary 2.2.5. Let C C R2 be a 1-sphere.

(i) (Jordan Curve Theorem) The set R2 - C has precisely two components,
one of which is bounded and one of which is unbounded.

(ii) The union of C and the bounded component of R2 - C is a disk, of
which C is the boundary.

Proof. Exercise 2.2.5.

Another useful corollary to the Schonflies Theorem is the following.

Corollary 2.2.6. Let B1, B2 C 1R2 be disks. Then there is a homeomorphism
H: R2 -> R2 such that H(B1) = B2 and H is the identity map outside a disk
containing B.

Proof. Since aBi is a 1-sphere for each i = 1, 2, it follows from the Schonflies
Theorem that for each i there is a homeomorphism Hi: R2 -+ R2 such that
H1(S 1) = 3 B1 and Hi is the identity map outside a disk. It follows from
Exercise 2.2.6 that H; (D2) = Bi. The map H = H2 o (H1)-1 is thus a homeo-
morphism of R2 to itself such that H(B1) = B2. Since the Hi are both the
identity maps outside disks, it follows that (Hl)-1 is the identity map outside
a disk, and it follows from Exercise 2.2.7 that H is the identity map outside a
disk.

Exercises

2.2.1 *. Let A C lR" be any set. Let V C U C A be sets such that U ti Rm _- V.
If U is open in A, then show that V is open in A.

2.2.2*. Let U C lR" be open, and let h: U -+ R" be a homeomorphism from
U onto its image. Show that h(U) is open in IR".
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2.2.3*. Let J C R" be an are, and let h, , h2: [0, 11 --> J be homeomorphisms.
Show that h1((0, 1)) = h2((0, 1)) and h1({0} U {1}) = h2({0} U {1}).

2.2.4*. Let B, C R" and B2 C R' be disks, and let h: B, -+ B2 be a
homeomorphism. Show that h(int B,) = int B2 and h(8B,) = aB2.

2.2.5*. Prove Corollary 2.2.5.

2.2.6*. Let BI, B2 C R2 be disks, and let H: R2 -+ R2 be a homeomorphism
such that H(aB,) = aB2. Show that H(B1) = B2-

2.2.7*. For each i = 1, 2 let hi: R2 -* R2 be a homeomorphism which is the
identity map outside a disk (not necessarily the same disk for both values of i).
Show that h2 o h, is the identity map outside a disk.

2.2.8. Let B C int D2 be a disk. Show that there is a point x E aB such that
the radial line segment in R2 starting at x and ending at the point of distance I
from the origin intersects aB and S' in precisely one point each (a radial line
segment is a line segment that when extended contains the origin); see Figure
2.2.4. Show that there must be at least two such points.

Figure 2.2.4

2.2.9. This exercise proves the Annulus Theorem in dimension 2. This
theorem was shown to be true in all dimensions other than 4 by [KI], though the
the proof is extremely difficult, due to the lack of the analog of the Schonflies



2.3 Surfaces in R" 55

Theorem in dimensions higher than 2.) Let Bt, B2 C R2 be disks with B2 C
int B1. Show that B, - int B2 is homeomorphic to the washer-shaped set

A={vER2I 1 <IIvII <2}.

2.2.10*. Let A C R"' be a set that is homeomorphic to R". Show that n < m,
and that if n < m then A is not open in Rm.

2.2.11*. Show that H" O R" for all n > 1.

2.2.12*. Let B C R" be a disk, and let J C B be an arc such that int J C a B.
Show that J C d B.

2.2.13. Show that no proper subset of S' is homeomorphic to S1.

2.2.14*. A subset of R" is called a theta-curve if it is homeomorphic to the
set

e=S' U([-],l]x{0})CR2.
State and prove the analog for theta-curves of both parts of Corollary 2.2.5.

2.3 Surfaces in R"

What is it that distinguishes sets such as R2, S2 and T2 from sets such as those
pictured in Figure 2.1.3? Consider Figure 2.1.3 (i), referred to as a pinched
torus since it can be obtained by taking a torus and pinching a loop around it to
a point. If we draw a small ball around the pinch point, and cut out the part of
the pinched torus inside the ball, we obtain after some stretching an object that
looks like two open disks glued together at a single point. See Figure 2.3.1 (i).
By contrast, if we draw a small ball around any point on the torus, or any other
point on the pinched torus, and cut out the neighborhood of the point inside the
ball, we obtain after some stretching an object that looks like one open disk.
See Figure 2.3.1 (ii). In other words, a small neighborhood of any point on
the torus (or the sphere or the plane) looks like an open disk, whereas on the
pinched torus there is a point with a different type of neighborhood.

Definition. A subset Q C R" is called a topological surface, or just surface
for short, if each point p E Q has an open neighborhood that is homeomorphic

2to the open unit disk int D.
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(i)

Figure 2.3.1

Since any open disk in R2 is homeomorphic to any other open disk in IR2,
and to IR2 itself, it would suffice to show that each point p as in the above
definition has an open neighborhood that is homeomorphic to some open disk
in ]R2 or to 182.

Example 2.3.1. (1) The plane IR2 is a surface, as is any open subset of 182, since
any point in an open subset of ]R2 is contained in an open disk inside the subset.

(2) The infinite cylinder S' x IR C 183 is a surface. Intuitively it is easy to
see that every point on the infinite cylinder has an open neighborhood that is
homeomorphic to an open disk; we leave it to the reader to write down a formula
for such a homeomorphism. An open cylinder of the form S' x (a, b) is also
a surface, whereas a closed cylinder S' x [a, b] is not a surface according to
our definition, since points on the boundary do not have the required type of
neighborhoods. See Figure 2.3.2. 0

[a, b]

Si

Figure 2.3.2

We are allowing our surfaces to sit in any IR", not just R3, although the latter
is certainly most convenient. Some surfaces we will encounter later on (such as
the Klein bottle) do not fit into 1R3. In more advanced treatments, where the full



2.3 Surfaces in R" 57

generality of topological spaces is used, one can define surfaces as creatures
unto themselves, which do not sit a priori in any surrounding space. It turns out,
however, that all abstractly defined surfaces (and, more generally, manifolds)
are in fact homeomorphic to surfaces (or manifolds) that reside in Euclidean
space. Thus we are not losing any generality by restricting our attention to
surfaces that are by definition in Euclidean space.

Since one of our goals is to distinguish between surfaces, we need to clarify
what it means for two surfaces to be "the same" or not. For example, a sphere
of radius 1 and a sphere of radius 2, though different from the point of view
of geometry, are indistinguishable from the point of view of topology, being
homeomorphic. For the duration of this chapter and the next we will consider
homeomorphic surfaces as "the same." For example, the two surfaces pictured
in Figure 2.3.3 (referred to as an unknotted torus and a knotted torus, respec-
tively) are homeomorphic (even though it is not possible to deform one surface
into the other without cutting or tearing while staying in R3). To construct
a homeomorphism between the surfaces, consider Figure 2.3.4, in which the
surface in part (i) of Figure 2.3.3 is cut along a 1-sphere, is knotted, and is
finally re-glued. The map that takes each point in the unknotted torus and maps
it to its final location after the cutting and re-gluing maneuver is the desired
homeomorphism. Although the surface was cut during this construction so we
do not have a continuous deformation, the resulting map is continuous since the
surface is re-glued exactly where it was cut. The difference between the knotted
and unknotted tori (plural for torus) is simply the way in which they sit in R3.

Figure 2.3.3
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cut

Figure 2.3.4

Exercises

re-glue

2.3.1. Which of the following are surfaces?

(i) S2 - point,

(ii) (a, b) x (b, c) C R2,

(iii) (a, b) x [c, d] C R2,

(iv) (D2 x (0, 1)) U (S' x [0, 11) C R3.

2.3.2. Using reasoning of the sort used in Figure 2.3.4, which surfaces shown
in Figure 2.3.5 are homeomorphic to one another?

2.3.3*. Let Q C R" be a topological surface, and let p E Q be a point.
Show that for any number e > 0 there are subsets U, B C Q such that U is
homeomorphic to int D2 and contains p, the set B is a disk containing p in its
interior, and U, B C Of (p, Q).

2.3.4. Let Q C R" be a surface, and let U C Q be a set that is homeomorphic
to an open subset of R2. Show that U is open in Q.

2.3.5*. If p, q E S2 are any two distinct points, show that S2 - (p) R2 and
S2-(p,q) ..:S' xR.
2.3.6. Show that a surface from which a closed subset has been removed is
still a surface.

2.3.7*. Let QI C R" and Q2 C RI be surfaces, and let B, C Q; be a disk for
i = 1, 2. Suppose that Q1 - int B1 -- Q2 - int B2. Show that QI -- Q2.
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(b)

(h)

Figure 2.3.5

2.4 Surfaces via Gluing
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(f)

Our next step is to develop a technique called gluing for constructing more sur-
faces. Recall the discussion of constructing a cylinder from a rectangular piece
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of paper in Section 1.4. Though a compact cylinder is not strictly speaking a
surface, the same idea of gluing can be used to obtain true surfaces. For exam-
ple, starting with a disk, dividing its boundary into two semi-circles, and then
gluing these semi-circles as in Figure 2.4.1 yields a sphere, albeit a somewhat
"calzone-shaped" one. (In this and in other constructions, it is best to think of
the surfaces as made out of cloth or rubber rather than paper.)

Figure 2.4.1

Now take a square, and label the sides as in Figure 2.4.2; the labeling
indicates that sides labeled with the same letter are to be glued, with arrows
matching up. Try to figure out what is obtained before reading on.

a

a

Figure 2.4.2

The easiest way to see what is obtained is to glue the edges in two stages.
After gluing the edges labeled a, we obtain a cylinder. Notice that the arrows
on the sides labeled b become arrows on the edges of the cylinder. We next glue
the edges b. and the result is a torus. See Figure 2.4.3. A general procedure for
this sort of construction is given in the following definition.

b
10

a , b

Figure 2.4.3
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Definition. A polygonal disk is a disk that sits in some plane in R", the bound-
ary of which is a polygon. If D is a polygonal disk, a gluing scheme S for the
edges of D is a labeling of each edge of D with an arrow and a letter, where
each letter used in the labeling appears on precisely two edges.

For a polygonal disk to have a gluing scheme it must have an even number
of edges. Some examples of gluing schemes appear in Figure 2.4.4. Observe
that the gluing schemes in parts (i) and (ii) of the figure are not the same, since
the direction of one of the arrows differs in the two figures. On the other hand,
the gluing schemes in parts (i) and (iii) are essentially the same, since the arrows
on both edges labeled a are reversed in (iii) as compared to (i). Although we
have yet to give a formal definition of gluing the edges of a polygonal disk via
a gluing scheme, intuitively the idea is just as in the case of gluing the edges of
the square used above to obtain a torus. For example, the result of gluing the
edges of Figure 2.4.4 (i) is seen in Figure 2.4.5.

d

(i)

d

Figure 2.4.4

Figure 2.4.5

d d

If we start with any polygonal disk and any gluing scheme for the edges of
the disk, do we obtain a surface in some R"? To answer this question we need
a rigorous definition of what it means for something to be the result of such a
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gluing. We use the concept of an identification space, as discussed in Section
1.4. Given a polygonal disk D and a gluing scheme S for the edges of D, we will
construct a partition of D induced by the gluing scheme, and the result of gluing
the edges of D according to a gluing scheme will simply be an identification
space for D and this partition of D, whenever such an identification space exists.

Consider the gluing scheme shown in Figure 2.4.2, used to construct T2.
It glues all four vertices of the square to each other, glues the points in the
interiors of the edges of the square in pairs, and does not glue the points in
the interior of the square to anything. More generally, for any polygonal disk
and gluing scheme, points in the interiors of the edges of the polygonal disk
get glued in pairs and points in the interior of the polygonal disk do not get
glued to anything; the vertices of the polygonal disk get glued to one another in
collections of various sizes.

Definition. Let D be a polygonal disk, and let S be a gluing scheme for the
edges of D. The gluing scheme S divides up the edges of D into pairs, called
edge-sets, such that two edges are in the same edge-set if they are identified
under S; let E1, .. . Ek denote the edge-sets. For each E;, let LE, denote the
unique affine linear map that takes one of the edges in E; to the other so that
their endpoints are matched up according to the arrows on the edges given by
the gluing scheme (see Lemma A.7); there are two such maps, depending upon
which of the two edges is the domain and which is the codomain, so choose
one map. The induced partition of D by S, denoted P(S), is the partition of
D given by P(LE,, ... , LEE), using the notation of Exercise 1.4.8. The sets in
this partition that contain vertices consist only of vertices, and these collections
of vertices are called vertex-sets.

Example 2.4.1. See Figure 2.4.6 for two examples of gluing schemes on a
polygonal disk with eight edges, and the associated vertex-sets. Note that the
vertex-sets for the two different gluing schemes are quite different in their sizes,
even though the same size polygonal disk was used in both cases, and both
gluing schemes yield a 2-sphere. There is, in general, no way of knowing a
priori the number and sizes of the vertex-sets, in contrast to the edge-sets - all
of which contain two edges, and of which there are half as many as the number
of edges of D. 0

We can now finally state what it means rigorously to glue the edges of a
polygonal disk by a gluing scheme.
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V a v a

vertex sets: (x ), { y, V)
{z, u}, {w}

vertex sets: { w }, { v), { y }
{u, x, z}

Figure 2.4.6

Definition. Let D be a polygonal disk, and let S be a gluing scheme for the
edges of D. A subset X C R" is obtained from D and S if X is an identification
space of D and P(S); that is, there is a quotient map q: D -+ Q such that if
x, y E D are points, then q (x) = q (y) if x and y are in the same set in P(S).

Example 2.4.2. Consider the gluing scheme used to construct T2. If we start
with the square in Figure 2.4.2, we want to find a quotient map from this
square onto the torus with the desired properties. The map from the square
to the torus can be obtained simply by taking every point in the square and
mapping it to where it ends up in the torus at the end of the gluing process
shown in Figure 2.4.3. The fact that this map is a quotient map follows from
the compactness of the square and the continuity of the map, using Proposition
1.6.14 (ii). The requirement on the inverse images of points under the map can
be seen straightforwardly. Thus, the torus is indeed obtained from the square
and the gluing scheme shown in Figure 2.4.2 according to the above definition.

0

As mentioned in Section 1.4, it is not clear whether for any set in Euclidean
space and any partition of the set there exists an identification space also sitting
in some Euclidean space. We then ask whether there is some set in Euclidean
space, not to mention a surface, obtained from every polygonal disk and every
gluing scheme for the edges of the disk? Conversely, is every compact surface
obtained from some polygonal disk and gluing scheme? The following result
takes care of all these questions.
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Theorem 2.4.3. (i) Let D be a polygonal disk, and let S be a gluing scheme for
the edges of D. Then there is a surface Q C l[8" that is obtained from D and S.

(ii) Let Q C R" be a compact connected surface. Then there is a polygonal
disk D and a gluing scheme S for the edges of D such that Q is obtained from
D and S.

The rather lengthy proof of part (i) is given in Appendix 2A.1, to avoid
interrupting the development of the material. The proof of part (ii) is delayed
until Section 3.4, where we will have more tools at our disposal.

We conclude this section with some very important examples of surfaces
constructed by gluing. First, consider a compact cylinder, obtained by gluing
two opposite edges of a rectangle. Suppose we put in half a twist prior to gluing
this time. The result will be the well-known Mobius strip, denoted M2. See
Figure 2.4.7 (i)-(ii). The Mobius strip is not a surface as we have defined it,
though it is a "surface with boundary" The two unlabeled edges in the rectangle
shown in Figure 2.4.7 (i) are glued end-to-end in the Mobius strip, where they
form a 1-sphere, as in Figure 2.4.7 (iii); this I-sphere is the boundary of the
Mobius strip, and is denoted 8M2. We will use the term Mobius strip to refer
to any subset of Euclidean space homeomorphic to the standard Mobius strip.

(i)

Figure 2.4.7

The Mobius strip has only "one side." In contrast to a cylinder, which can
have one side painted red and the other side painted black, if we start painting
anywhere on a Mobius strip we eventually cover everywhere on the surface with
that single color. Actually, surfaces don't really have "sides", since they have
no thickness. Imagine a Mobius strip with no thickness (and thus transparent),
on which there is a rightward-facing person, as in Figure 2.4.8. If the person
went all the way around the Mobius strip, she would come back facing left.
Such a reversal could never happen on a cylinder. (Whereas the properties of
one-sidedness and figure-reversing coincide for surfaces sitting in R3, they need
not coincide in more general circumstances; see [WE, Chapter 8] for a very nice
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discussion.) While you are at it, take a cylinder and a Mobius strip and cut them
down the middle lengthwise; before cutting each object try to figure out how
many pieces you will obtain.

Return Departure

Figure 2.4.8

We can obtain surfaces that contain Mobius strips as follows. Consider
the two gluing schemes for squares shown in Figure 2.4.9. Inside each of the
surfaces obtained by these gluing schemes sits a Mobius strip, since inside each
square sits a strip (shaded in the figure) with opposing edges glued appropriately.

a

b

a

(i)

Figure 2.4.9

E

a

b

If we glue the sides labeled a in Figure 2.4.9 (i) we get a cylinder, as in
Figure 2.4.10 (i). Observe that the sides labeled b in Figure 2.4.10 (i) have
arrows facing in opposite directions. In order to glue these sides so that their
arrows match we need to pass one end of the tube through its side, as in Figure
2.4.10 (ii) and (iii). It is, of course, not possible to pass a physical object through
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itself, though mathematically there is really no problem with the concept of self-
intersection. (Still, it is nicer if self-intersections can be avoided, since an object
with self-intersections is not a surface in Euclidean space as we have defined
it.) We can also get around the problem of this surface passing through itself by
going into R4. Draw a I-sphere around the part of the surface where the self-
intersection occurs, labeled C in Figure 2.4.10 (iii), and then push the interior
of the disk bounded by the l -sphere "up" into R4. Such a move gets the disk
out of the way, and thus there is no self-intersection. (If you have not thought
about four-dimensional space previously such a maneuver may seem somewhat
baffling, but it really works.) This argument about placing the surface in R4
in such a way that it has no self-intersections can be made rigorous, though
we will not take the trouble here. The result of this process yields a surface
known as the Klein bottle, Figure 2.4.10 (iii), denoted K2. As usual, the term
Klein bottle will apply to any subset of Euclidean space homeomorphic to the
standard Klein bottle.

(i)

Figure 2.4.10

The surface obtained by the gluing indicated in Figure 2.4.9 (ii) is a bit
trickier to visualize; it also needs to be placed in R4 to avoid self-intersection.



2.4 Surfaces via Gluing 67

For convenience, we rotate the original square as in Figure 2.4.11 (i), and label
the corners as shown; observe that if the edges are glued as indicated then the
points labeled A and A' will be glued to one another, as will the points labeled B
and B'. We start by simply gluing these pairs of points, yielding Figure 2.4.11
(ii). Look closely at how the edges now need to be glued in pairs. We can
certainly glue one of the pairs of edges, say those labeled a, so that their arrows
match. However, to glue the other pair of edges one would have to pass the
surface through itself if we stayed in R3, yielding something like Figure 2.4.11
(iii); in R4 the self-intersection can be avoided. This surface is known as the
projective plane, denoted p2. We could obtain p2 by gluing the boundary of a
disk as shown in Figure 2.4.12.

B, B'

A'

(i)

Figure 2.4.11

The surfaces K2 and P2 will play important roles in our study of surfaces.
We noted before that both K2 and p2 contain Mobius strips; we can now make
more precise the nature of these inclusions. If we take two disks of the same
size made of cloth and glue their boundaries together, we obtain sphere; this
notion of gluing can be made rigorous by using the notion of attaching via a
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Figure 2.4.12

homeomorphism discussed in Section 1.4, where the homeomorphism in this
case is any homeomorphism between the boundaries of the two disks. Given
that the boundary of a Mobius strip is a 1-sphere, as is the boundary of a disk,
we ask what would happen if we glue the boundary of a Mobius strip to the
boundary of a disk, and what would happen if we glue the boundaries of two
Mobius strips together? The next two lemmas answer these questions.

Lemma 2.4.4. Let B C P2 be a disk; then p2 - int B ti M2. Thus, P2 can be
obtained by attaching a Mobius strip and a disk via a homeomorphism of their
boundaries.

Proof. The second sentence in the lemma follows straightforwardly from the
first. For the first sentence, we start by observing that Proposition A2.2.6 implies
that the choice of disk B makes no difference, so we can chose a disk that is
convenient. A standard method of proof uses a cutting and pasting method, as
pictured in Figure 2.4.13. This procedure starts with the disk shown in Figure
2.4.12; a smaller disk in the interior is chosen, and after removing the interior
of the inner disk some rearrangement is done until we end up with a Mobius
strip. 0

Lemma 2.4.5. The Klein bottle can be obtained by attaching two Mobius strips
via a homeomorphism of their boundaries.

Proof. A pictorial proof of this result can be given by cutting an appropriate
model of K2 in half, as shown in Figure 2.4.14. A proof using cutting and
pasting, similar to the proof of the previous lemma, is left to the reader in
Exercise 2.4.2. 0
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cut

a

glue{--
d

a

a a +-
I C

Figure 2.4.13

a Flip AI and move it

Figure 2.4.14

Exercises

2.4.1. Give a polygonal disk and a gluing scheme that will yield the surface
pictured in Figure 2.4.15.

Figure 2.4.15

2.4.2*. Prove Lemma 2.4.5.
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2.4.3. Find the vertex-sets for each of the polygonal disks and gluing schemes
shown in Figure 2.4.16.

x q

C

4 f y

i{ a }I,i

(1)

Figure 2.4.16

2.5 Properties of Surfaces

We discuss a number of properties, some familiar and some new, which a given
surface may or may not have. One of the most important of these properties is
compactness. The surfaces S2, T', K2 and p2 are all compact, whereas R2 is not
compact. In fact, any surface obtained by gluing the edges of a polygonal disk
will be compact, since the surface is the image of a compact set (the polygonal
disk) under a continuous map (the quotient map from the polygonal disk to the
surface). For the most part we will restrict our attention to compact surfaces,
since non-compact surfaces can be much more complicated topologically, as in
Figure 2.5.1.

this circle is not part
of the surface

Figure 2.5.1



2.5 Properties of Surfaces 71

We will also need to apply the notion of connectedness to surfaces. In
general, a surface need not be connected, for example, the union of two spheres
that do not touch. Whereas in Section 1.5 we saw that the concepts of connect-
edness and path connectedness do not coincide in general, we now see that they
do coincide for surfaces.

Proposition 2.5.1. A surface in R" is connected if it is path connected.

Proof. That a path connected surface is connected follows from Theorem 1.5.7.
Now assume that Q C R" is a connected surface; we will show that Q is path
connected. Pick any point p E Q. Let A C Q be the set defined by

A= {q E Q I there is a path in Q from p to q}.

We will show that A is both open and closed in Q; since A is non-empty (it
contains p) it will then follow from the connectedness of Q and Lemma 1.5.1
that A = Q. Hence Q must be path connected, since for any two points
q, , q2 E Q we can find paths from p to each of q, and q2, and we can then
apply Exercise 1.5.10.

To show that A is both open and closed, we start with the following ob-
servation. For any point q E Q there is an open subset W C Q containing q
that is homeomorphic to the open disk int D2. By Exercise 1.5.7 int D2 is path
connected, and hence W is path connected by Exercise 1.5.9. Thus any point
in Q is contained in an open subset of Q that is path connected.

We now return to the set A. Let q be any point in A, and let W C Q be
a path connected open set containing q. Since there is a path from p to q, and
since there is a path from q to any point in W, it follows that there is a path from
p to any point in W. Hence W C A. Since this result holds for any q E A, it
follows from Exercise 1.2.6 that A is open in Q.

Now lets E Q - A be a point, so that there is no path from p to s. Let
V C Q be a path connected open set containing s. If any point in V were
connected by a path to p, then since that point is connected by a path to s, it
would follow that there is a path from p to s, a contradiction. Thus V C Q - A.
It follows that Q - A is an open subset of Q, and therefore A is closed in Q. 0

Another property a surface may possess concerns the difference mentioned
in the previous section between the cylinder and the Miibius strip. Rather
than try to characterize more rigorously what this difference is (as is done in
more advaced treatments), we observe that if a surface contains a MSbius strip
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then it will certainly have the direction-reversing property of the Mobius strip.
Conversely, it seems plausible that if a surface has this reversing property then
it would contain a Mobius strip, and we are thus led to the following definition.

Definition. A surface is orientable if it does not contain a Mobius strip, and it
is non-orientable if it does contain a Mobius strip.

We saw in the previous section that K2 and p2 contain Mobius strips, and
are thus non-orientable. On the other hand R2, S2 and T2 can all be shown to
be orientable. One way to see this fact intuitively is that each of these surfaces
can be colored with one color on one side and a different color on the other side.
That being the case, none of them could contain a Mobius strip, since otherwise
a Mobius strip in one of these surfaces would inherit this coloring. A more
rigorous demonstration that these three surfaces are orientable would require a
more advanced definition of orientability. Actually, any surface in llP3 that is a
closed subset of lR3 is orientable (see [SA]); surfaces in higher-dimensional R"
need not be orientable.

An issue we have already touched on is the distinction between a property
inherent in a surface and one that is dependent upon how the surface sits in
Euclidean space; a property of the former type is called intrinsic, whereas
the latter type is called extrinsic. The compactness of a surface is intrinsic
to the surface and does not depend upon how the surface sits in Euclidean
space, since if two surfaces in Euclidean space are homeomorphic, then either
both are compact or neither are. We also saw the example of the knotted and
unknotted tori in Figure 2.3.3. These surfaces are homeomorphic as mentioned,
so knottedness in an extrinsic property. In fact, if the knotted torus is placed in
fit, it can be continuously deformed into an unknotted torus, so we have even
more evidence that the issue of knottedness only depends upon how a surface is
sitting in a certain Euclidean space. Another way to express the extrinsic nature
of knottedness is to image a bug that lives on a torus and that cannot see anything
off of the torus (and in particular cannot look through three-dimensional space
from one part of the torus to another, no matter how close the other part of the
torus is). Such a bug would not be able to tell if the torus it is on were knotted
or not.

Exercises

2.5.1. Which of the following surfaces are compact?
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(I)S2- {point};

(2) SI x IIt;

(3) the surface in Figure 2.5.2.

Figure 2.5.2

2.5.2*. Prove that an orientable surface cannot be homeomorphic to a non-
orientable surface.

2.5.3*. Let Q C ]R be a connected surface. Suppose that each point in Q
has an open neighborhood in Q that is contained in a plane in W. Show that Q
is contained in a plane. Show that the analogous result with spheres replacing
planes also holds.

2.6 Connected Sum and the Classification of Compact
Connected Surfaces

Our present goals are to make a complete list of compact connected surfaces
up to homeomorphism and to find an easy method for distinguishing between
such surfaces. It is not obvious that this can be accomplished. Some surfaces
can appear to be quite complicated, as in Figure 2.5.2. Additionally, as seen in
Figure 2.3.3 and Exercise 2.3.2, some surfaces that may appear distinct are in
fact simply sitting differently in Euclidean space.

In order to state our main result we first need to introduce a systematic
method for constructing new surfaces out of old ones. The idea is to take two
surfaces, remove the interior of a small disk from each one, and then glue what
remains as shown in Figure 2.6.1(i). Equivalently, we could remove the interiors
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of the two disks, and run a tube from one hole to the other (the result is the same
up to homeomorphism); see Figure 2.6.1 (ii). The result of this construction
certainly appears to be a surface, and thus we can make new surfaces in this
way. To define this construction rigorously we use the notion of attaching via a
homeomorphism, as discussed in Section 1.4. Observe that a disk can always
be found in any surface, since a disk can always be found inside int D2.

(i)

Figure 2.6.1

Definition. Let Q1, Q2 C R" be compact connected surfaces. For i = 1, 2
let B, C Q, be a disk, and let h: 8Bi -+ aB2 be a homeomorphism. The
connected sum of Q I and Q2, denoted Q I # Q2, is the the attaching space
(Qt - int Bi)Uh(Q2 - int B2)-

A number of questions arise here. First, as mentioned in Section 1.4, it is
not clear that we can always find a subset of Euclidean space that is the result of
any given attempt at attaching. Second, even if we can always form an attaching
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space (QI - int BI)Uh(Q2 - int B2), how do we know that we always obtain
a surface? Finally, supposing that we do always obtain a surface, what about
the choices we made in the construction, namely the choice of disks B; C Qi
and the choice of homeomorphism h; if for different choices we were to obtain
different surfaces, then our construction would not be well-defined. Fortunately,
everything works out as well as possible.

Proposition 2.6.1. Let Q1, Q2 C R" be compact connected surfaces. Let
Bi C Qi be a disk for i = 1, 2 and let h: 8B1 - 8B2 be a homeomorphism.
Then the attaching space (Qi - int BI)Uh(Q2 - int B2) exists and is a surface
in some Rn. Any two surfaces obtained in this way are homeomorphic.

The cleanest way to prove this result uses more advanced techniques; see
[RO], [HE] and [MI l ]. We give an accessible, though somewhat involved, proof
of this proposition in Appendix A2.1.

The following lemma gives a few properties of connected sum, which we
state without proof; the first two properties are straightforward, and the third
follows from Exercise 2.3.6.

Lemma 2.6.2. Let A, B and C be compact connected surfaces. Then

(1) A # B B#A,
(ii) (A#B)#C ti A#(B#C),

(iii) A # S2 -- A.

These properties of connected sum make it appear as if connected sum acts
analogously to addition and multiplication of numbers. However, unlike those
two operations, there are no inverses with respect to connected sum (with S2
playing the role of the identity element), as seen in the following proposition.
The proof of the proposition involves a method known as the "Mazur swindle."

Proposition 2.6.3. Let A and B be compact connected surfaces such that
A#B__ S2. Then A_- B__ S2.

Proof. Consider the infinite connected sum

X = A#B#A#B#A#B#... .

(To be completely rigorous we would need to define the notion of infinite series
using connected sums, though we will not go into that here.) Because connected
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sum is associative, we can regroup the summands in X, giving us two different
computations of the value of X. First, we have

X = (A # B) # (A # B) # (A # B) # ... S2#S2# ... S2.

On the other hand, we also have

X = A#(B#A)#(B#A)# ... ^= A#S2#S2# ... A.

Combining these two calculations for the value of X we see that A S2; similar
reasoning shows that B S2 as well.

Two useful examples of connected sums are the following lemmas.

Lemma 2.6.4. P2 # P2 K2.

Proof. Exercise 2.6.1.

Lemma 2.6.5. P2#T2 N P2#P2# P2.

Proof The previous lemma shows that it suffices to prove that p2 # T2 ti
P-- # K2. Suppose that for some disk B C P2 we could show that (P2 -
int B) # T2 - (P2 - int B) # K2; the result would then follow using Exercise
2.3.7. Using Lemma 2.4.4, it thus suffices to prove that M2 # T2 M2 # K2.
(We have not discussed connected sums involving a non-surface such as M2,
but as long as we stay away from 3M2 there is no problem.) The reason we go
from p2 to the M2 strip is to make the proof visualizable.

To form the connected sum of M with each of T2 and K2, we need to know
what all these objects look like with the interior of a disk cut out; by Proposition
2.6.1 we can use the disks of our choice. Cutting out the interior of a disk from
M2 leaves a MObius strip with a hole cut out - not very exciting. If we cut the
interior of a disk out of T2 we can deform what remains as in Figure 2.6.2.

92
A12 -disk T2-disk

Figure 2.6.2
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Figure 2.6.3

We can now form M2 # T 2 by attaching the appropriate I -spheres as in Figure
2.6.3.

Turning to K 2, we may as well cut out the interior of a disk that is convenient
to visualize, as in Figure 2.6.4. We form M2 # K2 as in Figure 2.6.5. To show
that M2 # T2 N M2 # K2, we need to see that the objects in Figures 2.6.3
and 2.6.5 are homeomorphic. This homeomorphism is demonstrated in Figure
2.6.6. 0

Figure 2.6.4

Figure 2.6.5
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Figure 2.6.6

Lemma 2.6.5 shows that the operation # has no cancelation property. The
following proposition clarifies the relation of orientability and connected sum.
The proof of the proposition is trickier than might be expected, and we will have
to gloss over one technical detail (a more satisfying proof would make use of
algebraic topology).

Proposition 2.6.6. Let Q 1 and Q2 be compact connected surfaces in R". Then
Q, # Q2 is orientable i¶ both Q, and Q2 are orientable.

Proof. We prove the proposition by showing that the falseness of either state-
ment implies the falseness of the other. Assume first that one of Q, or Q2 is
non-orientable; without loss of generality assume it to be Q. Hence Q, con-
tains a Mobius strip, denoted M. Since M is not a surface by itself, the surface
Q, must contain some point q not in M. Using the compactness of M and {q}
and Exercises 1.6.11 and 2.3.3, it follows that there is a disk B C Qi - M.
By using the disk B in the construction of Q, # Q2 (which we are at liberty
to do by Proposition 2.6.1), it follows that M C Q, # Q2. Thus Q, # Q2 is
non-orientable.

Now assume that Q, # Q2 contains a Mobius strip M; we will show that
one of Qi or Q2 contains a Mobius strip. When the connected sum of Q1 and
Q2 is formed, the interior of a disk was cut out of each surface, and the surfaces
were attached along the boundary 1-sphere in each of the surfaces. After the
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attaching, there remains on the connected sum a 1-sphere C where the two
boundary circles were attached. Evidently this 1-sphere C separates Qr # QZ
into two pieces, one piece formerly from Q, and the other piece formerly from
Q2. If M does not intersect C then it is entirely contained in either Qr or Q2,
in which case the proof will be complete; hence assume that M intersects C.
By using some technicalities we will not go into, it can be shown that M can be
deformed so that every time it intersects C it actually crosses it, and does so in
finitely many places; see Figure 2.6.7. Label these intersections Ir, ... , 1, in
order along M. Observe that r must be an even integer.

Figure 2.6.7

Take an arrow along C at 11 whose width is the width of M. as in Figure
2.6.7. Think of running the arrow along the length of M, starting and ending at
11, and passing through every other intersection 14 along the way exactly once.
Because M is a Mbbius strip, if one runs the arrow along the length of M it
will be pointing the other way along C when it reaches /r again. As we run the
arrow along M, each time it passes through an intersection Ik it points in one
of two possible directions along C. For each k E { 1, ... , r}, as we go from
intersection Ik to intersection Ik+1 (where addition is mod r), the arrow either
reverses direction along C or it does not. See Figure 2.6.8.

Suppose that every time we go from Ik to Ik+r the arrow reversed direction
along C. Since r is an even number, it would follow that after going along all of
M the arrow would end up not being reversed, a contradiction. Hence it must
be the case that f o r some value of j E { 1, ... , r) the transition from Ij to Ij+r
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Q1

C

Figure 2.6.8

does not reverse the direction of the arrow along C. See Figure 2.6.9. The part
of M between Ij and Ij+, is entirely contained in one of Q, or Q2; without
loss of generality assume it is in Q. Let N be a strip in Q, running along C
between IJ and Ij+,, as in Figure 2.6.9 (it does not matter which such strip we
choose). Let M' be the union of N and the part of M between 1j and Ij+,. By
construction M' is entirely contained in Q,, and it is seen that M' is a Mobius
strip. 0

Q2

Figure 2.6.9

We now return to our main problem, namely finding all compact connected
surfaces. Using connected sums there appear to be infinitely many different
surfaces, since, for example, we can take the connected sum of an arbitrary
number of tori. See Figure 2.6.10. The surfaces obtained this way are indeed
all distinct, as seen in the following theorem. We will have to wait until Section
3.6 to prove this result.

Theorem 2.6.7 (Classification of Compact Connected Surfaces). Any com-
pact connected surface is homeornorphic to the sphere, a connected sum of Lori,
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or a connected sum of projective planes, that is, is one member of the list

s2

T2, T2#T2, T2#T2#T2, ...
P2, P2 # P2, P2 # P2 # P2, ... .

The surfaces in this list are all distinct.

Figure 2.6.10

This remarkable theorem tells us that we know what all the compact con-
nected surfaces are; simple criteria for distinguishing between such surfaces
will be found during the course of the proof of the classification theorem. At
first glance it appears as if we are missing the Klein bottle from the list in the
theorem; Lemma 2.6.4 indicates where to find the Klein bottle in the list.

Exercises

2.6.1 *. Prove Lemma 2.6.4.

2.6.2. Where on the list in Theorem 2.6.7 are the surfaces K2 # P2, K2 # K2
and T2 # T2? Where is the surface shown in Figure 2.6.11?

Figure 2.6.11

2.6.3. Show that none of the surfaces in the list

S2, T2, T2#T2, T2#T2#T2, ...
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is homeomorphic to any of the surfaces in the list

p2. p2 # P2, P2 # p2 # p2, ... .

Appendix A2.1 Proof of Theorem 2.4.3 (i)

We start with some preliminaries. Recall the definition of edge-sets and vertex-
sets in Section 2.4. The following lemma, though seemingly simple, is the heart
of the proof of Theorem 2.4.3 (i).

Lemma A2.1.1. Let D be a polygonal disk and let S be a gluing scheme for
the edges of D.

(i) Let v be a vertex of D. The vertex-set containing v is the single-element
set (v) iff both edges of D containing v are glued to one another by the
gluing scheme S.

(ii) if a vertex-set contains k vertices (k > 1), the vertices in the vertex-set
can be labeled as w,, ... , wk such that for each i = 1, ... , k one of
the edges containing wi is identified by the gluing scheme with one of
the edges containing wi+, (where the addition is mod k).

Proof. (i). This is straightforward, and we leave the details to the reader.

(ii). The proof is by induction on k. The case k = I follows from part (i).
Now suppose that k > I and that the result holds true for all vertex-sets with
fewer than k vertices in all polygonal disks and for all gluing schemes. Let W
be a vertex-set of D with k members; let v be a vertex in this vertex-set. We
now take the polygonal disk D, cut out a wedge containing v and the two edges
adjacent to v, and close up the wedge to form a new polygonal disk D, with
two fewer edges than D. See Figure A2.1.1.

We define a gluing scheme S, for D, as follows. From part (i) of this
lemma it follows that the two edges of D containing v are not identified with
one another under S; suppose these edges are labeled a and b. Let S, be defined
by using S on all edges labeled other than a and b, and identifying the other
edges of D, labeled a and b with one another with their given arrows. Let W,
be the vertex-set of D, and S, containing all the vertices in W other than v.
Since W, has k - 1 members, the induction hypothesis holds with respect to



Appendix A2.1 Proof of Theorem 2.4.3 (i) 83

W1. Hence we can label the vertices of W1 as w1,... , wk_, such that for each
i = l , ... , k - I one of the edges containing wi is identified by the gluing
scheme with one of the edges containing wi+,. Without loss of generality we
could choose the labeling of the vertices so that wk_, is contained in the edge of
D, labeled a and w, is contained in the edge of D, labeled b. If we set wk = v
it is not hard to see that the labeling w, , ... , wk of the vertices of W works as
desired. 0

Figure A2.1.1

We are now ready for our main proof.

Proof of Theorem 2.4.3 (i). The outline of the proof is as follows. First, we will
construct maps from various parts of the disk D onto certain disks in R2. We
will then use these maps to construct a continuous map H from D into some
R1, where m depends upon the number of edges of D and the gluing scheme
S. Next, we will show that H(x) = H(y) for points x, y E D if x and y
are in the same set in P(S). Finally, we will show that the image of this map
is a surface. Since the disk D is compact and the map is continuous, it will
then follow from Proposition 1.6.14 (ii) that the map is a quotient map onto its
image. This outline is admittedly vague, and indeed this whole proof is the sort
where one simply has to make sure that each step is logical, taking it on faith
that by the end one will actually end up where expected - as indeed turns out
to be the case.

Suppose that D has n edges; recall that the n must be an even integer.
We may assume without loss of generality that n > 4; if not there must be
precisely two edges, in which case one can divide each edge in two, and the
appropriately defined gluing scheme for the divided edges will yield the same
result topologically. See Figure A2.1.2 for the two possible cases with two
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edges. (The theorem is true with n = 2, but the proof is simpler assuming
it > 4.) Next, we may also assume without loss of generality that D is the
regular polygonal disk with it sides centered at the origin in R2 with inscribed
radius 1. See Figure A2.1.3. It is easy to calculate that each side of D has
length 2 tan

n
; for convenience we will let A denote half this length, that is

A = tan .

Figure A2.1.2

Figure A2.1.3

Let E be an edge-set of D with respect to gluing scheme S. Let a and a'
be the edges in E, and let p, p' be their respective midpoints. We define the set
UE to be

UE = OA, (p, D) U OA, (p', D).

The set UE is the union of two half-disks with parts of their boundaries. See Fig-
ure A2.1.4. We construct a map gE: UE -+ OA. (O2, R2) by mapping the half-
disk OA. (p. D) rigidly onto the upper half of the disk OA, (02, ]R2), and mapping
the half-disk OA. (p', D) rigidly onto the lower half of the disk OA, (O2, R2),

making sure that the boundaries of the two half-disks, match up as prescribed
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by the gluing scheme S (it may be necessary to flip over one of the half-disks).
It is seen by the construction that the map gE is injective everywhere except
on a and a' (where it is two-to-one), and that 9E(X) = 9E(Y) for any two
points x, y E UE if x and y are in the same set in P(S). The image of g, is
OA, (02, R2). There is a map gE for each edge-set E.

Figure A2.1.4

Now let W be a vertex-set of D with respect to S; W contains one or more
vertices. We define sets Uw analogously to the sets UE, namely

Uw = U OA, (w, D).
WE W

The set Uw is the union of a collection of wedge-shaped pieces. See Figure
A2.1.5. We wish to construct a map gw: Uw --+ OA,(O2, R2) with properties
analogous to the maps gE. Suppose that there are k vertices in W. If k = 1,
that is, if there is one vertex w E W, then the map gw is defined by mapping
w to the origin, and wrapping the single wedge Uw = OA, (w, D) around until
its two edges overlap and it covers OA, (O2, R2).

Now assume k > 2. Begin by dividing the disk OA, (02, R2) into k equal
wedges, labeled Ft..... Fk, as in Figure A2.1.6. Label the vertices in W
as WI,... , wk, as in the conclusion of Lemma A2.1.1 (ii). The map gw is
defined so that it takes all the vertices w; to the origin, and it takes each wedge
OA, (w1, D) onto the wedge F; (taking edges to edges affine linearly, possibly
squeezing or stretching the wedges). There are actually two ways we could
define the map gw on each OA,(w;, D), depending on whether we flip the
wedge over or not; having arbitrarily chosen how to map OA, (Wt. D), then by
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Figure A2.1.S

Lemma A2.1.1 (ii) the map is determined on the rest of the wedges if we want
to insure that edges that are glued together by the gluing scheme get mapped by
gw to the same image. See Figure A2.1.6. It is seen by the construction that the
map gw is injective everywhere except on the vertices and edges of the wedges
OAA(w;, D), and that gw(x) = gw(y) for any two points x, y E Uw iff x and
y are in the same set in P(S). The image of g,,, is OA. (02,11Y2). There is a map
gw for each vertex-set W.

Figure A2.1.6

For the sake of maintaining the analogy (which will make things simpler
notationally later on ) we define UD to be the disk int D2, which is just the open
inscribed disk in D. We define the map gn to be the identity map Up - int D2.
which is both continuous and injective.
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Let .6 denote the collection of all the edge-sets of D with respect to S, and
let V denote the collection of all the vertex-sets of D with respect to S. It is not
hard to see that the collection of sets

{ UE } EE U { UW) W EV U IUD)

is an open cover of D (the sets are relatively open in D). We will also need two
slightly shrunken, concentric versions of these sets, such that both collections of
the shrunken sets still form open covers of D. Choose two very small numbers
E2 > E1 > 0, and define the following sets:

and

for each E E E;

and

for each W E V;

UE = OA.-E, (p, D) U
OA.-E1 (p', D)

UE = OA.-E2(p, D) U OA.-,,(p'. D)

Uw = U OA.-E1 (w, D)
WEW

Uw = U OA.-E2 (w, D)
WEW

UD = OI-Ei (02, R2), UD = 01-E2(O2, R2).

For a small enough choice of E2 and e1, the collections of sets

IUEIEEE U {UW}WEV U {UD}

and

U" U U" UEEE W WEV IUD")

are open covers of D. Moreover, note that UE C U. for each E E E, that
UK, C UH, for each W E V. and that Up C UD, where the inclusions are
proper. See Figure A2.1.7. We have now completed the first stage of the proof
of the theorem, as outlined at the start of the proof.

For the next stage of the proof, we start by constructing some auxiliary
functions. First, let ,t, p: [0, oo) -* [0, oo) be functions with graphs as in
Figure A2.1.8. Next, for each E E E define a real-valued function OE: D --1. R
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1L'

Figure A2.1.7

by

A(IIx - pI1), if x E OA.-E(p, D);

'E(X) _ A(IIx - P'11). if x E OA,-E(P'. D):

0, if x E D - UE,

where p and p' are as before. It is straightforward to see that OE is well-defined,
and using Corollary 1.3.7 the map is seen to be continuous. It is important to
observe that if two points x, y e D are identified by the gluing scheme S then
OE(.r) = qE(y). Further, for any point x E UE we have 1E(x) > 0. For
each IV E V we define a function 0w: D -+ R completely analogously to the
definition of OSE; the functions 4w have properties analogous to the 1E. Finally,
we define a function OD: D -- R by /D(x) = and once again this
function has properties analogous to the OE and Ow.

To save writing, we define the set A to be the collection

A =6UVU{D};

for each S E A we thus have sets Us, Us, and Ua and functions gs and 4a as
defined above. Observe that since the sets U6 cover D, it follows that for each
point x E D there is at least one S E A such that 00(x) > 0. Next, for each
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µ

1 - E2 1 - El

Figure A2.1.8

S E A define a map ha: D -+ R2 by

hs(x) - (Os (x) - gs(x), if x E Us;

i 02, ifX E D - UU.

To see that ha is a well-defined function, we note that the overlap of the domain
of both cases of the definition is us fl (D - V_'') = Us - Ua, and that both cases
of the definition have value 02 on this region. That ha is continuous follows
from Corollary 1.3.7, observing that hs is continuous on each of the two open
subsets Ua and D - U.

We are now ready for the home stretch. Suppose that the set A has d
elements in it, labeled Si , .... Sd. (The number d depends upon the number of
edges of D and the number of edge-sets and vertex-sets, which in turn depends
upon the gluing scheme.) We define a map

H:D--).Rx...xRxlR2X XR2=R3d
k times k times
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H(x) = ha,(x)).

The map H is the one promised in the outline of the proof. Since each of the
component maps of H is continuous, so is H by Lemma 1.3.8. As mentioned
in the outline, the compactness of D and Proposition 1.6.14 (ii) together imply
that H is a quotient map onto its image. To complete the theorem, we need to
show that (1) H(D) is a surface, and (2) H(x) = H(y) for points x, y E D iff
x and y are in the same set in P(S).

Let us start with item (2). Let x, y E D be any point, and suppose that
H(x) = H(y). If x = y there is nothing to show, so assume x 34 y. From
the definition of H it follows that 08, (x) = 04, (y) and ha, (.r) = ha, (y) for
all i E (1, ... , d). As remarked previously there is at least one Sj E A for
which 05, (x) > 0; it follows that Os, (y) > 0 as well. By the definition of
the map 4a, we see that x, y E Us,. Since hs, (x) = ha, (y) it follows that
0a, (x) gs, (x) = 0a, (y) gal (y). Hence gs, (x) = ga, (y). There are now three
cases, depending upon whether Sf is an edge-set, a vertex-set or D. If Sj is D,
then gs, is injective, and so x = y, a contradiction; hence Sj # D. If Si is an
edge-set or a vertex-set, then, as mentioned above, the map gs, is injective on
Ua, n D, and go, (x) = gal (y) for any two points x, y E Us, if x and y are in
the same set in P(S). Putting all this information together demonstrates item
(2). (One can now see why H was defined as it was.)

Finally, we need to show that H(D) is a surface. If H(x) is any point in
H(D), we need to show that there is a open subset of H(D) containing H(x)
that is homeomorphic to int D2. For convenience, we will find a subset of H (D)
that contains H (x) and is homeomorphic to a disk in R2 by a homeomorphism
that maps H(x) to a point in the interior of the disk. Since the sets {Ua Jaee
cover D, there is some q E A such that x E U". To complete the proof it will
suffice to show that there is a homeomorphism between H(U,') and a closed
disk in R2. We proceed by defining a map r: R2 as follows: For
any point y E H(U;,), let n(y) = g,,(z), where z is any point in U,, such that
y = H (z). It needs to be verified that this definition makes sense, that is, that
g,,(z) is independent of the choice of z such that H(z) = y. Observe that if
y = H(zi) = H(z2), then as we saw above z, and z2 are identified by the
gluing scheme. It follows that g,,(zi) = gq(z2), and so n is well-defined.

We need to verify that n is injective. The proof is the backward version
of what we just did. Say Yr(yi) = ir(y2) for y,, Y2 E H(U7). Then g,,(zl) _
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g,,(z2), where zt, z2 E U7 are such that y, = H(zj) and y2 = H(z2). Since
g n (z i) = 9,,(Z2). it follows that z t and z2 are identified under the gluing scheme,
and therefore H (z i) = H (z2); thus qi = Q2, son is injective. Next, we need to
verify that ;r is continuous. Observe that we can express the map r explicitly
in terms of coordinates as follows. The domain of n is a subset of

R3d

k times k times

If i = Si then it can be seen, using the definition of the map H, that it is given
by

(xt,... xd, (a1,bt),... , (ad,bd)) t- (a`, b).
x; xi

This formula makes sense, since the map 4n is positive on U,+, hence the value
of x; is always positive in the domain of ir, namely H (U,11). It follows from
Exercise 1.3.9 and Lemma 1.3.8 that it is continuous.

Finally, observe that the set is closed and bounded, and hence compact
by the Heine-Borel Theorem (Theorem 1.6.6). Since H is a continuous map,
it follows from Theorem 1.6.10 that H (_U,'_,') is compact as well. Since n is
continuous and injective, it is a homeomorphism onto its image by Proposition
1.6.14 (iii). The image of 7r is equal to gn(U, ), which is simply the disk

O l _E2 (O2, R2), depending upon whether r1 E S U V or
r1 = D. Hence the map it is a homeomorphism from H(U7) to a disk in R2,
and this is what we needed to show. O

Appendix A2.2 Proof of Proposition 2.6.1

We essentially follow the method of advanced texts such as [RO], [HE] and
[MI 1 ], though we take a rather circuitous route in order to avoid some technical
difficulties. The bulk of our work will be to prove Proposition A2.2.8 below,
which states that connected sum is well-defined for a certain class of surfaces.
This class of surfaces will then be shown to include all surfaces, and it will
follow that connected sum is well-defined for all compact connected surfaces.

Most of this section is taken up with a number of technical issues concerning
I-spheres and disks. We start with the notion of a homeomorphism of St to
itself being orientation preserving or reversing. Intuitively, the 1-sphere S1 can
be "oriented" in one of two ways, either clockwise or counterclockwise, as
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shown by arrows in Figure A2.2.1. It seems plausible that any homeomorphism
h: S' --> S' either preserves or reverses orientation. For example, a rotation
preserves orientation, whereas reflection in the y-axis reverses orientation.

clockwise

Figure A2.2.1

counterclockwise

Let x, y E S' be any two distinct points. The points x and y divide S' into
two arcs; we let xj denote the arc that runs from x to y in the counterclock-
wise direction, and we let yl denote the other arc. Now let h: S' -> S' be a
homeomorphism. Observe that S' - (x, y) consists of precisely two compo-
nents, as does S' - (h(x), h(y)). Since a homeomorphism takes components
to components, it must be the case that h takes the arc Ix onto one of the arcs
h(x)h(y) or h(y)h(x). See Figure A2.2.2. The following lemma clarifies what
might happen.

h(x) h(y)

Figure A2.2.2
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Lemma A2.2.1. Let h: S' -* S' be a homeomorphism. Suppose that for
some pair of distinct points x, y E S' it is the case that h(l) = xj. Then
h

(x7p)

= x for all pairs of distinct points x', y' E S'.

Proof. There are a number of cases to check, depending upon which of x, x',
y and y' are equal to one another, we will do the case where all these points
are distinct, the other cases being similar. Either Y' E x1 or y' E yt; suppose
first that the former holds; since h(xj) = h- (x) it follows that h(xy) C
h(x, and hence h(x') must be the arc in S' that runs counterclockwise
from h(x) to h(y'). Thus h(x') = h(x. A similar argument holds if
y' E yl. If we now keep y' fixed and use the same argument while replacing x
with x', we deduce that h(x y) = h(x . 0

We can now make the following definition.

Definition. Let h: S' - S' be a homeomorphism. Then h is orientation
preserving if for some pair of distinct points x, y E S' it is the case that
h(l) = h(x)hy; otherwise h is orientation reversing.

To apply the concept of orientation preserving and reversing to any 1-sphere
in R", where there is no notion of "clockwise," we proceed by pulling everything
back to S1.

Definition. Let C C R" be a 1-sphere, and let h : C -* C be a homeomorphism.
Then h is orientation preserving (respectively orientation reversing) if, for
any homeomorphism f : S' -+ C, the map f -' oho of is an orientation preserving
(resp. orientation reversing) homeomorphism of S' to itself.

It is verified in Exercise A2.2.5 that the choice of the homeomorphism f
in the above definition does not affect the definition.

We now turn to homeomorphisms of disks. As a first step we show that any
homeomorphism of S' to itself can be extended to a homeomorphism of D2.

Lemma A2.2.2. Let h: S' -> S' be a homeomorphism. Then there is a homeo-
morphism H: D2 -- D2 such that HIS' = h.

Proof. There are many ways to define the map H, but the simplest is to set
H(02) = 02, and for each point x E S' to map the line segment from 02 to
x linearly onto the line segment from 02 to h(x). See Figure A2.2.3. One can
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give a formula for this map:

H(x)
Ilxllh(p II), ifx E D2 - (02);

02, ifx=02.
It can be verified that this map is a homeomorphism. 0

Si Si

Figure A2.2.3

We now turn to a harder question. Let B c R2 be a disk, and suppose
we are given a homeomorphism h: 8B -+ 8B. As seen in Exercise A2.2.3,
the map h can always be extended to a homeomorphism of R2 to itself; that is,
there is always a homeomorphism H: R2 --)- R2 such that HI BB = h. Can we
insure that H is the identity outside some larger disk containing B? In general
the answer is no; one example (proved using algebraic topology) is given by
reflecting S' in the y-axis. Certain maps h can be extended as desired, however,
as shown in the following proposition.

Proposition A2.2.3. Let B C R2 be a disk, and let h: 8B --+ 8B be a homeo-
morphism. If h is orientation preserving then there is a homeomorphism
H: R2 -. R2 such that H(B) = B, HI BB = Ii and H is the identity map
outside a disk containing B.

Proof. First, suppose that we could prove the result in the case of the disk
D2; we show that the result would then hold for all disks B C R2, and all
orientation preserving homeomorphisms h: a B 8B. Let such a disk and such
a homeomorphism be given. Since 8B is a I-sphere, it follows from Theorem
2.2.4 (the Schonflies Theorem) that there is a homeomorphism G: R2 -+ R2
such that G(S') = 8B and G is the identity map outside a disk. The map
(GIS')-' o h o GIS' is an orientation preserving homeomorphism of S' to
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itself, so by hypothesis there is a homeomorphism F: R2 R2 such that
FMS' = (GAS')'' o h o GAS' and F is the identity map outside a disk. It can
then be verified that the map H = G o F o G-' is a homeomorphism of R2
to itself such that H 18 B = h and H is the identity map outside a disk (for the
latter, use Exercise 2.2.7). It follows from Exercise 2.2.6 that H(B) = B.

Now comes the hard part, proving the theorem in the case of the disk D2.
Let h: S' -+ S' be an orientation preserving homeomorphism. To define our
homeomorphism H: R2 --> R2 with the desired properties, we break up R2 into
four closed regions, and we will define H on each of these regions. The four
regions are the disk D2; the washer-shaped region between the circles of radius
1 and 2 centered at the origin (including the 1-spheres), which we denote A,;
the washer-shaped region between the circles of radius 2 and 3 centered at the
origin (including the 1-spheres), which we denote A2; and the region outside
the open disk of radius 3 centered at the origin. See Figure A2.2.4.

R2

Figure A2.2.4

We define the map H I D2 to be the homeomorphism of D2 to itself given by
Lemma A2.2.2. To define the map H I A, we start by using Exercise A2.2.6 to
find a pair of antipodal points p, q E S' such that h(p) and h(q) are antipodal.
(We could do the proof without this exercise, but it's simpler, and more fun,
this way.) Let O be the angle from the line segment 02p to the line segment
02h (p); it must also be the case that O is the angle between the analogous line
segments with q replacing p. See Figure A2.2.5. We now define HIA, to be
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the homeomorphism of AI to itself, which is h on S', and which takes each
concentric circle to itself essentially by the map h followed by a rotation, so
that at the circle of radius 2 the rotation is by angle -O. If R# denote rotation
centered at the origin of 1R2 by angle 0, we can give a formula for H I A i by

HIA1 (x) = llxli R(1-pxp)e o
IIxI

It can be verified that HIA, fixes the points 2p and 2q, and that HIA, re-
stricted to the circle of radius 2 centered at the origin is an orientation preserv-
ing homeomorphism. Hence HIA1 maps each of the arcs 2p2 and 2q
homeomorphically to themselves.

h(p)

q
h(q)

Figure A2.2.5

P

The map H I A2 will be a homeomorphism of A2 to itself. We start by
setting H I A2 equal to H I A i on the circle of radius 2 centered at the origin (the
intersection of A i and A2). We now divide up A2 into two disks Ba and Bb as
in Figure A2.2.6. We now apply Exercise A2.2.7 to each of these two disks.
Although Exercise A2.2.7 is stated in terms of the rectangle [-1, 1) x [0, 1],
it applies just as well to any other disk, and in particular to each of B. and Bb,
with the arcs 2 p 2 and 2q p2 taking the role of [-1, 11 x (0). It follows from
the exercise that there are homeomorphisms of each of B. and Bb to themselves
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that equal H I A I on the arcs 2p 2p 2q and 2q 2p, and are the identity maps on
the rest of the boundaries of B,, and Bb. We define HIA2 by piecing these
homeomorphisms together.

A2

Figure A2.2.6

Observe that HIA2 is the identity maps on the circle of radius 3 centered at
the origin. Define H on the region outside the open disk of radius 3 centered at
the origin to be the identity map. We have thus defined H on all of R2. Since H
is a homeomorphism of each of the four regions used to itself, and agrees on the
intersections of the regions, it is seen that H is a well-defined homeomorphism
of R2 to itself. By construction HIS' = h, and H is the identity map outside
the disk of radius 3 centered at the origin.

We now have a number of other results about disks and homeomorphisms
of surfaces.

Proposition A2.2.4. Let Q C W be a surface, and let B C Q be a disk If
h: D2 -+ B is a homeomorphism, then there is a map H: 02(02,1182) -> Q
that is a homeomorphism onto its image and such that H I D2 = h.

Proof. We define the map H to equal h on D2, so we need to define H on the
washer-shaped region A t (as defined in the proof of Proposition A2.2.3); the
problem is doing so injectively. By Proposition 1.6.14 (iii) and the compactness
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of 02(02, R2), any injective map defined on this set is automatically a homeo-
morphism onto its image, so injectivity is indeed the crucial property.

By the definition of a surface, every point b E B is contained in an open
subset Ub of Q that is homeomorphic to int D2. The sets h-' (Ub) for all b E B
form an open cover of D2. By Theorem 1.6.9 and the compactness of D2 there is
a number c > 0 such that for each point x E D2 the set OE (x, D2) is contained
in one of the sets h-' (Ub). We can thus divide S' into arcs a1 ... of,, for some
sufficiently large integer n so that any three adjacent disks D,_1. D; and D;+i
as in Figure A.2.2.7 (i) are contained in a single set h-' (Ub). The annulus A I
is then divided up into corresponding disks El ... E as in Figure A2.2.7 (ii),
and the map H will be defined on the disks E; one at a time, starting with the
disk El.

(i)

Figure A2.2.7

We start with the following preparation. The set h(D U Di U D2) is
contained in the set Ub for some b E B; fix this b. Since Ub is homeomorphic to
int D2 it is also homeomorphic to R2, and let f : Ub -+ R2 be a homeomorphism.
Since D U DI U D2 is a disk, the set f (h(D U DI U D2)) is a disk in R2.
Let the rectangle D,, U DI U DZ be as shown in Figure A2.2.8. Pick a homeo-
morphism g: 8f (h(D U DI U D2)) --+ 8(D', U Di U DZ), where the arcs a,,,
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a,, a2, and 02 are taken to the line segments a' ...,62, respectively, and
the line segments yn and y3 are taken affine linearly to the line segments y,,' and
y, (see the Appendix for a discussion of affine linear maps). By Exercise 2.2.7
there is a homeomorphism G:R2 - R2 such that GIaf (h(D U D, U D2)) and
G(f (h (D. U D, U D2))) = Dn U D, U D2 (ignore the points bf in the exercise).

a2 a' Et

Y3 D2

02

Figure A2.2.8

D. In

Rn

Choose some number S > 0, and let E' be the rectangle as shown in
Figure A2.2.8. Define the map p: E, -+ E' by letting pea, = G o f o h1a,,
and then having each radial line segment in E, be taken affine linearly to the
corresponding vertical line segment in E. We now extend H from D2 to
D2 U E, by letting H I E, = f -1 o G- o p. It is straightforward to verify that
H so defined is a continuous map on D2 U El. With an arbitrary choice of S
the map H might not be injective, but H will be injective if S is chosen to be
small enough (but still positive), as we now show.

For any S the map H is injective on each of D2 and Et, so the question
is whether H(x) = H(y) for some x E El and Y E D2 - al. The sets
H(D2 - (D U D, U D2)) and H(a,) are compact and disjoint, so by Exercise
1.5.11 there is a number m > 0 such that IIx - ylI > m for all x E H(al)
and y E H(D2 - (D U D, U D2)). By the compactness of a,, it can be
verified (using Exercise 1.5.6) that if S > 0 is chosen small enough then the
sets H(D2 - (D U D, U D2)) and H(El) will be disjoint. Fix such a choice
of S. Then H(x) 96 H(y) for any x E El and Y E D2 - (D U D, U D2).
However, from the construction of H it can be verified that H is injective
on all of D U D, U D2 U E,, hence H(x) 96 H(y) for any x E E, and
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y E (D" U DI U D2) - a1. It now follows that H is injective.
Extending H to E2 ... E" is done similarly, with slight variations taking

into account those Ei on which H has been defined; details are left to the reader.
The number S may have to be chosen smaller with each step, but since there
are only finitely many steps, the number 8 can always be chosen to be positive.
This completes the proof. 0

The following corollary can be derived straightforwardly from the above
lemma and Exercise 2.3.4, and we omit the proof.

Corollary A2.2.5. Let Q C IR" be a surface, and let B C Q be a disk Then
B is contained in an open subset of Q homeonorphic to int D2.

To see the significance of this corollary, observe that by contrast not every
subset of a surface is contained in an open subset of the surface that is homeo-
morphic to int D2. For example, the 1-sphere S I x (0) C S' x R is not contained
in a subset of St x R which is homeomorphic to int D2. The proof of this fact
is outlined in Exercise 3.8.4.

Proposition A2.2.6. Let Q C R" be a path connected surface and let Bt , B2 C
Q be disks. Then there is a homeomorphism H: Q --s Q such that H (B1) = B2.

Proof. The setup takes more time than the actual argument. Choose points
p E int B, and q E int B2. Let c: [0, 1] -+ Q be a path from p to q, that is
c(0) = p and c(i) = q. By the definition of a surface, each point x E c([0, 11)
is contained in an open subset of Q which is homeomorphic to int D2. By the
compactness and connectedness of c([0, I]) it follows from Exercise 1.5.12 that
there are finitely many of these open sets, say Ut ... U such that p E U1, that
q E U, and that Uk fl U;+1 ; 0 for k = 1, ... , r - 1. Using Corollary A2.2.5
there are open subsets of Q, called Uo and U,+1 for convenience, such that both
these sets are homeomorphic to int D2 and contain B, and B2 respectively. See
Figure A2.2.9.

For each k = 1, ... , r - I choose some point Xk E Uk fl Uk+ 1. For
convenience let xo = p and x, = q. It is straightforward to see that by Exercise
2.3.3 there are disks Do.... D, C Q such that.rk E int Dk and Dk C Uk fl Uk+i
for k = 0, ... , r. Let D_ i = Bi and D,+1 = B2 for convenience. See Figure
A2.2.9.

We now make repeated use of Corollary 2.2.6; although Corollary 2.2.6
takes place in R2, it works just as well inside any of the sets Uk, each of which
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Figure A2.2.9
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is homeomorphic to R2. Let k E 10,... , r + 1) be any number. The set
Uk contains the disks Dk_I and Dk. Applying Corollary 2.2.6, there is a disk
Ck C Uk and a homeomorphism Gk: Uk -+ Uk such that Gk(Dk_,) = Dk and
Gk is the identity on Uk - Ck. By the continuity of Gk it is not hard to show
that Gk must also be the identity on aCk. Define a map Hk: Q -+ Q defined by

(
H

Gk (x), if x E Ck;
kx)=it

x, ifx E Q - intCk.
Using Corollary 1.3.7 it can be shown that Hk is a homeomorphism; certainly
Hk(Dk_,) = Dk. It can now be verified that the map H = H,+i o o Ho is
the desired homeomorphism.

Proposition A2.2.6 is not true if the hypothesis of path connectivity (or
equivalently connectivity, by Proposition 2.5.1) is dropped. For example, if
the surface Q consists of the union of a disjoint torus and sphere (as in Figure
A2.2.10), then there can be no homeomorphism as in the conclusion of the
theorem if B, is contained in the torus and B2 is contained in the sphere; any
homeomorphism must take components to components, and, as we shall see,
the sphere is not homeomorphic to the torus.

Proposition A2.2.7. Let Q C R" be a surface, let B C Q be a disk and let
h : a B -+ a B be a homeomorphism. If h is orientation preserving then there is
a homeomorphism H: Q -> Q such that H (B) = B and H I a B = h.

Proof. Exercise A2.2.8.

We are now ready to discuss connected sums. We start by defining a
convenient category of surfaces.
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Q

Figure A2.2.10

Definition. Let Q C R" be a compact connected surface. The surface Q is
disk-reversible if there is a disk B C Q and a homeomorphism H: Q -+ Q
such that H(B) = B and HI aB is an orientation reversing homeomorphism of
aB.

We leave it to the reader in Exercise A2.2.9 to show that if a surface is disk-
reversible, then the criterion in the definition is in fact satisfied with respect to
any disk in the surface. Our main technical result on connected sums is the
following. Recall the definition of connected sum given in Section 2.6.

Proposition A2.2.8. Let Qi, Q2 C R" be compact connected surfaces.

(i) Let Bi C Qi be a disk for i = 1, 2 and let h: a B1 -- a B2 be a homeo-
morphism. Then the attaching space (Qi - intBi)Uh(Q2 - intB2)
exists and is a surface in some R".

(ii) There are at most two distinct surfaces (depending only upon Q1 and
Q2) to which all the surfaces (QI - int Bj)Uh(Q2 - int B2) are horne-
ounorphic.

(iii) If at least one of Q1 or Q2 is disk-reversible, then all surfaces (Qi -
hit Bi)Uh(Q2 - int B2) are hotneomorphic.

Proof. (i) & (ii). We start by constructing the two surfaces mentioned in part
(ii), and then use them to demonstrate part (i). We start with some initial set-
up. Using Theorem 2.4.3 (ii) there is, for each i = 1. 2, a polygonal disk D,
and a gluing scheme Si for the edges of Di such that Qi is obtained from Di
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and Sj ; let q; : DJ -> Q; be an appropriate quotient map. For each i = 1, 2
choose a triangular disk T, c int D;, where T has vertices a,, b, and cf. See
Figure A2.2.1 1. It is straightforward to see that T' = qi(T,) is a disk in Qj.
Let f : 8T1 -* 8T2 be the homeomorphism such that f (al) = a2, f (bl) = b2,
f (CO = c2 and f is an affine linear map of each edge of the triangle T1.
Let r: a T2 --> 8T2 be the homeomorphism such that r(a2) = a2, r(b2) = c2,
r(c2) = b2 and r is an affine linear map of each edge of the triangle T2. Observe
that the map f' = g2I8T2 o f o (glI8T1)-1 is a homeomorphism 8T1 -+ 8T2,
and that r' = q2 18 T2 o r o (Q2 18 T2) -1 is an orientation reversing homeomorphism

of 8T2' to itself.

i

Qi

Figure A2.2.11

Wenowshow that (Q1-intTT)Uf,(Q2-intTZ)and(Qj -intTi')U,-f'(Q2-
int T2) exist and are surfaces; we start with the first of these attaching spaces,
the second being similar. We start by observing that the attaching space
(Q 1 - int T1 )U f-(Q2 - int TZ), if it exists, would be homeomorphic to the result
of attaching the two disks with holes D1 - int T1 and D2 - int T2 via the homeo-
morphism f: 8T1 --* 8T2, and then gluing the edges of (D1 - int T1)Uf(D2 -
int T2) by the gluing schemes Si and S2. See Figure A2.2.12. The problem
is that (D1 - intT1)Uf(D2 - int T2) is not a disk; we remedy the situation as
follows.

For each i = 1, 2, make a cut in the D, - int T, as shown in Figure A2.2.13
(i), yielding a disk Et. Next, we attach the disks Et and E2 by gluing the edge
in E1 with vertices al and b1 to the edge of E2 with vertices a2 and b2 by an
affine linear homeomorphism L of these edges that matches up correspondingly
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named vertices. The resulting space, Ei UL E2, is homeomorphic to a polygonal
disk E with one edge for each edge of Di and D2, one edge for each edge of a Ti
and a T2 except those that were glued by L, and two edges resulting from each of
the cuts used to obtain E, from Di. See Figure A2.2.13 (ii). Finally, construct
a gluing scheme S for the edges of E by using Si and S2 for the former edges
of Di and D2, use f on the former edges of aTi and 87'2, and match up those
edges that resulted from cutting the D; . By Theorem 2.4.3 (i) there is a surface
Q C R' obtained from E and S. We now leave it to the reader to verify that
the attaching space (Q i - int Ti )U f, (Q2 - int T2) exists, and is homeomorphic
to Q. A similar argument shows that (Qi - intTT)U,'0 f-(Q2 - int T2) exists
and is a surface, call it Q.

attach

Figure A2.2.12

(i)

Figure A2.2.13

Now back to the original problem, namely, surfaces Qi and Q2, as well
as disks B; C Qr for i = 1, 2 and a homeomorphism h: aBi aB2. If we
can show that (Q i - int Bi )Uh (Q2 - int B2) exists and is homeomorphic to one
of Q or Q, then we would have proved parts (i) and (ii) of this proposition.
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By Proposition A2.2.6 there are homeomorphisms Hi: Qi -* Qi such that
Hi(Bi) = Ti' for i = 1, 2. It follows from Exercise 2.2.4 that H(aB1) = aTt,
and thus Hi maps Qi - int B, homeomorphically onto Qi - int T7.

Consider the map

g = f' o HI IaB1 o h-' o (H2IaB2)'1: aT2 -+ aT2.

This map is a homeomorphism. Since aT2 is a 1-sphere, it follows that g is
either orientation preserving or orientation reversing; we will consider each
case separately. First suppose that g is orientation preserving. By Proposition
A2.2.7 there is a homeomorphism G: Q2 -+ Q2 such that G(T2) = T2' and
GI aT2' = g. The map G o H2 is a homeomorphism of Q2 to itself such that
G o H2(B2) = T2. Further, it can be verified that

(G o H2)IaB2 o h = f' o HIIaBi.

Since (Q i - int Tl )U f, (Q2 - int T2) exists and is homeomorphic to the surface
Q defined above, it now follows using Exercise 1.4.9 that (Q I - int Bt )Uh (Q2 -
int B2) exists and is homeomorphic to the surface Q.

If, on the other hand, the homeomorphism g is orientation reversing, then
the map r' o f is an orientation preserving homeomorphism (because r' is
orientation reversing; and making use of Exercise A2.2.4, which applies to
all I-spheres). An argument just like in the previous case shows that (Q1 -
int B,)Uh(Q2 - int B2) exists and is homeomorphic to the surface Q,. This
completes the proof of parts (i) and (ii) of the proposition.

(iii). From the proof of parts (i) and (ii) it will suffice to prove that the surfaces
Q and Q, are homeomorphic. The proof is similar to parts of the above proof,
and details are left to the reader in Exercise A2.2.1. 0

Proposition A2.2.8 shows that if Qt, Q2 C IY" are surfaces, and if at least
one of them is disk-reversible, then Q I # Q2 is well-defined. We now need to
show that all compact connected surfaces are disk-reversible. As a first step,
we prove the following lemma.

Lemma A2.2.9. All non-orientable surfaces, as well as S2 and T2, are disk-
reversible.

Proof. The disk-reversibility of S2 and T2 is shown in Exercise A2.2. 10. Let
Q C R" be a non-orientable surface. Thus there is a MSbius strip M contained
in Q. Suppose we could show that there is a disk B C M and a homeomorphism
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h: M --o- M such that h I B M is the identity map, h (B) = B and H I B B is an
orientation reversing homeomorphism of dB. We could then construct a homeo-
morphism H: Q --> Q by setting HIM = h and HIQ - (M - 8M) equal to
the identity map, and this homeomorphism would have the desired properties
with respect to the disk B.

To construct the homeomorphism h, we observe that if we can find such a
homeomorphism on any copy of a Mobius strip, then we could find it on this
particular copy, so without loss of generality let M be the standard Mobius strip
shown in Figure A2.2.14 (i). For B pick any small round disk in M that does not
touch 8M. We can then deform M as shown in Figure A2.2.14 (ii)-(iv), where
the disk B is eventually pushed all the way around M (with enough stretching
this can be done without moving anything on 8M). When B has returned to
its original position it will have the orientation of its boundary reversed. Let
h be the map that takes each point of M to where it ends up at the end of the
deformation. 0

(i)

(iv)

Figure A2.2.14

We can now complete our discussion of connected sum.

Proof of Proposition 2.6.1. The proposition would follow from Proposition
A2.2.8 if we knew that every compact connected surface is disk-reversible. We
see from Lemma A2.2.9 that all the surfaces referred to in the statement and
proof of Theorem 2.6.7 are well defined. We leave it to the reader to show in
Exercise A2.2.2 that all the surfaces referred to in the statement of Theorem
2.6.7 are disk-reversible (this follows from Lemma A2.2.9). From Theorem
2.6.7 it now follows that all compact connected surfaces are disk-reversible.
(Note that the proof of Theorem 2.6.7 does not make use of connected sum
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for any surfaces that are not disk reversible, so there is no circular reasoning
here.)

Exercises

A.2.2.1*. Prove Proposition A2.2.8 (iii).

A.2.2.2*. Show that all the surfaces referred to in the statement of Theorem
2.6.7 are disk-reversible.

A2.2.3*. Let B C R2 be a disk, and let h: aB - aB be a homeomorphism.
Show that there is a homeomorphism H: R2 -- R2 such that HI aB = h.

A2.2.4*. Let h, , h2: S' --> S' be homeomorphisms. Show that h, is orientation
preserving if (h,)-' is orientation preserving. Show that h2 o h, is orientation
preserving if h, and h2 are both orientation preserving or both orientation
reversing.

A2.2.5*. Let Cc 1R" be a 1-sphere, let h: C -> C be a homeomorphism and
let fl, f2: S' -+ C be homeomorphisms. Show that the map (fl )-l o h o f, is
an orientation preserving homeomorphism of S' to itself if (f2)-' o h o f2 is
an orientation preserving homeomorphism of S' to itself.

A2.2.6*. Let h: S' -+ S' be a homeomorphism. A pair of points in S' are
antipodal if they are at opposite ends of a diameter of S'. Show that there is a
pair of antipodal points in x, y E S' such that h(x) and h(y) are antipodal.

A2.2.7*. This exercise proves the one-dimensional version of what is known
as the Alexander trick; this result, usually phrased in terms of isotopies, holds
in all dimensions, where the appropriate closed ball replaces the closed interval
[-1, 1 ]. Let f : [-1, 1 ] --> [-1, 11 be a homeomorphism fixing the endpoints
of the interval. Show that there is a homeomorphism F: [-1, 11 x [0, 1] ->
[-1, 1] x [0, 1) such that FI[-1, 1] x (0) = f and F is the identity map on
the rest of the boundary of the rectangle [-1, 1] x [0, 1].

A2.2.8*. Prove Proposition A2.2.7.

A2.2.9*. Let Q C R" be a disk-reversible surface. Show that for any disk
B C Q (not necessarily the one given in the definition of disk-reversibility)
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there is a homeomorphism H: Q -+ Q such that H(B) = B and HIBB is an
orientation reversing homeomorphism of c 1B.

A2.2.10*. Show that S2 and T2 are disk-reversible.

A2.2.11*. Let B C S2 be a disk. Show that S2 - int B is a disk with 8B its
boundary.

Endnotes

Notes for Section 2.2

The first rigorous proof of Invariance of Domain was given by L. E. J. Brouwer
in 1910 and was a major breakthrough in topology.

Notes for Section 2.5

(A) Though intuitively understandable, orientability is considered one of the
technically tricky (or annoying) things in topology. We should mention that
knowing that a surface is orientable is related to, but is not the same as, choosing
an "orientation" for the surface.

(B) Another type of extrinsic property of surfaces in R", which we will not be
making use of but which the reader might wish to look up, is the issue of wildness
vs. tameness. By contrast with Invariance of Domain (Theorem 2.2.1), which
holds in all dimensions, the exact analog of the Schonflies Theorem (Theorem
2.2.4) in higher dimensions (concerning homeomorphic copies of the n-sphere
in ]R"+l) does not hold. See [MO, p. 721 and [BI, chapter IV]. The history
of this question is curious. Early counterexamples to the conjectured three-
dimensional Schonflies Theorem were the "Antoine sphere" (first constructed
in [AN2]) and the "Alexander homed sphere" (first constructed in [AL21); it
seems that the Antoine sphere was rediscovered by Alexander in [AL3], who
made use of the "Antoine necklace" (discussed in the brief [AN1 ]), but who did
not refer to the lengthy [AN2]. It is also interesting to note that Antoine, who
discovered some very geometric examples, was blind.

The Schonflies Theorem does hold in higher dimensions if additional hy-
potheses are added; see [BN]. The higher dimensional Jordan Curve Theorem,
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which is weaker than the Schonflies Theorem, is true in all dimensions; see
[MU3J for a proof using algebraic topology.

Notes for Section 2.6

In contrast to the very clean statement of the classification theorem for compact
connected surfaces (Theorem 2.6.7), it has been proved by [MKJ that there can
be no algorithm for the analogous type of classification for four-dimensional
manifolds. Also, non-compact surfaces can be much more complicated than
compact ones; see [RI].

Notes for Section A2.1

In the more elementary books that deal with surfaces, the gluing process is
simply defined intuitively (with no mention of quotient spaces), and the fact
that the result of gluing actually yields a surface in some Euclidean space is
left unproved. The more advanced texts skirt the problem entirely by defining
abstract surfaces, which are surfaces that do not necessarily sit inside of any
Euclidean space; to formalize such a definition one needs the concept of a
topological space, not developed in this text. It is not hard to show that the
result of gluing the edges of a polygonal disk is an abstract surface, though of
course it is then necessary to show that every abstract surface is homeomorphic
to a surface sitting in some Euclidean space - for if not we would be faced
with two different categories of surfaces: those in Euclidean spaces and those
not. Our approach, in which we stay within Euclidean space but nonetheless
provide a rigorous proof of Theorem 2.4.3 (i), is essentially a conflation of the
two stages of the method used in more advanced books; we roughly follow
[MU2, §4-5].



CHAPTER III

Simplicial Surfaces

3.1 Introduction

Topological surfaces can sit in Euclidean space very wildly, and as such can be
difficult to work with. In order to develop the tools necessary for our proof of
the classification of surfaces, as well as for other results, we turn our attention to
simplicial surfaces, which are surfaces built out of triangles, and which are much
easier to work with than arbitrary surfaces. Examples of simplicial surfaces
include the surface of a tetrahedron (a pyramid with a triangular base) or an
octahedron. See Figure 3.1.1. Simplicial surfaces have two advantages: They
cannot sit wildly in Euclidean space, and they have things we can count (for
example, the number of vertices) and measure (for example, angles).

Figure 3.1.1

For reasons that will become clear later in this chapter, surfaces made out of
triangles are easier to work with than general polyhedra, and we will therefore
be focusing on simplicial surfaces; polyhedra will be mentioned only in passing
and in the exercises. Using triangles is no real restriction, however, since the
faces of any polyhedral surface can always be cut up into triangles.
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3.2 Simplices

We start by examining triangles, edges and vertices, which are the building
blocks for simplicial surfaces. These three types of objects are all convex, and
we begin with a brief discussion of convexity; see [VA] or [BE] for more details.
The reader should refer to the Appendix for some concepts from affine linear
algebra that we will be using.

Intuitively, a convex set is one that has no "indentations." See Figure 3.2.1.
The following definition, which conveys the same intuitive concept as having
no indentations, is much more technically useful.

convex

Figure 3.2.1

not convex

Definition. If v, w e R' are two points, the line segment from p to q is the
set of points

vw={x E R' Ix=tv+(1-t)wfor0<t <1).
A subset X C R" is convex if for every pair of points v, w e X, the line segment
vw is entirely contained in the set X. 0

convex not convex

Figure 3.2.2
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Example 3.2.1. The simplest examples of convex sets in 1t" are R" itself and
any single point in R. A more interesting example is that any line segment in
k8" is convex. Let uw C IR" be a line segment, and let x, y E vw be two points.
We need to show that xy C W. By definition we can write x = rv + (1 - r)w
and y = s v + (I - s) w for some numbers r, s E [0, 1]. Any element in x v has
the form tx + (I - t)y for some t E [0, 1]. We now compute

Ix + (1 - t)y = t[rv + (I - r)w] + (1 - t)[sv + (I - s)w]
= (s + rt - rs)v + [I - (s + rt - rs)]w.

To prove the desired result it suffices to show that 0 < s + rt - rs < 1, and this
verification is left to the reader. 0

Since any two points in a convex set can be joined by a line segment, it
follows immediately that all convex sets in R I are path connected (and hence
connected by Proposition 1.5.7). Convexity is a geometric property and is
not preserved by arbitrary continuous maps. Affine linear maps do preserve
convexity.

Lemma 3.2.2. Let F: R" -> J' be an affine linear snap, and let C C R" be a
set. If C is convex then so is F(C).

Proof. Exercise 3.2.1.

Any subset X C R", not necessarily convex itself, is contained in some
convex set (for example all of IR"). Is X always contained in a smallest convex
set? The following definition (which makes use of Exercise 3.2.2) and lemma
show that the answer is yes.

Definition. Let X C IR" be any set. The convex hull of X, denoted cony X, is
defined by

cony X= n{C C 18" I X C C and C is convex{. 0

Lemma 3.2.3. For any set X C R", the set cony X is convex, and if S C R' is
any convex set containing X, then cony X C S.

Proof. Exercise 3.2.3.

The convex hull of two distinct points is a line segment. The convex hull
of three non-collinear points in JR2 is a triangle. If three distinct points in R2 are
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collinear then theirconvex hull is a line segment, though this is an inefficient way
to obtain a line segment as a convex hull. The following definition generalizes
the notion of line segment and triangle to arbitrary dimensions.

Definition. Let ao, ... , ak E R" be affinely independent points, where k is
a non-negative integer. The simplex spanned by the points ao, ... , ak is the
convex hull of these points, and is denoted (ao, ... , ak); the points ao, ... , ak
are called the vertices of the simplex. Q

It is straightforward to see that a simplex with one vertex is a single point,
with two vertices is a line segment, with three vertices is a triangle and with
four vertices is a solid tetrahedron (though not necessarily a regular tetrahedron).
A useful characterization of the points in a simplex is given in the following
lemma.

Lemma 3.2.4. Let k be a non-negative integer and let ao,... , ak E R" be
affinely independent points. Then

k

(ao, ... , ak) = {x E R" I x = L 1;a; for some numbers to, ... , tk E R
i=0 k

such that E ti = I and t; > O for all i);
i=o

(3.2.1)
for each point x = ';`=o t; a; E (ao, ... , ak) the coefficients t; are unique.

Proof. The uniqueness of the coefficients t; is left to the reader in Exercise
3.2.5; we prove the first part of the lemma by induction on k. If k = 0 then
both sides of Equation 3.2.1 are the single element set {ao), and the result holds.
Now assume that the result is true for k - 1, and we will deduce the result
fork. For convenience let D denote the right hand side of Equation 3.2.1. To
prove the lemma we need to show three facts about D: (1) It contains the points
ao, ... , ak, (2) it is contained in any convex set containing these points and (3)
it is convex. Fact (1) is easy, since a; = 0a1 + Oa;_I + la; +Oai+1 + Oak.

To show fact (2), let C be a convex set in R" containing the points ao, ... , ak,
and let x = Eko t;a; be an element of D. If tk = I then x = ak, sox E C by
hypothesis. Now assume tk # 1. We can write

k k-1

x = ti ai = (I - tk) (
t

a; } + tk ak .
i=0 i=o 1 - tk
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Thus x is contained in the line segment from y = Ek o t̀  , ai to ak. If we
could show that y E C, then it would follow from the convexity of C that x E C.
Observe that Ekao - - = land - ` - > 0 for all i E 10,... , k-1). By applying
the inductive hypothesis to the affinely independent points ao, ... , ak_i it is
seen that y E (ao, ... , ak_ I ). Since C is a convex set containing the points
ao,.... ak _ i , we know that (ao,... , ak _ l) C C. Hence Y E C.

To show fact (3) let v = Fk=o tiai and w = >4=o siai be points in D. Let
z E v be a point, so that z = r v + (I - r) w for some r E [0, 1]. Hence

k k k

z=r k t;a,+(1-r)Esia;=F,(rt;+si-rsi)ai.
i=o i=o i=o

A straightforward calculation shows that Ek___o(rti + si - rsi) = 1. Further,
note that rti + si - rsi = rti + si (1 - r) > 0. Hence Z E D, which completes
the proof of fact (3). 0

Observe that the coefficients t, in Equation 3.2.1 must satisfy 0 < t; < 1.
We have defined a simplex by specifying its vertices; could the same simplex

be defined by some other set of vertices? The following lemma answers this
question.

Lemma 3.2.5. Let (ao, ... , ak ) and (bo, ... , by ) be two sets of affinely inde-
pendent points in R. If (ao, ... , ak) = (bo, ... , bp), then (ao, ... , ak) _
(bo,...,bp).

Proof. If one of k or p is zero then the result is trivial, so assume k, p > 0. Let
r E 10,... , k) be a number. Since a,. E (bo,... , bp), it follows from Lemma
3.2.4 that a,. = F P t, bi for some to, ... , tp E R such that E°o ti = I and
0 < t; for all i E (0, ... , p). Since bi E (ao, ... , ak) for all i, we have
bi = _0sijaj for some sit, ... , sik E R such that Ff=o sij = I and 0 < sij
for all i and j. Hence

p k k p

a, = E t, E sij aj = E (E ti sij )aj
i=0 j=0 j=0 i=0

By the uniqueness of the coefficients in Lemma 3.2.4 it follows that Ero 1i Sir

I and F,?o ti si j = 0 for j # r. Since Ep o ti = I and all numbers involved
are in [0, 1], it follows that whenever ti > 0, then sir = 1 and sij = 0 for j # r.
Thus, whenever ti > 0 we deduce that bi = Ej"=o sijaj = a,. Since the bi are
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affinely independent they must be distinct, and so only one of the t; is non-zero.
Hence a, is precisely one of the bi. Thus {ao, ... , ak) C {bo, ... , by}. A
similar argument shows the reverse inclusion. 0

Since we now know that a simplex has a unique set of vertices, the following
definition can be made safely.

Definition. Let a = (ao, ... , ak) be a simplex. The dimension of or is k, and
or is called a k-simplex. 0

A line segment in R3 is contained in a unique straight line in 183, and
similarly a triangle in 1R3 is contained in a unique plane in R3. The following
lemma generalizes this result to all dimensions.

Lemma 3.2.6. Let rl = (ao,... , ak) be a k-simplex in R". Then
aspan{ao, ... , ak) contains q, and it is the only k -plane in R" containing rl.

Proof. Exercise 3.2.6. 0
The following definition generalizes the observation that the boundary of a

triangle (that is a 2-simplex) consists of edges (that is 1-simplices) and vertices
(that is 0-simplices), and these edges and vertices are spanned by subsets of the
set of vertices of the triangle.

Definition. Let a = (ao, ... , ak) be a k-simplex in R". A face of a is a simplex
spanned by a non-empty subset of (a0, ... , a,); if this subset is proper the face
is called a proper face. A face of a that is a k-simplex is called a k-face. The
combinatorial boundary of a, denoted Bd a, is the union of all proper faces
of a. The combinatorial interior of a, denoted Inta, is defined to be a -
Bda. p

The term "face" does not necessarily mean "proper face." A 0-simplex has
no proper faces. A 1-simplex (a, b) has two proper faces: the 0-simplices (a)
and (b). A 2-simplex (a, b, c) has six proper faces: the 0-simplices (a), (b)
and (c), and the 1-simplices (a, b), (a, c) and (b, c). See Figure 3.2.3. Observe
also that a face of a face is a face.

Though the term "combinatorial boundary" and "combinatorial interior"
used here are reminiscent of the terms "boundary" and "interior" used for disks
and arcs in Section 2.2, the definition of the former terms is quite different
in nature than that of the latter terms; hence different symbols are used. As
shown in part (iii) of the following lemma, it turns out that these two types of
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<b>

<a, c>

Figure 3.2.3

boundaries and interiors coincide for simplices. Since we have only defined
"boundary" and "interior" for disks and arcs, we can only state this part of the
lemma for dimensions 1 and 2, though in fact it holds in all dimensions. For
each integer k > 1 we define

Dk=(xERkIIIxII<1)
Sk-i = (x E ik

I IIxOI < 1),

which are the closed unit disk and unit sphere in IRk respectively.

Lemma 3.2.7. Let a = (ao.... , ak) be a k-simplex in R.

(i) We have

(3.2.2)

k

Bd a = (x E IE8" I x = T, ti a; for some numbers to.... , tk E 118

k
i=O

such that E t; = 1, ti > O for all i and tj = O for some j);
i=o (3.2.3)

k

Into, = {x E R" I x =
k

11a1 for some numbers to,... , tk E I[8

k i=0
such that E ti = 1 and ti > O for all i ). (3.2.4)

i-o
(ii) There is a homeomorphism it: Dk --* a such that h(Sk-1) = Bda.
(iii) If or is a I -simplex it is an arc, if it is a 2-simplex it is a disk, and in both

cases Bd a = acr and Int a = int a.
(iv) Both or and Bd a are compact and path connected.

Proof. (i). Suppose that x E Bd a. Thus x is in a proper face of a. Since
any proper face of a is contained in a (k - 1)-face of a, there is some j E
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{0, ... , k} such that x E (ao,... , aj_1, aj+i,... , ak). It now follows from
Lemma 3.2.4 applied to this (k - 1)-face that x = Ei0i siai for some numbers
SO'... Sj_,, sj+l, ... , sk E R such that E,,j s; = 1 and s; > 0 for all i E
{0, ... , j - 1, j + 1, ... , k}. It follows from the uniqueness property of the
coefficients in Lemma 3.2.4 applied to x and the simplex a that if we express
x = _i=O t;ai for some numbers to, ... , tk E R such that _io t; = 1 and
t; > 0 for all i, then ti = si for i # j and tj = 0. Conversely, suppose that
x = Fk t;ai for some numbers to, ... , tk E R such that yk ti = 1, ti > 0
for all i and tJ = 0 for some j. Then once again using Lemma 3.2.4 it follows
that x E (ao, ... , aj_1, al+,, ... , ak), and this (k - 1)-simplex is contained in
Bd a. Equations 3.2.3 and 3.2.4 now follow

(iv). Let bo be the origin in Rk, and let

o

0 10
bi= ,...,bk=

o

be the standard basis vectors in R". It is straightforward to see that {bo, ... , bk}

is an affinely independent set, so that r = (bo, ... , bk) is a k-simplex in Rk. It
can be verified, using Lemma 3.2.4, that

xi k

t={ E1Rklx;>Oforalliandxi<1}.
x i=1

See Figure 3.2.4 for the case k = 2. From this simple description oft it follows
that both t and Bd r are compact (since they are closed and bounded) and path
connected. Using Exercises 3.2.8 and 1.6.3 it follows that any k-simplex and
its combinatorial boundary are both compact and path connected.

Figure 3.2.4
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(ii). It follows from Exercises 3.2.7 and 3.2.8 that it would suffice to prove part
(ii) for any k-simplex of our choice, rather than the given k-simplex a. Choose
some k-simplex >7 in Iltk which contains the origin in its combinatorial interior;
we will construct a homeomorphism h: Dk __+ n with the desired property.
We start by defining a map g: Bd q -> Sk-' by setting g(x) = -L-, where

1XN

this definition makes sense because Ok l Bd ri. It is seen that each ray in Iltk
starting at Ok intersects Bd n in precisely one point (this result is evidently true
with respect to the simplex r mentioned above and any point in Int r, and using
Exercise 3.2.7 and the fact that an injective affine linear take straight lines to
straight lines it follows that this property holds for any k-simplex in Rk). We thus
see that the map g is bijective, and it is not hard to verify that g is continuous.
By the compactness of Bd ri and Proposition 1.6.14 (iii) it follows that g is a
homeomorphism, so g-1 is a continuous map. The map It is now defined by
setting hISk-1 = g-1, setting h(Ok) = Ok, and then extending h linearly on
each radial line segment from Ok to a point in Sk-I. It can be verified that h is
bijective. To show that It is continuous requires a bit more effort, making use
of the E-S technique and some of the standard properties of continuous maps as
found in any real analysis text; we omit the details. By the compactness of n
and Proposition 1.6.14 (iii) it follows that h is a homeomorphism.

(iii). This follows from part (ii). 0

Exercises

3.2.1 *. Prove Lemma 3.2.2.

3.2.2*. Show that the intersection of convex sets is convex (there could be
finitely or infinitely many sets).

3.2.3*. Prove Lemma 3.2.3.

3.2.4*. Show that any open ball in R is convex.

3.2.5*. Prove the uniqueness of the coefficients t; in Lemma 3.2.4.

3.2.6*. Prove Lemma 3.2.6.

3.2.7*. Let >) be a k-simplex in R", and let F: R" -+ R' be an injective affine
linear map. Show that F(r)) is a k-simplex, that F maps r) homeomorphically
onto F(r)) and that F(Bd q) = Bd F(n) and F(Int t) = Int F(rl).
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3.2.8*. Show that any two k-simplices are homeomorphic by an affine lin-
ear homeomorphism. More specifically, let (xo, ... , xk) and (yo, ... , Yk) be
k-simplices in 1R" and IR' respectively, and let F: aspan{xo, ... , xk} -> 1R'
be the unique affine linear map such that F(x;) = yi for all i E (I,... , k}

(using Lemma A.7); show that F maps (xo, ... , xk) homeomorphically to

(Yo, - ,Yk)

3.2.9*. Let rj be a k-simplex in R. Show that the intersection of any two faces
of n is either a face of rl or the empty set.

3.3 Simplicial Complexes

Simplices are used as building blocks for simplicial surfaces (and other objects),
which are constructed by gluing simplices together along their faces. It is easiest
if we glue the simplices together either edge-to-edge or corner-to-corner. See
Figure 3.3.1. In order to keep track of what is used to build our objects, it is
convenient to include the faces of each simplex used. The following definition
gives the most general type of object we will construct out of simplices.

not good

Figure 3.3.1

Definition. A simplicial complex K in 1R" is a finite collection of simplices in
R" such that:

(a) if a simplex is in K, then all its faces are in K;

(b) if a, r E K are simplices such that a fl r ; 0, then a fl r is a face of each
of a and r.



120 III. Simplicial Surfaces

The dimension of a simplicial complex is defined to be the dimension of the
highest-dimensional simplex that is in the simplicial complex. An i-dimensional
simplicial complex will be referred to as an i-complex. 0

A simplicial complex is not a single subset of 118", but rather is a collection
of simplices; hence we do not write "K c R" when we are referring to a
simplicial complex K in II8". Although we have defined simplicial complexes
to be finite, since that will suffice for our purposes, it is possible to define infinite
simplicial complexes if certain local finiteness conditions are imposed.

Example 3.3.1. The simplicial complex corresponding to the tetrahedron (which
we will always think of as a surface rather than a solid) is composed of four
2-simplices, six I -simplices and four 0-simplices. Throughout this section the
term "tetrahedron" will refer to this 2-complex. A non-example of a simplicial
complex is a single triangle in R". Although a single triangle is a 2-simplex, any
simplicial complex must contain all the faces of each of its simplices, which in
the case of a 2-simplex consist of three I -simplices and three 0-simplices. 0

We now make a number of useful technical definitions involving simplicial
complexes.

Definition. Let K be a simplicial complex in R". For each non-negative integer
i less than or equal to the dimension of K, we define K«'» to be the collection
of all i-simplices in K. (This is slightly different from the usual notion of "i-
skeleton" found in most texts.) If or is a simplex in K, the star and link of a in
K, denoted star(a, K) and link(a, K) respectively, are defined to be

star(a, K) = {q E K I q is a face of a simplex of K which has a as a face)

and

link(a, K) = {q E star(a. K) I n fl a =o}.

A subcollection L of K is a subcomplex of K if it is a simplicial complex
itself. 0

To verify that a subcollection L of a simplicial complex K is a subcomplex
it suffices to verify that condition (a) of the definition of simplicial complexes
holds, since condition (b) of the definition holds automatically.

Example 3.3.2. In the simplicial complex K in Figure 3.3.2 we see that
star(v, K) consists of the two 2-simplices (a. b. v) and (e, f, v) together with
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all the faces of these 2-simplices; we see that link(v, K) consists of the two
1-simplices (a, b) and (e, f) together with all the faces of these 1-simplices.
Both star(v, K) and link(v, K) are subcomplexes of K; this fact is proved in
general in Exercise 3.3.2. 0

Figure 3.3.2

We need to define maps between simplicial complexes that preserve the
relations between simplices and their faces. For technical ease it will suffice to
use maps that take the 0-simplices of one simplicial complex to the 0-simplices
of another.

Definition. Let K be a simplicial complex in R", and let L be a simplicial
complex in Rm. A map f : K«0» -+ 00» is a simplicial map if whenever
(a0, ... , a;) is a simplex in K, then (f (a0), ... , f (a;)) is a simplex in L.
A simplicial map is a simplicial isomorphism if it is a bijective map on the
set of vertices, and if its inverse is also a simplicial map. If there is a sim-
plicial isomorphism from K to L then we say that K and L are simplicially
isomorphic. 0

Example 3.3.3. (1) Let K be a tetrahedron. Because any collection of two or
three vertices in K are the vertices of a simplex in K, it follows that any map
f : K«0» --)- K«0» defines a simplicial map K -+ K.

(2) Let K and L be the 1-complexes shown in Figure 3.3.3. The map g: K «0»
00» defined by g(a) = a', g(b) = b', g(c) = c' and g(d) = d' is a simplicial
map, and it is bijective. However, the map g-1: 00» -+ K c(o)> is not a simplicial
map since (a', c') is a simplex of L, and yet (g-1 (a'), g-' (c')) = (a, c) is not a
simplex of K. Hence the separate requirements that the map and its inverse be
simplicial in the definition of a simplicial isomorphism are both necessary. 0
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b'

K

Figure 3.3.3

Consider a tetrahedron. We are presently thinking of it as a 2-complex con-
sisting of four 0-simplices, six I -simplices and four 2-simplices; from the point
of view of Chapter 2, however, it can be thought of as a surface (homeomorphic
to S2) sitting in some Euclidean space. More generally, it will be useful to take
simplicial complexes and "forget" their simplicial structures.

Definition. Let K be a simplicial complex in R". The underlying space of K,
denoted 1KJ, is the subset of R" that is the union of all the simplices in K. 0

A simple consequence of the above definition is the following lemma.

Lemma 3.3.4. Let K be a simplicial complex in R". For each point x E I K I
there exists a unique simplex j of K such that x E Int ht.

Proof. Exercise 3.3.4. O

We can rephrase our previous remarks about the tetrahedron by saying
that the underlying space of a tetrahedron is homeomorphic to SZ. There are,
however, other simplicial complexes with underlying spaces homeomorphic to
S2 (such as the octahedron), and in general we will need to be able to relate
the various simplicial complexes that have the same underlying spaces up to
homeomorphism. We start with the following definition.

Definition. Let K and K' be simplicial complexes in R". The simplicial com-
plex K' subdivides K if I K'I = I K I and if every simplex of K' is a subset (not
necessarily proper) of a simplex of K. 0



3.3 Simplicial Complexes 123

b

a«r rc a c

K d K'

Figure 3.3.4

See Figure 3.3.4 for an example of a simplicial complex and a subdivision
of it.

Given simplicial complexes K in R" and L in R', we have two ways of
mapping one to the other, namely by a simplicial map (which is a map from K ((0))
to L«0»), or by a map of underlying spaces (which is a map from I K I C R" to
I L I C RI). Are these two types of maps related? We show one type of relation.
First, from the discussion of affine linear maps in the Appendix it follows that
if (a0, ... , a;) is a simplex in R", then any map (a0, ... , a; ) -* R"' defined
on the vertices of the simplex can be extended uniquely to an affine linear
map (a0, ... , a,) -+ R. (This ability to extend maps affine linearly is why
simplices are more convenient than arbitrary polygons.)

Definition. Let K be a simplicial complex in R", let L be a simplicial complex
in RI, and let f: K«0» L«0» be a simplicial map. The induced map of
the underlying spaces of these complexes is the map I f 1: I K I -> I L I defined by
extending f affine linearly over each simplex. 0

The following lemma shows that induced maps work as expected.

Lemma 3.3.5. Let K be a simplicial complex in R", let L be a simplicial
complex in R'".

(i) If f : K ((0)) L «0» is a simplicial map, then the induced map I f 1:1 K
I L I is continuous.

(ii) If K and L are simplicially isomorphic, then IKI ILI
(iii) If K and L have simplicially isomorphic subdivisions, then I KI I LI.
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Proof We will prove part (ii), leaving the rest to the reader in Exercise 3.3.5.
Let f: V0)) --* 0°» be a simplicial isomorphism; by definition the map
f -I: L«° --* K«0» is a simplicial map. Using part (i) of this lemma we
deduce that If I and If -I I are continuous maps. It will therefore suffice to show
that If I is bijective and that If 1-1 = I f -'I, the latter fact implying that If 1-1 is
continuous. To show that If I is injective, let x, y e IKI be any two points such
that x # y. By Exercise 3.3.6 there exist unique simplices a and r of K such
that x E Int or and V E Intr. The injectivity of f, the definition of a simplicial
map and Lemma A.7 together imply that If I is an injective affine linear map
on each simplex of K. By Exercise 3.2.7 we see that If I (X) E Int If I (a) and
If I(y) E Int I f I (r). We now have two cases to consider, namely either a = r
or not. In the former case we deduce that If I(x) :0 If I(y), since I f I is injective
on a = T. If a # r then the injectivity of f implies that I f I (a) 0 If I(r).
Using Exercise 3.3.6 again it follows that Int I f I (a) and Int I f I(r) are disjoint,

and thus I f I (x) If I(y). Hence I f I is injective. The surjectivity of I f I follows
straightforwardly from the surjectivity off and the fact that f -I is a simplicial
map; details are left to the reader. Hence If I is bijective. Finally, to see that
I f I- I = I f - 11, we observe that these two maps certainly agree on the vertices
of L, and they agree on each simplex of L because the inverse of a bijective
affine linear map is affine linear (Lemma A.6), and an affine linear map on a
simplex is uniquely determined by what it does to the vertices of the simplex
(Lemma A.7). 0

From continuous maps we turn to other topological constructions. Since the
underlying space of a simplicial complex is a subset of Euclidean space, we can
apply concepts such as compactness and connectivity to simplicial complexes by
examining whether these properties hold for the underlying spaces of simplicial
complexes. Because we are only considering simplicial complexes with finitely
many simplices it follows immediately from Lemmas 1.6.2 and 3.2.7 (iv) that
all simplicial complexes have compact underlying spaces. Not all simplicial
complexes have connected underlying spaces. However, we can characterize
the connectedness of the underlying space of a simplicial complex in terms of
the simplicial complex itself.

Lemma 3.3.6. Let K be a simplicial complex in lR'. The following are equiv-
alent:

( 1 ) I K I is path connected.
(2) 1 K I is connected.
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(3) For any two simplices a and r of K there is a collection of simplices

r = )J1, ?12, ... , >7p = a

of K such that qi fl 7,+I # O for all i E (1, ... , p - 1).

Proof. Exercise 3.3.6. 0

We need to find simplicial complexes whose underlying spaces are familiar
objects such as T2 and p2. For T2 this is easy, since it sits in R3; see Figure
3.3.5. Surfaces that do no sit in R3, such as P2, are harder to work with. We
will eventually solve this problem using the following construction, which is
a simplicial analog of quotient maps and identification spaces (discussed in
Section 1.4).

Figure 3.3.5

Consider the way in which T2 is formed out of gluing the edges of a square,
as described in Section 2.4. If we want to obtain a simplicial complex with an
underlying space that is a torus, it would be tempting to break up the square
shown in Figures 2.4.2 and 2.4.3 into two 2-simplices, as shown in Figure 3.3.6
(i). Unfortunately, when the edges of this square are identified as prescribed by
the gluing scheme, all three vertices of both triangles are identified to a single
point; since a 2-simplex must have three distinct vertices, we have not produced
a simplicial complex by this process of breaking up the original square and then
gluing. However, if we break up the original square into 2-simplices a bit more
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judiciously then we do not run into the same problems; see for example Figure
3.3.6 (ii). In general, we use the following definition.

Definition. Let K be a simplicial complex in R" and let L be a simplicial
complex in 1Rt. A simplicial map f : K«0» -+ 00» is a simplicial quotient
map if the following two conditions hold:

(1) For every simplex (b°, ... , bp) of L there is a simplex (aO, ... , a,,) of K
such that f (a;) = b; for all i E {0, ... , p};

(2) if a, b E K«0)) are both vertices of a common simplex of K, then
f (a) f (b). 0

Example 3.3.7. (1) Let K and L be the 2-complexes shown in Figure 3.3.7.
The map f : K((0)) -+ 00» defined by f (a) = f (d) = z, f (b) = x and
f (c) = y is a simplicial quotient map. The map g: 00» -> 00" defined by
g(a) = z, g(b) = x and g(c) = g(d) = y is not a simplicial quotient map,
since condition (1) of the definition is not satisfied.

(2) Any bijective simplicial map is a simplicial quotient map.

Just as simplicial maps induce continuous maps of the underlying spaces,
the following lemma shows that simplicial quotient maps induce quotient maps
of the underlying spaces. For the second part of the lemma recall that if K
is a simplicial complex in 1R", then for any point x E IKI there is a unique
simplex q = (a0, ... , ak) of K such that x E Int q (using Lemma 3.3.4), and

C C A
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there are unique numbers to, ... , tk E R such that _l=0 t1 = 1, t; > 0 for all
i E 10, ... , k} and x = E; 0 t1a, (using Lemmas 3.2.4 and 3.2.7).

Lemma 3.3.8. Let K be a simplicial complex in R', let L be a simplicial
complex in Rm, and let f : K((°)) -+ L«0» be a simplicial quotient map.

(i) The induced map I f I: I K I -+ I L I is a quotient map.
(ii) Let x e I L I be a point, let q = (a0, ... , ak) be the unique simplex of

L such that x E Int rl, and let to, ... , tk E R be the unique numbers
such that Ek_0 t1 = 1, q > O for all i E 10, ... , k) and x = Ek 0 t1 a1.
Then I f I(x) consists of all points y E IKI such that y = F,k° t1 b1,

where (b0, ... , bk) is a simplex of K such that f (b1) = a1 for all
iE{0, ..,k}.

Proof. (i). It is seen from condition (1) in the definition of simplicial quotient
maps and Exercise 3.2.8 that the map If I is surjective. Using Lemma 3.3.5 (i)
it follows that I f I is continuous. As remarked above I K I is compact, and hence
If I is a quotient map by Proposition 1.6.14 (ii).

(ii). It is seen using condition (2) of the definition of simplicial quotient maps
and Exercises 3.2.7 and 3.2.8 that I f I is injective on each simplex of K, and that
F maps k-simplices to k-simplices, taking interiors of simplices to interiors of
simplices and boundaries to boundaries. If x and q are as in the statement of
part (ii) of this lemma, then I f I-1(x) consists of points in the interiors of the
k-simplices that are mapped onto q by I f I. The desired result now follows from
the definition of affine linear maps.

Recall the notion of partitions and identification spaces discussed in Section
1.4. We now define the simplicial analog of partitions, although we restrict the



128 III. Simplicial Surfaces

type of partitions used in order to give rise to simplicial quotient maps. This
definition corresponds to the simple idea that if we glue the 0-simplices by some
scheme, then corresponding higher-dimensional simplices become glued as a
result.

Definition. Let K be a simplicial complex in IR". An admissible partition
of K(") is a collection V = {A; },E of disjoint subsets of KUUO» such that
UIEI A, = K«0», and such that no two vertices of the same simplex of K are in
same set A. If V is an admissible partition of KttO», the induced partition of
I K I is the unique partition P(V) of I K I such that two points x, y E I K I are in the
same member of the partition iff x E Int (ao, ... , ak) and y E Int(bo.... , bk) for
k-simplices (ao, ... , ak) and ( b 0 . . . . . bk) of K, such that for all i E (0, ... , k)
the 0-simplices ai and b; are both in the same member of the partition V, and
F(x) = y where F: (ao, ... , ak) -+ (bO.... , bk) is the unique affine linear
map such that F (a;) = bi for all i. 0

We leave it to the reader to verify that for a given admissible partition of
K«O» as in the above definition, there exists an induced partition of IKI, and
that this induced partition is unique.

Example 3.3.9. Consider the 2-complex K shown in Figure 3.3.6 (ii). The
underlying space I K I of this 2-complex is a polygonal disk, and this disk has
a gluing scheme as indicated in the figure. If two 0-simplices in the boundary
of I K I are glued together by the gluing scheme they are labeled with the same
letter. The subset of R" obtained from I K I and the given gluing scheme is a
torus. Now let V be the partition of K«O» consisting of all pairs of similarly
labeled 0-simplices in the boundary of IKI, and single-element sets containing
each 0-simplex in the interior of I K I. It is seen that V is an admissible partition
of K«O». Further, the induced partition P(V) of IKI is seen to be the same as
the partition of I K I induced by the gluing scheme, as described in Section 2.4.
Hence the identification space of IKI and P(V) is a torus. 0

The above example suggests the following result.

Lemma 3.3.10. Let K be a simplicial complex in R'1 and let V bean admissible
partition of V O)).

(i) There is a simplicial complex K' in R' for some m and a simplicial
quotient map f : K«°)) -+ K'c(O)) such that (f -1 (v) I V E K'((O))} = V.

(ii) I f P(V) is the induced partition o f IKI, then P(V) = {I f 1-1 (x) I X E
IK'I}.
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(iii) The identification space of I K I and P(V) is hoineornorphic to I K'l.

Proof. (i). Suppose that V = (A,,... , Am), where the Ai are disjoint sub-
sets of K«°». Let e,, ... , E 1R denote the standard basis vectors. It is
straightforward to see that e,, ... , em are affinely independent. The simplicial
complex K' we are constructing will consist of some of the faces of the simplex
A _ (e,, ... , em). More specifically, let K' consist of all faces of A of the
form (ei, , ... , ei,, ) , where i 1 . . . . . i p E (1, ... , m) are numbers for which there
exists a simplex (bi, , ... , bi,,) in K with bi, E A,,; all simplices of K are of this
form, by the definition of admissible partitions of K00». Also, it is straightfor-
ward to verify that if a face of A is in K, then any face of this face is also in
K', which implies that condition (a) in the definition of simplicial complexes
holds for K'. Condition (b) in the definition of simplicial complexes holds for
K' because of Exercise 3.2.9; and hence K' is a simplicial complex.

A map f : K((°)) -* K'((0)) is defined by setting f (v) = e, if v E Ai. That f
has the desired properties now follows straightforwardly from the construction
of K' and f, and the fact that V is an admissible partition of K({0».

(ii). This follows from the construction of K', Lemma 3.3.8 (ii), properties of
affine linear maps and the definition of the induced partition P(V). Details are
left to the reader.

(iii). The map if I is a quotient map by Lemma 3.3.8 (i), and the result now
follows from part (ii) of the present lemma and the definition of identification
spaces in Section 1.4.

Example 3.3.11. We continue Example 3.3.9. Let K' be a simplicial complex
in some 1W" as guaranteed by the above lemma. It follows from part (iii) of the
lemma that I K') is homeomorphic to the identification space of I K I and P(V),
and this latter space is a torus as mentioned in Example 3.3.9. Thus we have
constructed a simplicial complex with underlying space a torus. We will make
use of this construction in Section 3.5. 0

Exercises

3.3.1. What are the star and link of the vertices v and w in the simplicial
complex shown in Figure 3.3.8?
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Figure 3.3.8

3.3.2*. Let K be a simplicial complex in R", and let a be a simplex in K.
Show that star(a, K) and link(a, K) are subcomplexes of K.

3.3.3. Let K and L be the simplicial complexes shown in Figure 3.3.9. Let
f: K(ro)) -* Luo)) be given by f (a) = v, f (b) = w, f (c) = x and f (d) = y.
Is this a simplicial map? Is this a simplicial quotient map?

V

w

K NV L
x

Figure 3.3.9.

3.3.4*. Prove Lemma 3.3.4.

3.3.5*. Prove Lemma 3.3.5 parts (i) and (iii).

3.3.6. Prove Lemma 3.3.6.

3.3.7*. Let K be a simplicial complex in R", and let a be a simplex of K. Show
that I star(a, K)I is path connected, and that I link(a, K)I is path connected iff
I star(a, K)I - a is path connected.
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3.3.8*. Let K be a simplicial complex in R" and let L be a subdivision of
K. Show that for each simplex q of L there is a unique simplex or of K such
that q n Into # 0; further, show that q C a for this unique simplex or. Is

the statement true if the condition q f1 Inta 0 0 is replaced with the condition
gflaA0?

The following exercises discuss a slightly more general type of object than
simplicial complexes. To simplify matters we restrict our attention to the two-
dimensional case.

3.3.9. Recall the definition of a polygonal disk in Section 2.4; such a disk need
not be convex. If D is a polygonal disk, show that there is a simplicial complex
K such that I K I = D and the 0-simplices of K are precisely the vertices of D
(we might say that the complex K is a simplicial subdivision of D with no new
vertices).

3.3.10. A two-dimensional cell complex C in R" is a finite collection of polyg-
onal disks in R" that satisfy the same two conditions as in the definition of
simplicial complexes. Define the notions of star, link, subcomplex, subdivi-
sion and underlying space of two-dimensional cell complexes analogously to
the case for simplicial complexes. Show that any convex cell complex in R"
has a subdivision that is simplicial complex (called a simplicial subdivision);
moreover, a simplicial subdivision can always be found that has no new vertices.

3.4 Simplicial Surfaces

We would like to look at all simplicial complexes with underlying spaces that
are topological surfaces (for example, the octahedron). Which properties of
the simplicial complex structure of the octahedron, shown in Figure 3.4.1. (i),
distinguish it from the 2-complex in Figure 3.4.1 (ii), the underlying space of
which is clearly not a surface? By Lemma 3.2.7 (ii) the points in the interiors of
all 2-simplices in any 2-complex have neighborhoods that are homeomorphic
to open disks in R2, so they present no problem. What makes the neighborhood
of each point in the interior of a 1-simplex work out correctly in the octahedron
is that each 1-simplex in the octahedron is a face of precisely two 2-simplices,
which is not the case in Figure 3.4.1 (ii). Further, the link of each 0-simplex
of the octahedron is a 1-sphere, which once again does not hold in Figure 3.4.1
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(i)

Figure 3.4.1.

(ii). These two observations just do the trick, as seen in the following theorem.
The proof of this theorem makes use of Invariance of Domain (Theorem 2.2.1).

Theorem 3.4.1. Let K be a simplicial complex in R". Then I K I is a topological
surface iff K is a 2-complex such that each I -simplex of K is the face of precisely
two 2-simplices, and the underlying space of the link of each 0-simplex of K is
a 1-sphere.

Proof. If K is a 2-complex such that each l-simplex of K is contained in pre-
cisely two 2-simplices, and the link of each 0-simplex is a ]-sphere, then it
is straightforward to verify that each point in IKI has a neighborhood homeo-
morphic to int D2, and we leave the details to the reader. The difficult part of
the proof is the other direction; we follow the treatment in [MO, Chapter 23].
Suppose from now on that I K I is a topological surface.

We start by showing that K is a 2-complex. Let m be the dimension of K,
where in is a non-negative integer. There is some m-simplex r in K; let X E Int r
be a point. The maximal dimensionality oft implies that any small enough open
ball in R" centered at x intersects no simplex of K other than r. Hence it follows
from Lemma 3.2.7 (ii) that the point x has an open neighborhood in IKI that
is homeomorphic to R. Since IKI is a topological surface x has an open
neighborhood A c I K I homeomorphic to int D2, and hence to R2. By Exercise
2.3.3 we can choose A as small as desired, and in particular we can choose it
to be contained in the open neighborhood of x that is homeomorphic to R.
Hence, up to homeomorphism, there is a set homeomorphic to R2 sitting as an
open subset of lE8m. By Exercise 2.2.10 it must be the case that to = 2.
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We next show that each 1-simplex of K is the face of precisely two 2-
simplices of K. Let q be a 1-simplex of K; for our entire discussion of q fix a
point x E Int q, and let U C I K I be an open subset containing x, and which is
homeomorphic to int D2, and hence to R2; we can choose U to be as small as
desired. Note that if Int q intersects a 2-simplex a of K then q is a face of a.

Suppose that q is not the face of any 2-simplex. Then if we choose the
set U small enough, it will be contained in q, and hence it will be contained in
a straight line in R". Let n be a plane in R" containing q (it does not matter
which plane). By Exercise 1.2.18 (i) the set U is not open in n (it makes no
difference that we are in an arbitrary plane in R" rather than in R2). On the
other hand, U is homeomorphic to R2 and is contained in the plane R (itself
homeomorphic to R2). By Theorem 2.2.1 we see that U must be open in n, a
contradiction. Hence q must be the face of at least one 2-simplex of K.

Now suppose q is the face of precisely one 2-simplex or. Using Lemma
3.2.6 let n be the unique plane (that is a 2-plane) in R" containing or (and hence
q). If we choose the set U small enough it will be contained in Int q U Int a,
and hence it will be contained in a closed half-plane in 11, where the boundary
of the half-plane is the unique line containing q. Observe that U intersects the
boundary of the half-plane, namely in the point x. By Exercise 1.2.18 (ii) the
set U is not open in fl. On the other hand, as in the previous case, since U is
homeomorphic to R2 it follows from Theorem 2.2.1 that U must be open in R,
a contradiction. Hence q must be the face of at least two 2-simplices of K.

Next suppose q is contained in more than two 2-simplices; let a,, .... ap be
the 2-simplices of K that have q as a face, where p > 3. Choose U small enough
so that it is entirely contained in Int q U Int a, U . . U Int ap. It is straightforward
to see that the set a, U P? U a2 is a disk, and that Int or, U Int P7 U Int a2 is
homeomorphic to int D2, and hence to R2. We can thus find a small open
subset V of x in Int a, U Int q U Int a2 such that V is homeomorphic to R2 and
V C U. Now, on the one hand, Exercise 1.2.18 (iii) implies that V is not open
in Int q U Int a, U U Int ap. On the other hand U R2 V, and U is open
in Int q U Int a, U . . . U Int ap; it follows from Exercise 2.2.1 that V is open in
Int q U Int a, U U. . . U Int ap, a contradiction. We conclude that q is contained in
precisely two 2-simplices.

Now let w be a 0-simplex of K; we need to show that I link(w, K) I is a
1-sphere. The subcomplex link(w, K) consists of a finite number of 0-simplices
and 1-simplices of K. Each 0-simplex in link(w, K) is the face of a unique (-
simplex in star(w, K), and each 1-simplex in link(w. K) is the face of a unique
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2-simplex in star(w, K); moreover, two 1-simplices in link(w, K) intersect (in
a common endpoint) iff the 2-simplices in star(w, K) of which they are faces
intersect in a common 1-simplex. Since we just saw that every I-simplex of
K is contained in precisely two 2-simplices, it follows that every 0-simplex in
link(w. K) is contained in precisely two 1-simplices in link(w, K). It is there-
fore not hard to see that I link(w, K) I must be the union of disjoint polygonal
1-spheres.

To prove the desired result it therefore suffices to show that I link(w, K)I
is path connected. Suppose otherwise; it would follow from Exercise 3.3.7 that
I star(w,
K)I - {w} would not be path connected. By Exercise 2.3.3 we can find an
open neighborhood V C IKI of w that is entirely contained in I star(w, K)I and
is homeomorphic to int D2. By Exercise 1.5.11 the set V - {w} is not path con-
nected. It would follow that we have found a set homeomorphic to int D2 that
becomes non-path connected when a single point is removed, a contradiction
to Exercise 1.5.7. Thus I link(w, K)I is path connected. 0

Using the above theorem we can make the following definition, which
makes no reference to the underlying space of K.

Definition. A 2-complex K is called a simplicial surface if K is a 2-complex
such that each 1-simplex of K is the face of precisely two 2-simplices, and
the underlying space of the link of each 0-simplex of K is a I-sphere. The
underlying space of a simplicial surface is called the underlying surface of the
simplicial surface. 0

Example 3.4.2. A tetrahedron is a simplicial surface, since it is a 2-complex,
each 1-simplex is the face of precisely two 2-simplices, and the underlying space
of the link of each 0-simplex is a triangle. On the other hand, a single 2-simplex
together with its faces is not a simplicial surface, since the underlying space of
the link of each 0-simplex is a line segment. 0

The definition of simplicial surfaces can be made more elegant as follows.
Recall the definitions of S"` in Equation 3.2.2; note that S° consists of two points
in R, namely ±1. For convenience we could define S-' to be the empty set. A
simplicial surface is then seen to be a simplicial complex in which the underlying
space of the link of every i-simplex is homeomorphic to S'-' for i = 0, 1, 2.

More importantly, though the criteria in Theorem 3.4.1 are quite natural,
there is in fact a redundancy in the criteria. The following lemma will make it
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slightly easier to verify whether a given 2-complex is a simplicial surface.

Lemma 3.4.3. Let K be a 2-complex such that the underlying space of the link
of each 0-simplex is a 1-sphere. Then K is a simplicial surface.

Proof. Exercise 3.4.1.

All the properties of topological surfaces discussed in Section 2.5 can be
applied to simplicial surfaces by applying them to the underlying surfaces. Thus,
we say that a simplicial surface is compact, connected, etc., if the underlying
topological surface is compact, connected, etc. Since, in fact, all simplicial
complexes have compact underlying spaces, all simplicial surfaces are compact.

Returning to the relation between topological surfaces and simplicial com-
plexes, we have now shown that the underlying space of a simplicial surface
(and of no other type of simplicial complex) is a topological surface (Theorem
3.4.1), and if any two simplicial surfaces have simplicially isomorphic subdivi-
sions then their underlying surfaces are homeomorphic (Lemma 3.3.5). What
about the other way around: Is every topological surface a simplicial surface
as well? To answer this question we must state it with a bit more care. Even a
simple surface such as S2 is not a finite simplicial complex as it is sitting in R3.
However, certainly S2 is homeomorphic to the underlying space of a number of
simplicial surfaces, such as the octahedron. Rather amazingly, this same result
holds for any topological surface. Moreover, given a topological surface, there
is essentially only one way to find the requisite simplicial surfaces. To state this
fact precisely we need the following definition.

Definition. Let Q C IR" be a topological surface. A simplicial complex K
triangulates Q if there is a homeomorphism t: SKI -3- Q; we say that Q is tri-
angulated by K; the simplicial complex K together with the homeomorphism
t are called a triangulation of Q. Q

Example 3.4.4. The topological surface S2 is triangulated by the tetrahedron
via the radial projection map from the underlying space of a small tetrahedron
with center of gravity at the origin to S2. See Figure 3.4.2. 0

If a simplicial complex K triangulates a topological surface, then, by The-
orem 3.4.1, we know that K must be a simplicial surface. We now state the
following result without proof; see [MO, §8] for details.

Theorem 3.4.5.

(i) Any compact topological surface in R" can be triangulated.
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homeomorphism

Figure 3.4.2

(ii) If a topological surface is triangulated by two simplicial complexes K,
and K2, then K, and K2 have simplicially isomorphic subdivisions.

The analog of neither part of the theorem is true in higher dimensions.
The counterexamples are quite sophisticated, and they were discovered only
relatively recently. See [K-S). Also, we need to assume compactness since our
simplicial complexes are finite by definition, though it is possible to deal with
non-compact surfaces as well.

As an application of Theorem 3.4.5 we prove Theorem 2.4.3 (ii), which
has been left hanging up till now.

Proof of Theorem 2.4.3 (ii). By Theorem 3.4.5 we know that Q is homeomor-
phic to I K I for some simplicial surface K. It therefore suffices to prove that
for every simplicial surface K there is a polygonal disk D and a gluing scheme
S for the edges of D such that I K I is obtained from gluing the edges of D by
the scheme S. We prove the theorem backward. First, suppose that I K I can be
obtained by gluing pairs of edges of a finite number of disjoint polygonal disks;
we will prove by induction on the number of polygonal disks that I K I can in
fact be obtained from a single polygonal disk.

Let it be the number of polygonal disks used. If it = 1 then there is nothing
to prove. Next suppose that n > 1, and that the claim holds whenever fewer
than it disks are used. Now, observe that if the edges of each polygonal disk are
only glued to edges of the same disk, then the net result of gluing all the edges
of all the disks will be an object that has as many pieces as there are polygonal
disks, namely n. Since we are assuming it > 1, we would have contradicted
the fact that K is connected. Hence it could not have been the case that the
edges of each polygonal disk are only glued to edges of the same disk. We can
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therefore find two polygonal disks D, and D2 such that D, has an edge with the
same label as an edge of D2. So, glue D1 and D2 along this commonly label
edge. We note two facts. First, when two polygonal disks are glued together
along a single edge of each the result is a polygonal disk. Second, if we take
all n disks and glue the appropriate edges all at once, or if we glue the edges
one pair at a time, we obtain the same object. It is now easy to see that IKI can
be obtained from n - I polygonal disks, using the result of gluing D, and D2
together, and the other n - 2 disks that were originally used for IKI. By the
inductive hypothesis, I K I can be obtained from a single polygonal disk.

Finally, we need to show that 1K I can be obtained by gluing the edges of
some finite number of polygonal disks. Well, I K I is obtained by gluing the
2-simplices of K along their faces, and 2-simplices are polygonal disks. 0

Exercises

3.4.1*. Prove Lemma 3.4.3.

3.4.2*. Find a simplicial complex that triangulates the torus with the smallest
number of 2-simplices you can get away with. What about with the smallest
number of 0-simplices?

The following exercises discuss two-dimensional cell complexes. (See
Exercise 3.3.10.)

3.4.3. Define a polyhedral surface to be a two-dimensional cell complex in
which the underlying space of the link of each 0-simplex is a 1-sphere. Prove
that the underlying space of a polyhedral surface is a topological surface.

3.4.4. Let P be a polyhedral surface, and let K, and K2 be simplicial subdi-
visions of P. Show that Kt and K2 have simplicially isomorphic subdivisions.

3.5 The Euler Characteristic

The Euler characteristic is a numerical invariant of compact surfaces that helps
distinguish between non-homeomorphic surfaces. Although we are ultimately
interested in topological surfaces, for convenience we start with arbitrary 2-
complexes. If K is a 2-complex, let fo(K), f, (K) and f2(K) denote the number
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of 0-simplices, 1-simplices and 2-simplices of K respectively. (In many texts
it is standard to write V for fo(K), E for f,(K) and F for f2(K).)

Example 3.5.1. The tetrahedron, pictured in Figure 3.1.1 (i), has fo(K) = 4,
f,(K) = 6 and f2(K) = 4. The octahedron, pictured in Figure 3.4.1 (i), has
fo(K) = 6, f,(K) = 12 and f2(K) = 8. 0

We wish to associate a single numerical invariant to each 2-complex; a
good guess is to use some combination of the numbers fo(K), f, (K) and f2(K).
Since we are ultimately concerned with topological surfaces, if two 2-complexes
triangulate the same topological surface then we would like the combination of
fo(K), f, (K) and f2(K) to be the same for both 2-complexes, even if each of
fo(K), f, (K) and f2(K) are different for the two 2-complexes. For example,
both the tetrahedron and the octahedron triangulate the 2-sphere. It is apparent
that fo(K) + f, (K) + f2(K) is different for these two simplicial surfaces, so
this sum is not useful. Before reading on try playing around with fo(K), f, (K)
and f2(K) for the tetrahedron, the octahedron and the icosahedron to see if you
can come up with some combination of these numbers that yield the same result
for all three of these 2-complexes.

Euler hit upon the number fo(K) - f, (K) + f2(K). This number equals
2 for the tetrahedron, the octahedron and the icosahedron. In fact, it will turn
out that this alternating sum is always 2 for any 2-complex that triangulates a
2-sphere. By contrast, for the 2-complex in Figure 3.3.5 (which triangulates
the torus), the sum fo(K) - f, (K) + f2(K) is zero. We give this sum a name
in the following definition, which applies to all 2-complexes, and not just to
simplicial surfaces.

Definition. Let K be a 2-complex in R". The Euler characteristic of K,
denoted X(K), is the integer

X(K) = fo(K) - f1(K) + f2(K) 0 (3.5.1)

There is no comparably simple geometric way to calculate the Euler char-
acteristic of a topological surface. Proceeding indirectly, we could start with
any compact topological surface, find a simplicial complex that triangulates it,
and then compute the Euler characteristic of the simplicial complex. (Com-
pactness is crucial here, since a non-compact surface would need an infinite
simplicial complex to triangulate it.) Since any compact surface can be trian-
gulated by many different simplicial complexes, we ask whether different Euler
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characteristics could be obtained from these different simplicial complexes. The
following theorem shows, remarkably enough, that the answer is no. The proof
of this theorem uses Corollary 3.7.3; the results in Section 3.7, delayed to avoid
a digression at this point, do not make use of Theorem 3.5.2 or any subsequent
result in sections Section 3.5 and Section 3.6.

Theorem 3.5.2. Let Q be a compact topological surface, and suppose that Kt
and K2 are simplicial surfaces which triangulate Q. Then X(K1) = X(K2).

Proof. By Theorem 3.4.5 we know that Kt and K2 have simplicially isomorphic
subdivisions. It is straightforward to see that simplicially isomorphic simplicial
complexes have equal Euler characteristics; it follows from Corollary 3.7.3 that

X(Kl) = X(K2). 0

Because of Theorem 3.5.2 we can make the following definition.

Definition. Let Q be a compact topological surface. The Euler characteristic
of Q, denoted X(Q); is defined by setting X(Q) = X(K), where K is any
simplicial surface that triangulates Q. 0

Example 3.5.3. (1) Since X(tetrahedron) = 2 it follows that X(S2) = 2.

(2) We continue Examples 3.3.9 and 3.3.11, in which a simplicial complex
K' that triangulates the torus is constructed via an admissible partition of the
vertices of the simplicial complex K, as shown in Figure 3.3.6 (ii), and has
underlying that space as a disk. Although we may not be able to visualize K',
we can count its simplices. Since none of the 2-simplices of K are glued to
each other in the construction of K', we see that f2(K') = f2(K) = 18. The
number of 0-simplices of K' is the number of sets in the partition V of VO», and
thus fo (K') = 9. The 1-simplices of K not contained in Bd K are not glued
to anything, and the 1-simplices of K contained in Bd K are glued in pairs.
Hence f, (K') = fi (K) - 1 f, (Bd K) = 27. Therefore X (T2) = X (K') _
9-27+18=0. 0

The computation of X(T2) in the above example might seem needlessly
complicated, since we can construct concrete simplicial complexes in R3 that
triangulate T2, but the method of the above example can be applied to surfaces
such as p2 and K2 as well, for which ad hoc constructions in R3 cannot be used;
such a computation is used in Exercise 3.5.2.

Finally, we need to show how connected sum affects the Euler characteristic.
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Proposition 3.5.4. Let Q, and Q2 be compact surfaces in R". Then

X(Q1 #Q2) = X(QI)+X(Q2) -2.

Proof. Let K, and K2 be simplicial surfaces in R" that triangulate Q, and Q2,
respectively. We start by using the method of Lemma 3.3.10 to construct a
simplicial surface K that triangulates Q, # Q2. Let a; _ (a;, bi. ci) be a 2-
simplex of K; for each i = 1, 2. Observe that a; is a disk, that K; - (a;)
is a simplicial complex and that IK; - {a;fl ti Q; - into;. By moving K, if
necessary we may assume that I K, I and I K2 1 are disjoint. Let L be the simplicial
complex in 1R" that is the union of K, - {a,) and K2 - (a2 ). Let V be the partition
of L«o)) consisting of the three pairs (a,, a2), {b,, b2) and (c,, c2), and single-
element sets containing every other 0-simplex of L. It is straightforward to see
that V is an admissible partition, and that if V(P) is the induced partition of
IL) then the identification space of ILI and V(P) is homeomorphic to Q, # Q2.
Now let K be the simplicial complex, the existence of which is guaranteed by
Lemma 3.3.10 (i) applied to L and V. It follows from Lemma 3.3.10 that K
triangulates Q, # Q.

We see from the construction of K that

fo(K) = fo(L) - 3 = fo(Ki) + fo(K2) - 3
fl (K) = f, (L) - 3 = fl (K,) + fl (K2) - 3
f2(K) = f2(L) = f2(K1) + f2(K2) - 2.

Hence

X(Qi#Q2) = X(K) = fo(K) - f,(K)+f2(K)
= (fo(K1) + fo(K2) - 3) - (f,(K1) + f,(K2) - 3)

+ (f2(Ki) + f2(K2) - 2)
= (fo(K1) - f, (K1) + f2(K1)) + (fo(K2) - f,(K2) + f2(K2)) - 2
=X(K,)+X(K2)-2=X(Qi)+X(Q2)-2.

Exercises

3.5.1. Compute the Euler characteristics for the 2-complexes shown in Figure
3.5.1.
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Figure 3.5.1

3.5.2*. Compute X (K2) and X (P2).

3.5.3*. Suppose Q i C R' and Q2 C RI are homeomorphic compact surfaces.
Show that X(Qi) = X(Q2)

3.5.4*. Prove that no two of the surfaces listed in Theorem 2.6.7 are homeo-
morphic.

The following exercise discusses the Euler characteristics for polyhedral
surfaces (for which Euler characteristics are sometimes easier to compute than
simplicial surfaces).

3.5.5. If Pisa two-dimensional cell complex we can define fo(P), fi (P) and
f2(P) as for simplicial complexes, except that f2(P) now means the number
of 2-cells. Define the Euler characteristic of P by the usual formula X(P) =
fo(P)-f,(P)+f2(P). Show that x (P) = X(IPI),where thelatter iscomputed
as above by using a triangulation of the compact topological surface I P 1. Verify
that this result works for the surface of a cube.

3.6 Proof of the Classification of Compact Connected Surfaces

We now have all the tools for our proof of the classification of compact connected
surfaces, Theorem 2.6.7. For convenience, we use the term "a hole" in an object
to mean the result of removing the interior of a disk from the object. Intuitively,
we might attempt to prove the classification theorem by looking for a projective
plane with a hole (that is, a Mobius strip) or a torus with a hole (called a
punctured torus) sitting inside a given surface, cutting it out of the surface, and
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continuing this process until nothing is left. We would need to know that this
process will terminate eventually, and to do so we might proceed by induction.
It is not obvious at first glance on what number we will induct. We will use the
clever inductive argument due to [BG], which is a variant of one of the standard
proofs (as in [MS 1 ]). By Theorem 2.4.3 (ii) every compact connected surface
in Euclidean space is obtained from a polygonal disk and a gluing scheme for
the edges of the polygonal disk; the induction will be on the number of edges
of such polygonal disks.

Our proof works as follows. Let Q C lR" be a compact connected surface,
and suppose Q is obtained from a polygonal disk D and gluing scheme S for
the edges of D. If we wish to find a Mobius strip or a punctured torus in Q,
how would we recognize it in the disk D? Since a Mobius strip is made from
a rectangular strip with its ends glued with a twist, we should look for a strip
connecting two edges of D that are matched up by S. and such that the arrows on
these edges would cause the strip to be glued with a twist. See Figure 3.6.1 (i).
We can similarly look for a punctured torus in Q by looking for something in D
that becomes a punctured torus when glued; an unglued version of a punctured
toms is shown in Figure 3.6.1 (ii). After locating the appropriate subset of D
we will examine what remains after removing the subset, yielding the inductive
step.

a

a

(i)

Figure 3.6.1
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Proof of Theorem 2.6.7. There are really two parts to the theorem: (1) that every
topological surface is homeomorphic to one in the list given in the statement of
the theorem, and (2) that all the surfaces in the list are distinct. We will prove
part (1) here; part (2) is proved in Exercise 3.5.4. Let Q C lR' be a compact
connected surface. Rather than showing part (1) directly, we will prove the
apparently weaker statement that Q is homeomorphic to the sphere or to a
connected sum of tori and projective planes combined; we leave it to the reader
to verify that a connected sum of tori and projective planes is in fact always
homeomorphic to either a connected sum of only tori or a connected sum of
only projective planes (the trick is to use Lemma 2.6.5).

By Theorem 2.4.3 (ii) there is a polygonal disk D and a gluing scheme S
for the edges of D such that Q is obtained from D and S. Let n be the number
of sides of the polygonal disk D. We proceed by induction on n, where the
statement proved by induction is that every surface obtained from a polygonal
disk with n sides is homeomorphic to the sphere or a connected sum of tori and
projective planes. As mentioned previously, the number n must be even. For
the first step in the proof by induction we look at n = 2. There are exactly two
cases for what D and S could be, as seen in Figure 3.6.2; in part (i) of the figure
the surface is S2, and in part (ii) the surface is p2. From now on assume that
n > 4 and that the inductive hypothesis holds for all surfaces obtained from
polygonal disks with fewer than n sides.

a

a

(i)

S2

Figure 3.6.2

a

a

P2

There are four cases to be considered (some with subcases), though they
are all quite similar to one another, and we will only go over some of them
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in detail. In each case we proceed in the same fashion, which in outline form
consists of cutting the disk D into various pieces, reassembling the pieces into
two parts using the gluing scheme S, and then observing that the two resulting
parts are surfaces with holes and that the original surface is the connected sum
of the two parts (once their holes are plugged up). Before proceeding we need
the following straightforward observations.

Observation #1: Suppose we take the disk D and cut it in two along a line as
in Figure 3.6.3. We label the two new edges that result from the cut so that
gluing the new edges as labeled would undo the cut. See Figure 3.6.3. We thus
obtain two polygonal disks, D, and D2, together with a gluing scheme S' for
their combined set of edges. The result of gluing the edges of D, U D2 by the
gluing scheme S' will be the same as the result of gluing the original disk D by
the original gluing scheme S, namely our surface Q. The same result holds if
we make any finite number of cuts in the disk D.

cut

Figure 3.6.3

Observation #2: Suppose we make some cuts as in Observation #1, ending
up with a number of disks and a gluing scheme for the edges of all the disks.
Instead of performing all the gluing at once, we could first glue some of the
pairs of edges or collections of vertices (as mandated by the gluing scheme),
and only then glue the rest of the edges and vertices. The order of the gluing
does not matter. For example, suppose that after some cutting as in Observation
#1 we obtain two disks D, and D2 with gluing scheme as indicated in Figure
3.6.4 (i). Note that the two vertices labeled A in D, will be identified when the
edges labeled a are glued. We can paste together the two vertices labeled A,
to obtain D, and D2 as in Figure 3.6.4 (ii). Although we no longer have disks,
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the result of gluing the new disks and disks with holes by the induced gluing
scheme will still yield our original surface Q.

A

a

(i)

Figure 3.6.4

a

Observation #3: Suppose we have a disk Di with one hole as might arise
in Observation #2, and it happens that all the edges of Dt along the outside
boundary of Dt are glued to one another via the gluing scheme. See Figure
3.6.5 (i). Then the result of gluing all the edges on the outside boundary of Dl,
but leaving the edges of the inside boundary unglued, will yield a surface with
a hole in it, the same as would be obtained by first filling in the hole in D1, then
gluing as usual to obtain a surface, and then cutting out the hole. See Figure
3.6.5 (ii).

a

b b

Figure 3.6.5



146 III. Simplicial Surfaces

Our four cases depend upon whether certain phenomena occur with respect
to the edges of D and the gluing scheme S. In a gluing scheme each edge is
oriented by an arrow; a pair of edges that are glued is said to be like-oriented
if they both point clockwise or they both point counterclockwise along the
boundary of D, as in Figure 3.6.6 (i), and the pair is unlike-oriented if one
points clockwise and the other points counterclockwise, as in Figure 3.6.6 (ii).

a

a
like-oriented

(i)

Figure 3.6.6

a

a
unlike-oriented

The following four cases exhaust all possibilities.

Case #1: There is a like-oriented pair of glued edges (the edges might or might
not be adjacent).

Case #2: All pairs of edges identified by the gluing scheme are unlike-oriented,
and there is a pair of adjacent edges that are glued.

Case #3: All pairs of edges identified by the gluing scheme are unlike-oriented,
no pair of adjacent edges are glued, and there is a pair of edges (a. a') such that
both members of every other pair of glued edges lie in the same component of
(ID - {(z, a').

Case #4: None of the above, so that all pairs of edges identified by the gluing
scheme are unlike-oriented, no pair of adjacent edges are glued, and there is no
pair of edges (a, a') such that both members of every other pair of glued edges
lie in the same component of (I D - ((t, a').

We now consider each case.
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Case #1: This case corresponds to finding a Mobius strip in the surface. There
are two subcases, depending upon whether the like-oriented pair of glued edges
are adjacent or not. See Figure 3.6.7 for the two possibilities.

a

Figure 3.6.7

Subcase (a): The like-oriented edges are not adjacent. The two edges under
consideration are labeled a and a', as in Figure 3.6.8 (i). Note that the two
points labeled A will be glued to each other when a and a' are glued, as are
the two points labeled B. We make two cuts in D, along lines b and c, as in
Figure 3.6.8 (i), dividing D into three pieces labeled I, II and W. Take pieces
I and II and join them by flipping piece II over, and gluing the points labeled
A and B in piece I to the similarly labeled points in piece II. See Figure 3.6.8
(ii). The result of this operation is a disk with a hole D, (the boundary of the
hole intersects the boundary of the disk, but there is nothing wrong with that).
Since D had n edges, it is easy to see that D, has n - 2 edges. Clearly all the
edges of D, along the outside boundary are glued to one another via the gluing
scheme. By Observation #3 gluing the outside edges of D, will yield a surface
with a hole. Call this surface with a hole Q,. By the inductive hypothesis Q,
is homeomorphic to either a sphere with a hole or a connected sum of tori and
projective planes with a hole. The boundary of the hole in Q, is a 1-sphere
consisting of the two edges labeled h and c, as in Figure 3.6.8 (ii).

Gluing the edges of W labeled a and a' will yield a Mobius strip M. The
boundary of M is a 1-sphere consisting of the two edges labeled b and c, as
in Figure 3.6.8 (iii). Finally, using Observation #2 we see that the result of
attaching Q, and M along their boundaries as indicated by the labeling of
the edges in their boundaries yields a surface homeomorphic to our original
surface Q. However, since Q, is homeomorphic to either a sphere with a hole
or a connected sum of tori and projective planes with a hole, and since M is
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homeomorphic to a projective plane with a hole, attaching Q, and M along
their boundaries is homeomorphic to the connected sum of either a sphere and
a projective plane or a connected sum of tori and projective planes with another
projective plane. Since the connected sum of a sphere with a projective plane is
a projective plane by Lemma 2.6.2 (iii), it now follows that Q is homeomorphic
to a connected sum of tori and projective planes as desired.

glue

(I)

Figure 3.6.8

Subcase (b): The like-oriented edges are adjacent. The strategy here is very
similar to subcase (a), and we will not go into detail. The construction is shown
in Figure 3.6.9. We make one cut in D along line b, dividing D into two pieces
labeled I and W. We glue the two points labeled A in piece I, the result of which
is a disk with a hole D, with n - 2 edges in the outside boundary. The piece
labeled W turns out to be a M6bius strip just as in the previous case, though
this time it is not quite as obvious. The trick is to cut W into two pieces and
rearrange, gluing a to a', as in Figure 3.6.9 (iii). The rest of the argument is just
as in subcase (a).
Case #2: This case corresponds to cutting a disk out of the surface, which can be
done in any surface, but in this case can be done so that the inductive hypothesis
is then applicable. The situation is pictured in Figure 3.6.10, and is almost
identical to subcase (b) of Case #1, the difference being that the piece labeled
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rearrange

C

MBbius
Strip

Figure 3.6.9

W yields a disk rather than a Mi bius strip. Using Exercise A2.2.11 and Lemma
2.6.2 (iii) it follows that the surface Q is homeomorphic to either a sphere or a
connected sum of tori and projective planes.

(i)

Figure 3.6.10

Case #3: This case corresponds to breaking the surface into the connected sum
of two pieces, to each of which the inductive hypothesis applies. The situation
is shown in Figure 3.6.11. The assumption of this case is that both members
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of every pair of glued edges other than (a, a') lie in the same component of
8D - (a, a'). Since a and a' are not adjacent by assumption, there are at least
two edges in each component of 8 D - (a, a') (there cannot be only one in either
component since every edge needs another one to be glued to). We make one
cut in D along line b as in Figure 3.6.11, dividing D into two pieces labeled
I and II. In each of I and II we glue the two points labeled A, the result of
which are disks with holes D1 and D2, each with at most n - 2 edges in the
outside boundary. All the edges in the outside boundary of each of these disks
with holes are glued under the gluing scheme to other edges in the same disk
with a hole. We can thus apply the inductive hypothesis to each of D1 and D2;
gluing the outside edges of each of D, and D2 will yield surfaces Q, and Q2,
each of which is homeomorphic to either a sphere with a hole or a connected
sum of tori and projective planes with a hole. As before the result of gluing
Q, and Q2 along their boundaries as indicated by the labeling of the edge on
each boundary yields a surface homeomorphic to our original surface Q. The
surface Q is thus seen to be homeomorphic to either a sphere or a connected
sum of tori and projective planes.

a A

Figure 3.6.11

Case #4: This case corresponds to finding a punctured torus in the surface.
Choose any pair of glued edges (a, a'), which by hypothesis are unlike-oriented
and not adjacent; further, by hypothesis, there must be another pair of glued
edges (b, b') such that b is in one component of 8D - (a, a') and b' is in the
other component (if there were no such pair {b, b') then we would be in Case
#3). There are six generic possibilities for what can happen, depending upon
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6

(v)

Figure 3.6.12

L

which, if any, of the edges a, a', b and b' touch each other; the possibilities are
shown in Figure 3.6.12.

Option (vi) in Figure 3.6.12 is simply a torus, and there is nothing more
to prove. The other five options are all quite similar, and we will only discuss
option (i), leaving the details of options (ii)-(v) to the reader. We make four
cuts in D, along lines p, q, r and s, as in Figure 3.6.13 (i), dividing D into five
pieces labeled I-IV and W. Observe that the pairs of points in Figure 3.6.13 (i)
that have the same labels are glued to each other when a is glued to a' and b is
glued to Y. We now take pieces I-IV and join them by gluing all pairs of points
that have the same label. See Figure 3.6.13 (ii). The result of this operation is
a disk with a hole D1. We see that Di has n - 4 edges, and all the edges of
Di along the outside boundary are glued to one another via the gluing scheme.
As before, the inductive hypothesis implies that gluing the outside edges of D1
will yield a surface Q t that is homeomorphic to either a sphere with a hole or a
connected sum of tori and projective planes with a hole. The piece labeled W
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yields a punctured torus when a is glued to a' and b is glued to b', the details
being left to the reader. The rest of the proof is similar to subcase (a) of Case
#l.

(1)

Figure 3.6.13

c A

The following corollary can be deduced straightforwardly from the classi-
fication of surfaces.

Corollary 3.6.1. Two compact surfaces Q1 C IR" and Q2 C IR' are homeo-
morphic if(1) they are both orientable or both non-orientable, and (2) X (Q 1)

X (Q2)-

3.7 Simplicial Curvature and the Simplicial Gauss-Bonnet
Theorem

In addition to using the structure of simplicial surfaces to give a proof of the
Classification Theorem for Surfaces - a topological result - we can also use
the simplicial structure to investigate geometric properties of surfaces in IR",
which depends upon the particular way in which the surface sits in lR". Here
we will look at the curvature of simplicial surfaces. Although the concept of
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curvature is far more substantial (and subtle) for smooth surfaces, as we will see
in Chapter 6, there is nonetheless a very simple but valid theory for simplicial
surfaces, including an analog of the Gauss-Bonnet Theorem (to be proved in
the smooth case in Chapter 8).

What properties should a formula for calculating the curvature of simplicial
surfaces have? In contrast to the smooth case (for example S2) where the surface
is possibly curved at all points, in the simplicial case the only interesting points
as far as curvature is concerned are the vertices; at the interiors of 2-simplices
the surface is flat, and at the interiors of 1-simplices the surface always looks
like a "ridge," which will also turn out to possess no curvature. Curvature
of a simplicial surface will be given by assigning to each 0-simplex of the
surface a number that will describe how the surface is curving at that point. If
K is a simplicial surface in 1[l;1, we can thus think of curvature as a function
d: K«0» -* R. However the function d is defined, we should expect d to have
the following three properties.

(1) If a 0-simplex v of K has an open neighborhood in IKI which is flat (that
is, the neighborhood is contained in a plane), then we should have d(u) = 0.

(2) If v and w are 0-simplices of K such that v has an open neighborhood in
(K I that is, intuitively, more of a sharp peak than an open neighborhood of w,
then we should have d(v) > d(w). See Figure 3.7.1.
(3) The numbers d(v) should be "intrinsic." This concept, touched on briefly in
Section 2.5, helps make curvature useful. Imagine a small creature living on a
surface that is the creature's whole universe. Though we in R3 can observe the
surface from outside of it, this creature cannot see off the surface, or through it,
but only along it; its lines of vision curve along the surface. The creature can
make various geometric measurements on the surface such as lengths, angles
and areas. A quantity associated with the above surface is called intrinsic if it
could be calculated by such a creature from the measurements it is capable of
making. In other words, a quantity is intrinsic if one does not have to step off
the surface in order to calculate it. For example, the area of a surface is intrinsic.
In a simplicial surface, a quantity that can be calculated using only the lengths
of the 1-simplices of the surface is certainly intrinsic.

Our definition of the function d is actually quite simple. Note that if a
0-simplex v of K has a flat open neighborhood, then it is certainly the case that
the sum of the angles at v in all the 2-simplices of K containing v is 27r. We
can view curvature as a measure of how a surface deviates from being planar.
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v
IY

Figure 3.7.1

Definition. Let K be a simplicial surface, and let v E K be a 0-simplex. If
a E K is a 2-simplex containing v, let L(v, a) denote the angle at v in a. The
curvature of K at v is defined to be the number d(v) given by

d(v) = 27r - L(v, ii).
}Li

where the p are the 2-simplices of K containing v. 0

Example 3.7.1. Let K be a regular tetrahedron, so that the 2-simplices of K
are all equilateral triangles. We see that d(v) = 27r - 3. 3 = it for each vertex
vofK. 0

It is not hard to see that all three properties ford(v) mentioned above indeed
hold (for property (3) the Law of Cosines is needed to compute the angles in
the 2-simplices knowing the lengths of their sides). The definition for curvature
given above, called the "angle defect;' goes back at least as far as Descartes
(see [FE]). In this manuscript Descartes discusses a rather remarkable fact: If
K is any simplicial complex in R3 such that I K I is homeomorphic to S2, then
the sum of the curvatures at all the 0-simplices of K (called the total curvature)
is always 47r. The number 4n is not only independent of the way in which the
simplicial surface K sits in R3, it is independent of which simplicial surface is
used as long as the underlying surface is homeomorphic to S2. The following
theorem shows that Descartes' result can be generalized to simplicial surfaces
with arbitrary underlying spaces as long as the 4n is appropriately modified.

Theorem 3.7.2 (Simplicial Gauss-Bonnet Theorem). Let K be a simplicial
surface in R. Then

E d(v) = 2,r (K)
uE Kuo»
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Proof From Theorem 3.4.1 we know that in any simplicial surface each 1-
simplex is the face of precisely two 2-simplices. Given that each 2-simplex has
three 1-simplices as faces we see that

3f2(K) = 2f, (K). (3.7.1)

We now compute

Y d(v)_ {27r_L(v,ri)j
uEK((o VEK(o)) 37V

2,r- L(v,q)=2irfo(K)- L(v,q)
VE K((0)) VEK((0)) flu ,EK((2)) VE17

= 22rfo(K) - E ,r since the sum of the angles in a triangle is n
17 E K 0))

= 2irfo(K) - irf2(K) = 2irfo(K) - 3irf2(K) + 2nf2(K)
= 2 rfo(K) - 27rf1(K) + 2irf2(K) by Equation 3.7.1

= 2JrX(K). 0

The following corollary is needed for the proof of Theorem 3.5.2.

Corollary 3.7.3. Let K be a 2-complex in R' and let L be a subdivision of K.
Then X(L) = X(K).

Proof. Let K be a simplicial surface in lR" and let L be a subdivision of K.
The curvature of L at each 0-simplex v of L is computed as follows: If v is
a 0-simplex of K, then the curvature of L at v is the same as the curvature of
K at v; if v is not a 0-simplex of K (so it is in the interior of a 1-simplex or
2-simplex of K), then the curvature of L at v is zero. It follows that the total
curvatures for K and L are equal. From Theorem 3.7.2 we then deduce that
X(L) = X(K). 0

Exercises

In Exercises 1-4 the polyhedral version of the Gauss-Bonnet Theorem is de-
veloped.

3.7.1. If you have not already seen it, discover and prove the formula for the
sum of the interior angles at the vertices of a polygonal disk with n sides.
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3.7.2. Discover and prove the analog of Equation 3.7.1 for polyhedral surfaces.

3.7.3. We can define the curvature at the vertices of a polyhedral surface by the
same angle defect formula as for simplicial surfaces. Prove the Gauss-Bonnet
Theorem for polyhedral surfaces.

3.7.4*. Though it is standard to think of the curvature of simplicial surfaces as
being entirely concentrated at the vertices, an even closer analogy between the
simplicial Gauss-Bonnet Theorem and the smooth version of the theorem (to
be proved in Chapter 8) can be constructed as follows. Let K be a simplicial
surface in R". For each 0-simplex v E K let

k(v) =
d(v)

Area of slar(v. K)
3

A simplexwise linear function k: I K I -+ R is then defined by extending k affine
linearly over each simplex of K. Show that

fKI
k(x)dA = 2,rx(K).

where the integral is the standard Riemann integral of a continuous function.

3.7.5. Show that any simplicial surface has an even number of 2-simplices.

3.7.6. Let be any integer such that < 2. In theory we can take the collection
of all compact connected simplicial surfaces with Euler characteristic and
find the surface (or surfaces) in the collection with the fewest vertices. Call
this minimal number of vertices VV; thus every compact connected simplicial
surface with Euler characteristic has at least VC vertices.

Let a, b and c be positive integers that satisfy

a> Vt,

a simplicial surface K in some R" such that

X(K) _ , fo(K) = a, f, (K) = b, f2(K) = c.

Are the simplicial surfaces you have found unique?
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3.8 Simplicial Disks and the Brouwer Fixed Point Theorem

Our goal in this section is to present a proof of the two-dimensional version of
one of the most famous theorems in topology, the Brouwer Fixed Point Theorem.
We already saw a proof of the one-dimensional version of this theorem in Section
1.5, but in dimensions higher than I there is no similarly simple proof since there
is no appropriate analog of the Intermediate Value Theorem. Our proof in the
two-dimensional case uses a modification of the Sperner Lemmas approach.

We start with a brief discussion of simplicial complexes with underlying
spaces that are disks. See Figure 3.8.1.

Figure 3.8.1

Definition. A simplicial disk is a simplicial complex K in R" such that I K I is
a disk. The simplicial boundary of a simplicial disk K, denoted Bd K, is the
collection of simplices rl E K such that q is either a 1-simplex that is the face of
precisely one 2-simplex, or a 0-simplex, the link of which has underlying space
an arc. 0

We have two different ways of looking at the "boundary" of K: the topo-
logical boundary 8 I K I and the simplicial boundary Bd K. It is seen in Exercise
3.8.1 that these two approaches yield the same result. In order to use induction
in our proof of the Brouwer Fixed Point Theorem we need simplicial disks from
which we can remove 2-simplices one at a time.

Definition. Let K be a simplicial disk in R'. A shelling of K is a listing of the
2-simplices of K in an order a1, ... , a,,, such that the collection {a1, ... , Qk }

together with all the faces of these simplices forms a simplicial disk for all
k E {1, ... , m}. We say that K is shellable if it has a shelling. 0

Example 3.8.1. For the simplicial disk K shown in Figure 3.8.2, the listing or,
r, rl is a shelling of K, whereas the listing a, rl, r is not a shelling. Since K has
at least one shelling, then it is a shellable simplicial disk. 0
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Figure 3.8.2

Three remarks on shellings. First, suppose that K is a shellable simplicial
disk in R", and or,, ... , ais a shelling of K. Then the simplicial disk formed
by the collection (o, , ... , ark) together with all the faces of these simplices is
itself shellable for each k E (1, ... , m). Second, if A is a 2-simplex in R"
and S > 0 is any number, then there is a shellable subdivision of A so that
the distance between any two points in a single simplex of the subdivision is
less than S; one way of obtaining such a subdivision is as in Figure 3.8.3, using
sufficiently many parallel lines to slice up A. Finally, it can actually be shown
that every simplicial disk is shellable; see [MO, p. 27] for details. However, we
will not use this result, and hence will not prove it here. (Rather surprisingly,
the analogous result does not hold in 3 dimensions; see [RD].)

Figure 3.8.3

We now turn to the Brouwer Fixed Point Theorem.

Definition. Let X C R" be a set, and let f : X --> X be a function. A fixed
point of f is a point x E X such that f (x) = x. p

Are there any restrictions on X and f that guarantee that every map f : X -+
X must have a fixed point? The function g: S' -+ S' that rotates S' by 90°
(either direction) has no fixed point, even though S' is both compact and path
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connected. The map h: D2 -* D2 defined by

X (-o), ifx > 0;

(oifx < 0,
has an even simpler domain than g, but it also has no fixed point; of course, the
map h is not continuous. The following remarkable result shows that the two
types of problems we have just seen, namely that the function is not continuous
or the space is not simple enough (for example S' ), are the essential problems.

Theorem 3.8.2 (Brouwer Fixed Point Theorem). Any continuous map f : D2 -
D2 has a fired point.

This theorem is an existence theorem only; it does not tell us how many
fixed points there are, nor how to find them. The Brouwer Fixed Point Theorem
would work just as well if D2 were replaced by any other disk; see Exercise
3.8.6.

One of the first encounters I had with an idea from topology was when as
a boy I read about the following graphical interpretation of the Brouwer Fixed
Point Theorem in the Time-Life book on mathematics. Lay two identical sheets
of paper one precisely on top of the other. Take the top sheet, crumple it up
any way you please (though do not tear it), and lay it on top of the bottom sheet
(with no part of the top sheet off of the bottom sheet). Then the Brouwer Fixed
Point Theorem implies that at least one point of the crumpled sheet must be
exactly on top of its original location.

To prove the Brouwer Fixed Point Theorem we start off in the standard way
by proving that this theorem is logically equivalent to the following result.

Theorem 3.8.3 (No-Retraction Theorem). There is no continuous map r: D2 -
S' such that r(x) = x for all x E S'.

The No-Retraction Theorem states the intuitively plausible fact that the
skin of a drum cannot be pushed onto its rim without a hole being punched in
the drum.

Proposition 3.8.4. The Brouwer Fixed Point Theorem is true iff the No-Retraction
Theorem is true.

Proof. We show that the falsity of each theorem implies the falsity of the other.
First assume that the No-Retraction Theorem is false, so that there is a continuous
map r: D2 S' such that r(x) = x for all x E S. Let R: S' -+ S' denote



160 III. Simplicial Surfaces

rotation of S' by 180°, and let j: S' --* D2 denote the inclusion map. It is seen
that j o R or: D2 -+ D2 has no fixed point, and hence the Brouwer Fixed Point
Theorem is false.

Now suppose that the Brouwer Fixed Point Theorem is false, so that there
is a continuous map f : D2 --> D2 with no fixed points. We define a map
r: D2 -+ S' as follows. For each point x E D2, let r(x) be the intersection
with S' of the ray that starts at f (x) and goes through x; if the ray intersects
S' in two points, then one of the points of intersection is f (x), and let r(x) to
be the other point of intersection. See Figure 3.8.4. This ray is well-defined for
all points x E D2 precisely because f has no fixed points. It is not hard to see
that r is continuous (because f is), and that r(x) = x for all x E St; hence the
No-Retraction Theorem is false.

Figure 3.8.4

To prove the No-Retraction Theorem we will approximate arbitrary con-
tinuous maps with more well-behaved ones, as described in the following defi-
nition.

Definition. Let K be a simplicial complex in R". A map f : I K I -+ R"' is sim-
plexwlse linear, or SL, if the restriction of f to each simplex of K is an affine
linear map. 0

SL maps are not quite the same as simplicial maps; simplicial maps are
from one simplicial complex to another and make use of the simplicial structure
of both the domain and codomain, whereas SL maps have Euclidean space as
the co-domain. An SL map is uniquely determined by what it does to the 0-
simplices in its domain (use Lemma A.7). SL maps are always continuous (use
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Exercise 1.3.10 and Lemma 1.3.6). The following lemma, a simplexwise linear
version of the No-Retraction Theorem, is a variant on Sperner's First Lemma
(see [LY, §43]).

Definition. Let A = (a, b, c) denote a fixed 2-simplex in R2, let K be a
simplicial disk in R" and let f : (K ( -- A be an SL map which sends each
0-simplex of K to a vertex of A. The map f is boundary-odd (respectively,
boundary-even) if every 1-face of A is the image of an odd (respectively, even)
number of 1-simplices of Bd K. The map f is interior-odd (respectively,
interior-even) if A is the image of an odd (respectively, even) number of 2-
simplices of K. 0

It is evident that any map as in the above definition is either interior-odd or
interior-even. It is not obvious that a given map is necessarily either boundary-
odd or boundary-even, though it is true (a fact we will not be using).

Lemma 3.8.5. Let K be a shellable simplicial disk in R", and let f : (K I A
be an SL map which sends each 0-simplex of K to a vertex of A. If f is
boundary-odd (respectively, even) then it is interior-odd (respectively, even).

Proof. The proof proceeds by induction on the number p of 2-simplices of K.
If p = I then K has one 2-simplex a, and the result is quite straightforward;
we will go over this case in detail nonetheless since it will save work later on.
There are three cases:

Case (1). The map f sends distinct vertices of or to distinct vertices of A. Hence
f is injective on a. In this case each 1-face of A is the image of exactly one
I-simplex of Bd K, so f is boundary-odd. Since A is the image of a it follows
that f is also interior-odd.

Case (2). The map f sends two of the vertices of a to the same vertex of A,
and the third vertex of a to a different vertex of A. In this case one 1-face of
A is the image of two 1-simplices of Bd K, and the other two 1-faces of A are
not the images of any I -simplices of Bd K. Thus f is boundary-even. Since A
is not the image of a, it follows that f is also interior-even.

Case (3). The map f sends all vertices of a to the same vertex of A. Hence
neither the 1-faces of A nor A itself are contained in the image of f, and hence
f is both boundary-even and interior-even.

We now assume that K has p 2-simplices (where p > 2), and that the result
is true for all simplicial disks with fewer than p 2-simplices. Let a,, ... , ap be a
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shelling of K. If we let K' denote the collection (a,, ... , a,,_,) together with all
the faces of these simplices, then as remarked earlier K' is a shellable simplicial
disk with p - 1 2-simplices. Observe that the map f I K' is an SL map K' -+ A
that takes each 0-simplex of K' to a vertex of A; for convenience we let f' denote
f I K'. To prove the lemma it suffices to show that f is either boundary-odd or
boundary-even (using the fact that f is either boundary-odd or boundary-even),
and that when it has the same (respectively, opposite) boundary-parity as f,
then it has the same (respectively, opposite) interior-parity as f. Again there
are three cases, corresponding to the three cases treated for p = 1, this time
with respect to flan; we treat the first case and leave the details of the other two
cases to the reader.

In the first case, suppose that f sends distinct vertices of a1, to distinct
vertices of A. It is easy to see that f has the opposite interior-parity as f.
For each 1-face of A, we observe that the number of 1-simplices of Bd(K') of
which it is the image under fis either one more or one less than the number of
I -simplices of Bd K of which it is the image under f (depending upon whether
the face of a1, that maps onto the I -face of A is in Bd K or not). It now follows
that f' is either boundary-even or boundary-odd and that its boundary-parity is
the opposite of the boundary parity of f. 0

The following now completes our proof of the Brouwer Fixed Point Theo-
rem.

Proof of the No-Retraction Theorem. It suffices to prove the No-Retraction
Theorem for any choice of a disk instead of D2 (use an argument similar to
Exercise 3.8.6). We will prove the No-Retraction Theorem for a 2-simplex
A C 1182 that is an equilateral triangle with sides of length 1. Suppose that
the No-Retraction Theorem were false for it, so that there is a continuous map
r: A -+ caA such that r(x) = x for all x E 8A; we will derive a contradiction.
Since A is compact it follows from Exercise 1.5.5 that the map r is uniformly
continuous (see Exercise 1.3.7 for the definition of uniform continuity). In

particular, we can find some number S > 0 such that if x, y E A are any two
points such that lix - y11 < S then IIr(x) - r(y)ll < g. As remarked above, we
can now find a shellable subdivision K of A such that the distance between any
two points in a single simplex of the subdivision is less than S.

We now define an SL map L: I K I A C 1182 as follows. Pick three points
a' E Int(b, c), b' E Int(a. r) and c' E Int(a, b) that are not the images under
f of any 0-simplices of K and that are within 1 /8 of the midpoints of 1-faces
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of 0 (given that there are only finitely many 0-simplices in K such a choice of
points is always possible). See Figure 3.8.5. Divide a0 into six line segments
using the points a, c', b, a', c and Y. Then for each 0-simplex v of K let L(v)
equal a, b or c, respectively, if r (v) is contained in one of the six line segments
in I Bd KI that has a, b or c, respectively, as one of its endpoints. (Since L(v)
cannot be one of a', b' or c' this definition is unambiguous.) Extend L affine
linearly over the 1-simplices and 2-simplices of K. We will show that L is
boundary-odd and interior-even, a contradiction to Lemma 3.8.5.

b

A

Figure 3.8.5

We first need to show that L(I KI) C a0. It is straightforward to see that
L sends any 0-simplex or 1-simplex of K into aA; the only question concerns
the 2-simplices of K. Let q = (p, q, s) be a 2-simplex of K. If two of the
vertices of q are mapped to the same vertex of 0 then L(q) C ao, so assume
that all three vertices of q are mapped to distinct vertices of A. Without loss of
generality assume that L(p) = a, L(q) = b and L(s) = c. By choice of K it
must be the case that Il r(p) - r(q)II < It is not hard to verify that r(p) and
r(q) are therefore both in (a, b), and are both within 1/8 of c', and hence within
1/4 of the midpoint of (a, b). Since IIr(p) - r(s)II < and llr(q) - r(s)II <
it now follows that r(s) cannot be in (b'. c) U (a', c), a contradiction to the fact
that L(s) = c. We therefore deduce that L(IKI) C ao. In particular L is
interior-even.

Next, we can divide the I-spherea I K I into three arcs, namely a I K I fl (a, b),
a I K I fl (b, c) and a I K I fl (c, a). It is straightforward to verify from the definition
of L that L maps each of these arcs into itself, and it fixes the endpoint of each
of the arcs. It is not hard to see that Exercise 3.8.2 applied to each of these arcs
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implies that L is boundary-odd. This completes the proof. 0

Exercises

3.8.1*. Let K be a simplicial disk.

(i) Show that K is a 2-complex.

(ii) Show that every 1-simplex of K is the face of one or two 2-simplices, and
that the underlying space of the link of every 0-simplex of K is either an arc or
a 1-sphere.

(iii) Show that the collection of simplices Bd K is a subcomplex of K and
I Bd KI = aIKI.

(iv) Show that part (ii) of this exercise is not an "if and only if" statement, that
is, there are 2-complexes which satisfy the criteria in part (ii), and yet do not
have underlying spaces that are disks.

3.8.2*. This statement is the one-dimensional analog of Lemma 3.8.5. Let
ao < ai < . . . < ap be real numbers, and let f: [ao, ap] --> [0, 1] be a map
such that for each i E 11, ... , p) the value of f (a;) is either 0 or 1, and the
map f I[a;_1, a;) is affine linear. Show that if f (ao) = f (ap) then [0. 1] is the
image of an even number of the intervals [a,_1, a;], and if f (ao) # f (ap) then
[0, 11 is the image of an odd number of the intervals [a,_1, a; I.

3.8.3. Does every continuous map T2 -+ T2 have a fixed point? What about
continuous maps S2 -+ S2? (The question of whether a given continuous map
of a surface (or any simplicial complex) to itself has a fixed point is treated by
the Lefschetz Fixed Point Theorem; see [MU3, p. 125] for example.)

3.8.4*. Our goal is to show that the 1-sphere C = S' x 10) C S' x R is not
contained in any subset of S' x R homeomorphic to int D2; fill in the details of
each step.

Step 1: Suppose to the contrary that C is contained in a subset of S' x R that is
homeomorphic to int D2. Show that C is the boundary of a disk B in S' x R.
Let f : D2 --* B be a homeomorphism

Step 2: Show that there is a homeomorphism H: S' x R -+ R2 - 02 such that
H(C) = C.
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Step 3: Show that the homeomorphism H o f IC: C -- C can be extended to a
homeomorphism G: R2 - 02 -o- R2 -02-
Step 4: Consider the map G-' o H o f , and derive a contradiction.

3.8.5*. Show that the surfaces R2 and S' x Rare not homeomorphic.

3.8.6*. Let B C R" be a disk. Show that the Brouwer Fixed Point Theorem
holds as stated if it holds with B replacing D2.

Endnotes

Notes for Section 3.3

Although going from a simplicial map of simplicial complexes to a continuous
map of the underlying spaces is simple (see Lemma 3.3.5), going in the other
direction is much trickier. Given an arbitrary continuous map from one under-
lying space to another, it would be very unlikely that this map was induced by
a simplicial map, since an arbitrary continuous map is unlikely to be affine lin-
ear on simplices. Continuous maps can, however, be approximated arbitrarily
closely by simplicial maps on subdivisions of the original complexes, a result
known as the Simplicial Approximation Theorem (see [MU3, §16]).

Notes for Section 3.4

(A) An alternative proof of Theorem 3.4.1, making use of the Jordan Curve
Theorem (Corollary 2.2.5 (i)) rather than Invariance of Domain (Theorem 2.2.1),
can be found in [MO, Chapter 4].

(B) A very efficient proof of Theorem 3.4.5 (i) is found in [TH]).

Notes for Section 3.5

There is a disagreement among various authors about whether Euler was the
first to discover the Euler characteristic, or whether Descartes (who lived well
before Euler) had been aware of the Euler characteristic. In [F-F] it is argued
that Descartes had been aware of the Euler characteristic, whereas in [S-F, §4]
it is argued otherwise; a good survey of this argument is in [FE].
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Notes for Section 3.6

There are a number of different proofs of the classification of compact connected
surfaces (Theorem 2.6.7). One standard method is given in [MS 1]. Another
proof is via Morse Theory, as in [HR, Chapter 91. An efficient recent proof
using some ideas from graph theory is found in [TH]. The first rigorous proof
of the classification theorem is often said to be in [BR], though [MS I) raises
some question in this matter.

Notes for Section 3.7

There are a number of alternative approaches to defining curvature in simplicial
surfaces. The most well-known of these is given in [BA1], [BA2] and [BA3].
Other approaches with a geometric flavor are in [C-M-S], [YU] and [BL], while
combinatorial approaches can be found in [GR2] and [MC] among others. All
these approaches are equivalent to the angle defect when applied to simplicial
surfaces, but some can also be used with arbitrary simplicial complexes in all
dimensions.

Notes for Section 3.8

(A) The Brouwer Fixed Point Theorem has many proofs, some using alge-
braic topology (for example [MU3, §211 and [MS2, p. 74]), and others using
advanced Calculus (for example [M14]). One of the most geometric elementary
approaches is via the Sperner Lemmas, as in [LY].

(B) Not only is the Brouwer Fixed Point Theorem an inherently interesting
geometric result, but it is also of interest to a number of applications such as
economics (see [DE] or [CS]).



CHAPTER IV

Curves in R3

4.1 Introduction

Though our main topic of concern is surfaces, prior to studying smooth surfaces
we take a small detour through the study of smooth curves in R3 to develop
some important tools. Our treatment of curves will be brief; more about curves,
including such results such as the pretty Milnor-Fary Theorem, can be found
in [M-P] or [DO1 ].

For the rest of the book we will be in the realm of differentiable functions.
Section 4.2 reviews some basic facts concerning such functions, including the
Inverse Function Theorem and some existence and uniqueness theorems for the
solutions of ordinary differential equations, which play a foundational role for
smooth surfaces.

4.2. Smooth Functions

We start with some assumptions about differentiable functions.

Definition. Let U c R" be a set, and let F: U -+ Rm be a map. We say F is
smooth if

(1) the set U is open in R";

(2) all partial derivatives of F of all orders exist and are continuous.
We can write F using coordinate functions as

F1 (x)

F(x)

Fm(x)

XI

where x = ; ) and F1, ... , Fm: U -+ R are smooth functions. The
x
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Jacobian matrix of F is the matrix of partial derivatives

at:, aF,
ax, ... ar.

DF =
F. aF.
L,

...
OX.

The openness of the set U in the above definition will often be unstated,
but will be assumed nonetheless. The following definition is the smooth analog
of the notion of homeomorphism.

Definition. Let U, V C R be open sets. A function f : U -+ V is a diffeo-
morphism if it is bijective, and if both f and f -I are smooth.

If f : U -+ V is a diffeomorphism then the Jacobian matrix Df is non-
singular at each point in U (see Exercise 4.2.2).

We now turn to the Inverse Function Theorem and differential equations;
the reader should feel free to skip this material until it is needed is subsequent
sections. The Inverse Function Theorem addresses the question of whether
a smooth function f : U I8" has a smooth inverse (that is, whether it is a
diffeomorphism). The one-dimensional case is simple. Let f : J -+ R be a
smooth function for some open interval J. If f'(xo) 96 0 for point xo E J, then
the function is either strictly increasing or strictly decreasing near xo, and it
follows that near xo the function has an inverse. Of course, having f'(xo) # 0
does not imply that the whole function f has an inverse, but only that the
function restricted to some (possibly very small) open neighborhood of x0 has
an inverse. Since the graph of an inverse function is simply the reflection in
the line y = x of the original graph, we see that if f'(xo) 96 0 then the inverse
function of f restricted to a neighborhood of f (xo) will also be smooth. The
Inverse Function Theorem is the higher-dimensional analog of what we have
just discussed. The condition f'(xo) 76 0 is replaced by the condition that the
Jacobian matrix has non-zero determinant at the given point.

Theorem 4.2.1 (Inverse Function Theorem). Let U C R" be an open set and
let F: U -+ W' be a smooth map. If p E U is a point such that detDF(p) 54 0,
then there is an open set W C U containing p such that F(W) is open in R"
and F is a diffeomorphism from W onto F(W).

See [SKI, p. 34] and [BO, p. 42] for proofs, as well as other information
concerning the Inverse Function Theorem. We will also need the following
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result, the proof of which is lengthy and might be skipped. This theorem is a
special case of a more general result known as the Rank Theorem (see [BO, p.
47]); another special case of the Rank Theorem is given in Exercise 4.2.1.

Theorem 4.2.2. Let U C R2 be an open set and let f : U -+ R3 be a smooth
map. If p E U is a point such that the matrix Df (p) has rank 2, then there
are open subsets W C U and V C R3 containing p and f (p) respectively
and a smooth map G: V -> R3 such that G(V) is open in R3, that G is a
dfeomorphism from V onto G(V), that f (W) C V and that

x
Go f(1 yl)= y

\ 0

for all (Y") E W.

Proof of Theorem 4.2.2. Let U C R2 be defined by U = {x - p I X E U).
We define a function T : U--* R3 by 7(v) =f (v + p) - f (p) for all v E U.
Observe that U is open in R2, that f is smooth, that D7(v) = Df (v + p), that
02 E U, that 7(02) = 03 and that D7(02) has rank 2. If the function f is
given in coordinates by

_ f1(u)
f 2(u) ,

.f3(u)

where u then the Jacobian matrix off is

Df =
8ui 7u2

ale
au1 iiu2

aI, th
8ui 7u2

Since the rank of the matrix D7(02) is 2, it follows from standard results in
linear algebra that D7(02) has a 2 x 2 submatrix with non-zero determinant.
By relabeling the coordinates of R3 if necessary, we may assume without loss
of generality that the top two rows of D f (02) have non-zero determinant, that
is

j =o2
(

Iu=o2 u
det 1 960. (4.2.1)

aul 1u=02 5k=02
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We now define a function H: U x IR --+ R3 by

ul 0; f'(u)
H( u

u3

2 )=f(«)+ u0 = _f2(it)
(73:(a)+ u3

where a is as above. The domain of H is an open subset of 1R3, and since
the coordinate functions off are smooth, so is the map H. Further, note that
H(O3) = 03. The Jacobian matrix of H is

all 43112

DH = ''
1u, 1112

17f3 af3
au, 1u2

It follows from Equation 4.2.1 that det DH(O3) # 0. Applying the Inverse
Function Theorem to H at the point 03, we conclude that there is an open
set T C U x R containing 03 such that H(T) is open in R3 and H is a
di ffeomorphism from T onto H (T). Observe that 03 E H (T).

We now define the sets V and W and the map G as follows. Let V =
{x + f (p) I X E H(T)). Note that V is open in 1R3 and that f (p) E V. Next,
define

W= f-' (V) n {x + p I X E H(T) n ]R2}.

Observe that W is open in 1R2, that p E W and that f (W) C V. We now define
G: V -)- 1R3 by

P1

G(v) = (HIT)-'(v - f (P)) + Pz

0

for all v r= V, where p =
nz

). Since HIT is a diffeomorphism so is (HIT)-',
and it follows that G(V) is an open subset of JR3 and that G is a diffeomorphism
from V onto G(V).

From the definitions off and H it follows that f (v) = f (v - p) + f (p) for
/ 11,

allvEU,andthatf((u'))=H(1 u2 )forall(u2)EU.Foreach (V)E W,
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we now compute

l Pi
Gof((y))=H-'(.f((x))-f(P))+

P2

(0)
Pi=H-'(7((Y)-P)+f(P)-f(P))+ Pi
0

Pi
H-'(7( XY pp)

)) + P2- 2 0

X - pi pt x
=H-'(H( Y - P2 )) + P2 = Y .

00 0 0
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The following result can be deduced from the above theorem.

Corollary 4.2.3. Let U C R2 be an open set and let f : U --* R3 be a smooth
map. If p E U is a point such that the matrix Df (p) has rank 2, then there is
an open set W C U containing p such that f IW is injective, and Df (q) has
rank 2forallq e W.

Proof. Exercise 4.2.5. 0

The other foundational material we need is the following three existence and
uniqueness theorems for the solutions of ordinary differential equations. The
first of these results is the standard such existence and uniqueness theorem; the
second is a stronger version, which shows how solutions of ordinary differential
equations depend upon the initial conditions; the third is a theorem concerning
the special case of linear differential equations, where we have a slightly better
result than for arbitrary differential equations. See [LA2, Chapter XVIII] for
proofs of all three theorems, or [HZ] for the first two.

Theorem 4.2.4 (Existence and uniqueness of solutions of ordinary differ-
ential equations). Let U C R" be an open set, let F: U -+ R" be a smooth
map and let to E R and vo E U be points. Then there is a number e > 0 and a
smooth map c: (to - e, to + c) - * U such that

c'(t) = F(c(t)) and c(to) = vo (4.2.2)
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for all t E (to - E, to + e); if c (to - S, to + S) --+ U is any other map that
satisfies Equation 4.2.2 for some S > 0, then c(t) = c(t) for all t in the
intersection of the domains of the two maps.

Theorem 4.2.5. Let U C R" be an open subset, let F: U -+ R" be a smooth
map and let to E R and vo E U be points. Then there is a number c > 0, an open
subset V C R" containing vo and a smooth map C: (to - E, to + E) x V -* U
such that

C'(t, v) = F(C(t, v)) and C(to, v) = v

for all (t, v) E (to - E, to +E) X V.

Let M"" (R) denote the set of real n x n matrices.

Theorem 4.2.6. Let (a, b) be an open interval, let A: (a, b) -* M"" (R) be a
smooth map and let to E (a, b) and vo E R" be points. Then there is a unique
smooth function c: (a, b) -s IR" such that

c'(t) = A(t)c(t) and c(to) = vo

for all t E (a, b).

Exercises

4.2.1*. Let c: (a, b) -+ R3 be a smooth map. Suppose that p E (a, b) is
a point such that the matrix c'(p) 96 0. Show that there is a number E > 0,
an open subset V C 1R3 containing c(p) and a smooth map G: V R3 such
that G(V) is open in R3, that G is a diffeomorphism from V onto G(V), that
c((p - E, p + E)) C V and that

t
Goc(t)= 0

0

for all t E (p - E, p +E).

4.2.2*. Let U, V C R" be open sets, and suppose f : U -* V is a diffeomor-
phism. Show that Df (p) is a non-singular matrix for all p E U.

4.2.3*. Let U, V C R" be open sets, and suppose f : U -+ V is a smooth
bijective map. Show that if Df (p) is a non-singular matrix for all p E U, then
f is a diffeomorphism.
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4.2.4*. Let c: (a, b) -+ R2 be a smooth function. Suppose that the tangent
vectors to c are never the zero vector and are never parallel to the y-axis. Show
that the image of c is the graph of a function of the form y = f (x) for some
smooth function f : (p, q) -+ R.

4.2.5*. Prove Corollary 4.2.3. State and prove the analog of this corollary for
smooth functions c: (a, b) -+ R3.

4.2.6. Give an example of a function G: 1112 -+ R2 that has non-zero Jacobian
matrix at all points, and yet is not injective in every neighborhood of any point.

4.3 Curves in R3

The concept of a curve in R3 is intuitively quite simple; imagine a twisted piece
of string, as in Figure 4.3.1. A smooth curve is, pictorially, one that bends nicely
and has no kinks or corners. To deal with smooth curves rigorously, however,
we need to think of a curve slightly differently; rather than thinking of a curve as
an object that simply sits in R3, we should view it as the path of a moving object.
Every point on the curve corresponds to the location of the moving object at
a particular time. We could imagine traversing the same path at a variety of
different speeds, not to mention changing direction; we will deal with this issue
shortly. Finally, rather than thinking about the points on the curve as simply
points in R3, it is technically more useful to think of points on a curve as the
endpoints of vectors starting at the origin. Putting these observations together
we arrive at the following definition.

Figure 4.3.1
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Definition. A smooth curve (or simply curve) in R3 is a smooth function
c: (a, b) -+ lR , where (a. b) is an interval (possibly infinite) in R. For each
t E (a, b) the velocity vector of the curve at t is the vector c'(t), and the speed
at t is the real number IIc'(t)p. A curve is unit speed if IIc'(t)tI = I for all
t E (a, b).

Example 4.3.1. Consider the curve c: (0, 1) --> Q83 given by

cost
c(t) = sins

f2

Then
-sins

c'(t) = cost and III (t)II = 1 +412.
Zt

so that c is not unit speed. 0

The above definition is actually not quite enough to insure that the image
of the curve will look geometrically "smooth." Imagine a bug flying around in
R3, and assume that the flight is smooth (in the sense of infinite differentiabil-
ity). While maintaining smooth motion the bug could slow down till it stops
altogether, turn 90° in some direction, and then take off again, gradually accel-
erating from its initial speed of zero. The path taken by the bug after executing
this maneuver has a corner in it, even though its flight could be described as
a smooth curve as we have defined it. The following definition eliminates the
problem, and describes the class of curves with which we will be working.

Definition. Let c: (a, b) --; R3 be a smooth curve. The curve c is regular if
c'(t) 96 0 for all t E (a, b), that is, if UUc'(t)II # 0 for all t E (a, b).

Example 4.3.2. The curve in Example 4.3.1 is regular, since IIc'(t)II is never
zero. 0

The following definition definition is the formal relation of "different ways
of traversing a string."

Definition. Let c: (a, b) -> 1{83 and F. (d, e) -+ 1183 be smooth curves. We say
that F is a reparametrization of c if there is a diffeomorphism h: (d, e) -+ (a, b)
such that = co h.

Observe that a curve and any reparametrization of it have the same image
set in 1183.
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Example 4.3.3. Let c: (1, 5) -- R3 and c: (0, 2) -+ R3 be defined by

1t2+3 4t2+4t+4
c(t) t-7 and Z(t) 2t-6

sin t sin(2t + 1)

Then c = c o h, where h: (0, 2) -* (1, 5) is given by h(t) = 2t + 1. It is
straightforward to verify that h is smooth, bijective, and has a smooth inverse,
so that h is a diffeomorphism. 0

The following lemma shows that any regular curve can be reparametrized
in a particularly simple way. The proof of the lemma might at first appear to be
pulled out of thin air, though there is actually an intuitive idea behind it, namely
that a curve will be unit speed if the parameter corresponds to arc-length along
the curve.

Proposition 4.3.4. Let c: (a, b) -+ R3 be a regular curve.

(i) There is a reparametrization of c that is a unit speed curve.
(ii) Let coh 1 and coh2 be unit speed reparametrizations of c, for appropriate

functions hi: (di, ej) --> (a, b) and h2: (d2, e2) --* (a, b). Then the
functionh2 t o hi: (d1, e1) --+ (d2, e2)hastheformh2 toht(s) = fs+k
for some constant k.

Proof. (i) Pick some point to E (a, b). Define a function q: (a, b) --> R by

q(t)IIc'(u)Ildu.

By the Fundamental Theorem of Calculus the function q is smooth and q'(t) =
IIc'(t)II > 0, the inequality following from the regularity of c. Hence q is a
strictly increasing function, and q is therefore a bijective map from (a, b) onto
its image. The image of q will be the interval (d, e), where

fp

e =
jba

d = f Ilc'(u)II du . IIc'(u)II du.
0

et h: (d, e) (a, b) be the inverse function of q. Since the derivativeL
of q is never zero it follows from a standard theorem in Calculus that It is also
smooth, and h'(s) = 1/q'(s) for all s E (d, e). Let c (d, e) -+ R3 be defined
by c = c o h. By definition c is a reparametrization of c. Further, for each



176 IV. Curves in R'

S E (d, e) we have

1

2'(s) = c'(h(s)) h'(s) = c'(h(s))
q'(h(s))

= c'(h(s))
Ilc'(h(s))II

Hence Ilc'(s)II = I for all s E (d, e).

(ii) For each i = 1, 2 we have

1 = II(c o h;)'(s)II = IIc'(hi(s))II Ih;(s)I

for S E (d;, e;). Hence

1 1 _
hi (s) = t IIc'(ht(s))II

_
t IIc'(h2(h2' o hi(s)))II

fh2(h2 o hi(s))

for each s E (d1 , e2), and thus

(h2' ohi)'(s) _ (h2')'(hi(s))hi(s) _
hf (s) =±1.

h2(h2 o hi(s))

Since h2' o h 1 is smooth, then it is either constantly I or constantly -1. The
desired result now follows. O

Though in theory the proof of part (i) of the above lemma gives a procedure
for finding unit speed reparametrizations, in practice doing so is not always
possible since it involves computing integrals and inverses of functions.

Example 4.3.5. The unit right circular helix is the curve c: (-oo. oo) -+ IIt3
given by

cost
c(t) = sin t

t

See Figure 4.3.2. It is not hard to see that IIc'(t)II = . for all t. Choosing
to = 0, we have

0

and hence
th(t) = 2'

Thus our unit speed reparametrization is

I cos
F(t) = (c o h)(t) = sin T

7
0
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Figure 4.3.2

Suppose two smooth curves c: (a, b) - R3 and c (d, e) -+ R3 have the
same image. Can we realize F as a reparametrization of c? Although the situation
could be tricky if the curves were not injective, we do have the following lemma,
which will suffice for our purposes.

Lemma 4.3.6. Let c: (a, b) --* R3 and c (d, e) -), R3 be injective regular
curves with the same image. Then c is a reparametrization of c.

Proof. Since c is injective it must be a bijection onto its image, and hence there
is a function c-1: c((a, b)) -+ (a, b). Define the function h: (d, e) --* (a, b) by
letting h = c'1 o F. The function h is a bijection, and by Exercise 4.3.11 it is
smooth. Doing this whole procedure in the other direction also shows that h-t
is smooth. Evidently c = c o h, and thus F is a reparametrization of c. 0

We now calculate the length of the image of a curve, which for conve-
nience we will refer to as "length of a curve" It ought to be the case that the
length depends only upon the image of the curve, and not upon the particular
parametrization used. However, it is easier to make use of parametrizations in
our definition of the length of a curve, and then to show that the quantity defined
in fact does not depend upon the parametrization used. The idea is to approxi-
mate the image of the curve with a finite number of small straight line segments,
add up the lengths of the segments to get an approximate length of the curve,
and take the limit of these sums as smaller and smaller segments are used. In
the limit the sum becomes an integral, and the term IIc'(t)1I dt in the definition
below comes from the lengths of the line segments. Such argumentation does
not "prove" that our formula for the length of a curve equals our intuitive notion
of what is meant by the length of such curves; it really only pushes back where
the leap of faith is made.
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Definition. Let c: (a, b) --+ ]R3 be a smooth curve. The length of c is defined
to be the number Length(c) given by

b

Length(c) = j II(t) II dt,

provided the integral exists.

Example 4.3.7. Let c: (1, 2) -+ JR3 be given by

2
t23

C(1) = 1

t'

(4.3.1)

It can be computed that IIc'(t)II = t l + t 2 (observe that t > 0). The length
of c is thus

2 53/2 - 23/2
Length(c) = t l -+t 2 dt =

1 3
. 0

The following lemma says that our definition of the length of curves behaves
as we hoped it would with respect to parametrizations.

Lemma 4.3.8. Let c: (a. b) -* R3 be a smooth curve. If c (d, e) -+ J3 is a
reparametrization of c, then Length(c) = Length(c).

Proof. Exercise 4.3.6.

Exercises

4.3.1. Which of the following curves are regular?

(i) c: (-oo, oo) -+ ]R3 given by c(t) =
4

tint-t

(ii) d: (0, oo) -+ 1R3 given by d(t) _ ( 5

2t

In

t-2#

4.3.2. The curve c: (-oo, oo) --> 1R3 defined by

Bek' cost
c(t) = Be'' sin t

0
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is called the logarithmic spiral; this curve appears to appear in nature, describ-
ing, for example, the shape of a nautilus shell. Show that this curve has the
property that the angle between the vector c(t) and the vector c' (t) is a constant.
(This property in fact characterizes the logarithmic spiral.)

4.3.3*. Let c: (a, b) -+ R3 be a smooth curve. Show that there is a diffeo-
morphism h: (d, e) -+ (a, b) for some interval (d, e) in R such that c = c o h
is unit speed and h'(t) > 0 for all t E (d, e).

4.3.4. Find unit speed reparametrizations of the following curves.

(i) c: (0, oo) --> R3 given by c(t) _ ? [ [It
/2- 1n#

(ii) The logarithmic spiral in Exercise 4.3.2.

4.3.5. The logarithmic spiral can be broken into segments from t = 2nir to
t = 2(n + l)ir for each n E Z. Find the length of such a segment. What is the
ratio of the length of one such segment to the length of the previous segment?
Intuitively, why would a nautilus shell would have this property?

4.3.6*. Prove Lemma 4.3.8.
y,

4.3.7. Let z = x: and y = ri be points in R3. Choose a parametrization

of the line segment from x to y and calculate the length of this curve. (There are
many such parametrizations, so chose one you think will be most convenient to
work with.)

43.8. Show that the circumference of a circle of radius r is 2,rr.

4.3.9. Let y = f (x) be a function f: (a, b) -* R. The graph of this function
can be parametrized by the curve c: (a, b) -+ R3 given by

t
c(t) = f (t)

0

Find a formula for the length of this curve. How does it compare to the standard
formula for arc-length found in most Calculus texts?

4.3.10*. Let c: (a, b) -+ R3 be a regular curve. Suppose that cI[p, q] is
injective for some closed interval [p, q] C (a, b). Show that there exists a
number 4E > 0such that cI(p-E,q+E)isahomeomorphismfrom (p-E,q+E)
to c((p - E, q + E)).
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4.3.11*. Prove that h = c-1 o Fin the proof of Lemma 4.3.6 is smooth.

4.4 Tangent, Normal and Binormal Vectors

The tangent vector to a curve is the vector that best approximates the curve at the
point of tangency. See Figure 4.4.1. Given a smooth curve c: (a, b) -s R3, the
tangent vector at point t E (a, b) turns out to be nothing other than the velocity
vector c'(t) defined previously. However, whereas we would like to think of a
tangent vector as "starting" at the point of tangency on the curve, in our present
situation the tangent vector is translated so that it starts at the origin. The use
of the following definition will become apparent shortly.

Figure 4.4.1

Definition. Let c: (a, b) -+ R3 be a smooth curve. For each t E (a, b) such
that IIc'(t) II # 0 the unit tangent vector to the curve at t is the vector

T(t) =
c'(t)

IIc'(t)II

If a curve is regular then the unit tangent vector is defined at all points.
Also, if a curve is unit speed then the unit tangent vector is just the velocity
vector.

Example 4.4.1. Let c: (-oo, oo) --> 123 be given by

1

c(t) t

(t2/2)
Then

0
0

I

c'(t) = 1 . IIc (t)II = 1 + t2 and T(t) = 7177
t = 0
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Consider a regular curve c: (a, b) -+ R3. Although the image of the curve
need not lie in a single plane, at any point c(t) on the curve there is a plane
that is the closest thing to a plane containing the curve. See Figure 4.4.2. The
unit tangent vector to the curve will be contained in this plane; we need to find
another unit vector contained in the plane and linearly independent from the
unit tangent vector. To find this other unit vector, we start by noting that the
unit tangent vector function T: (a, b) -+ R3 is also smooth. Observing that
II T (t) II = 1 for all t, we have

(T(t), T(t)) = 1,

where (,) is the standard inner product in R3. Taking the derivative of both
sides, and using the standard properties of derivatives and inner products (see
Lemma 5.6.1), we deduce that

2(T'(t), T (t)) = 0.

Thus T'(t) is orthogonal to T (t) for all t. If T'(t) = 0 then this whole business
does not do us much good, so we will generally assume that T'(t) # 0. (This last
assumption rules out the usual parametrization of a straight line, for example.)
We can now define a new vector that is always orthogonal to T (t).

Figure 4.4.2

Definition. Let c: (a, b) -)- 1R3 be a regular curve. For each t E (a, b) such
that IIT'(t)110 0, the unit normal vector to the curve at t is the vector

N(t) = T'(t)
IIT'(t)II
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Whenever the vectors T (t) and N(t) are both defined, we consider the
plane that they span to be the plane that best fits the curve (referred to as the
"osculating plane"), just as the tangent line is the line that best fits the curve.

Example 4.4.2. We continue Example 4.4.1, computing

0

V(t) _ IIT'(t)II = 1 +t2
and

0

It is often inconvenient to verify whether II T'(t) II 96 0, since T (t) is often
a fraction with a complicated denominator. The following lemma makes life a
bit easier.

Lemma 4.4.3. Let c: (a, b) -* R3 be a regular curve. For each t E (a, b) the
following are equivalent:

(1) IIT'(t)II 0;
(2) The vectors c'(t) and c"(t) are linearly independent;
(3) c'(t) x c"(t) 96 0.

Proof. Exercise 4.4.3. 0

For convenience we adopt the following terminology.

Definition. A regular curve c: (a, b) -). R3 is strongly regular if any of the
three equivalent conditions in Lemma 4.4.3 holds for all t E (a, b).

Example 4.4.4. For the curve in Example 4.4.1 we compute

0 (2)
C11(t) = 0 and c'(t) x c"(t) = 0,

2 0

and thus the curve is strongly regular. 0

For every t such that IIT'(t)II 0, we have now defined two orthogonal
unit vectors T(t) and N(t). Given that our curve is in R3, and that three
orthonormal vectors in R3 form a basis, we complete the picture by defining for
each appropriate t a third unit vector orthogonal to both T (t) and N(t).
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Definition. Let c: (a, b) --> R3 be a regular curve. For each t E (a, b) such
that 11T'(t)II # 0, the unit binormal vector to the curve at t is the vector

B(t) = T(t) x N(t).

A few observations about the above definition. First, except for the sign,
there is really no choice in the definition of B(t) if we want the set of vectors
(T(t), N(t), B(t)} to form an orthonormal set. Second, the definition of B(t)
makes crucial use of the fact that our curve is in R3, since the cross product is
only defined in three dimensions (in higher dimensions, by contrast, there are
many possible choices for a unit vector orthogonal to any two given vectors).
The vectors IT (t), N(t), B(t)} are defined for all tin the domain of a strongly
regular curve. These three vectors are often called the Frenet frame of the
curve.

Example 4.4.5. Continuing Example 4.4.1, we compute

B(t) = I+rr

X

I+r2 = 0)
r 1f-
0 0 l

1 -r

, 2211 l

The significance of the fact that B(t) turns out to be a constant in this example
will be clarified by Exercise 4.4.4. Q

It would be nice to have a simpler way to compute the Frenet frame of a
curve, since the often complicated denominator in the expression for T(t) can
make finding the necessary derivatives quite messy. An alternate method will
be given in Lemma 4.5.7; although the statement of the relevant parts of this
lemma could be given now, some additional concepts and results are needed
prior to the proof of the lemma.

Exercises

4.4.1. For each of the following curves, determine whether the curve is strongly
regular, and, if so, find T, N and B.

(i) The circle in the x-y plane of radius 2 centered at the origin which we
2cos(t/2)

parametrize by the curve g: (-co, oo) -+ R3 given by g(t) =
0
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(ii) c: (-oo, oo) -I. 1R3 given by c(t) = (t);
In t

(iii) d: (0, oo) -- R3 given by d(t) = r

0

4.4.2*. Let c: (a, b) -- R3 be a regular curve lying entirely in a plane. Show
that whenever T(t) and N(t) are both defined they are parallel to the plane
containing the curve.

4.4.3*. Prove Lemma 4.4.3.

4.4.4*. Let c: (a, b) -+ R3 be a strongly regular curve whose image lies
entirely in a plane. Show that B(t) is a constant.

4.5 Curvature and Torsion

If we look at the image of a curve in R3, as in Figure 4.5.1, we see that there
are points on the curve at which the curve is bending more (point A) and others
at which the curve is bending less (point B). We wish to quantify this bending.
As in Section 3.9, v '%egin with a discussion of the expected properties of
curvature before stating our definition. Curvature ought to be an assignment of
a number to each point of the curve to tell us how much the curve is bending at
that point. Although curvature should only depend upon the image of the curve,
and not upon any particular choice of parametrization, it will be much more
convenient to assign the curvature to each value r in the domain of the curve
c: (a, b) -* IR3. Thus curvature will be a function of the form K: (a, b) -+ R.
The function K should be smooth, and it should have the property that whenever
the image of the curve is a straight line in a neighborhood of a point c(t), then
K (t) should be zero.

Consider the velocity vector to a curve c: (a, b) -* R3. The faster the
velocity vector changes direction as we move along the curve, the more the curve
appears to be bending. Thus the measure of curvature ought to be something
like the derivative of the velocity vector, or, better, the length of the derivative
of the velocity vector (since curvature ought to be a scalar). The problem with
this proposed definition is that it does depend upon the parametrization of the
curve, since if we traverse a curve faster the derivative of the velocity vector
will be larger. To overcome this problem, we first look at unit speed curves,
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Figure 4.5.1

185

which gets rid of the problem of traversing a curve at differing speeds. For the
following definition recall that for a unit speed curve c: (a, b) -+ R3 the unit
tangent vector T (t) equals the velocity vector c'(t).

Definition. Let c: (a, b) -+ R3 be a unit speed curve. For each t E (a, b) the
curvature of the curve at t is the number

K(t) = IIT'(t)II = IIc"(t)II

Observe that curvature is a smooth function K: (a, b) --). R, and that
K(t) > 0.

Example 4.5.1. (1) Any straight line in R3 can be parametrized by c: (-oo, co) ->
R3 of the form

alt -}- b,
c(t) = at + b2 I;

(a3t + b3

the added condition that a , + a2 + a3 = I insures that this curve is unit speed.
Clearly c"(t) is the zero vector for all t, so K(t) = 0 for all t. Hence we see that
condition (2) for curvature suggested above is satisfied for this parametrization
of a straight line.

(2) The circle of radius 2 in the x-y plane with center at the origin can be
parametrized by the curve d: (-oo, oo) -+ R3 given by

2cos
d(t) = 2sin i

0
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It is seen that this curve is unit speed. We then compute

f- sin i -cos i
d'(t) = cos i and d"(t) -sin i

0 2 0

It follows that K (t) =
z

for all t. The symmetry of the circle makes it reasonable
that the curvature to be constant. Q

The curvature function need not be constant, as seen in Exercise 4.5.1 (iii).
For a non-unit speed curve, we use reparametrization to reduce the problem

to the previous definition.

Definition. Let c: (a, b) -* R3 be a regular curve. Let c = c o h be a unit speed
reparametrization of c for some diffeomorphism h: (d, e) -+ (a, b), and let a
be the curvature function for F. For each t E (a, b) the curvature of the curve
c at t is the number K(t) = K(h-I (t)).

The following lemma shows that the choice of unit speed reparametrization
in the above definition does not affect the computation of curvature.

Lemma 4.5.2. Let c: (a, b) --* R3 be a regular curve, and let c o h 1 and
c o h2 be unit speed reparametrizations of c, where h1: (d1, e1) -+ (a. b) and
h2: ((12, e2) -+ (a, b) are diffeomorphisms. If K1(t) and K2(t) are the curvature
functions for c o h 1 and c o h2 respectively, then

KI(hI 1(t)) = K2(h21(t))

for all t E (a, b).

Proof. It follows from Proposition 4.3.4 (ii) that h21 o h 1(s) = ±s + k for
some constant k. Thus h 1(s) = h2(±s + k), so c o h 1(s) = c o h2(±s + k).
Differentiating twice yields (c o h I)"(s) = (c o h2)"(±s + k), so K1(s) _
K2(±S + k). If we let s = hi I(t) then K1(hi I(t)) = K2(±hI 1(t) + k). It is
straightforward to verify that h21(t) = ±h

1
1(t) +k, and the result follows.

Example 4.5.3. We compute the curvature for the curve in Example 4.3.5.
Using the formula obtained for F(t), we see

sIn) -cos(t/f)(
2 2

2"(t) = cos t2 (t) _ sing f and K(t) = 2. 0

7 0
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Finally, we need to verify that curvature is a function of the points in the
image of the curve in R3, rather than a function of the particular choice of
parametrization. We will need to assume, however, that our parametrization is
injective, since at a point where the curve intersects itself there is not necessarily
a single value for curvature (this problem does not arise when curvature is a
function of the parametrization). Thus, we need to show that if we have two
injective parametrized curves with the same images, then they yield the same
curvature at each point in the image. This fact can be seen to follow from
Lemmas 4.3.6 and 4.5.2; details are left to the reader.

It would be nice to have a formula for curvature for arbitrary regular curves
that does not involve reparametrization (which can be difficult to carry out in
practice). Such a formula will be given in Lemma 4.5.7. For later use we note
that, combining the definitions of N (t) and K Q), we obtain

T'(t) = K(t)N(t). (4.5.1)

Though curvature tells us a great deal about curves, it does not tell us all we
need to know. There are different curves with the same curvature functions, for
example the curves in part (2) of Example 4.5.1 and Example 4.5.3. Observe
that one of these curves is contained in a plane whereas the other is not. What
we wish to measure is the extent to which a curve is twisting out of the plane
spanned by T (t) and NQ) for each t in the domain of the curve. Just as the
bending of the curve is measured by the change in T (t), using the length of T'(t),
it seems plausible that the change in the length of B'(t) will tell us something
about how the curve is twisting out of the plane spanned by T(t) and N(t).
The quantity 11 B'(t) 11 almost works, but like curvature it would always be non-
negative, and it turns out that in the present case we can do a bit better and get
a signed quantity. What we need is the analog for B'(t) of Equation 4.5.1.

Recall the proof of the fact that T'(t) is perpendicular to T (t). Since B(t)
is also a unit vector, we can similarly deduce that B(t) is perpendicular to B(t).
Since {T (t), N(t), B(t)} form an orthonormal basis for R3 for all t at which all
three vectors are defined, it follows that B'(t) is a linear combination of T (t) and
N(t). Next, taking the derivative of both sides of the equation (B(t), T(t)) = 0
yields

0 = (B'(t), T (t)) + (B(t), T'(t))
_ (B'(t), T(t)) + (B Q), K(t)N(t)) = (B'(t), T(t)),

making use of Equation 4.5.1 and the fact that (B(t), N(t)) = 0. It follows that
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B'(t) is a multiple of N(t), which leads us to the following definition.

Definition. Let c: (a, b) -+ R3 be a strongly regular unit speed curve. For each
t E (a, b) the torsion of the curve at t is the unique real number r(t) such that

B'(t) = -r(t)NW. (4.5.2)

The minus sign in the above equation is chosen for later convenience.
Observe that r(t) = -(B'(t), N(t)), and thus torsion is a smooth function
r: (a, b) -+ R. Finally, note that Ir(t)I = IIB'(t)II, which is analogous to the
definition of IC (t), though torsion can be negative.

Example 4.5.4. (1) We continue Example 4.5.1 part (2). It is not hard to see
that

f- sin 2 - cos 2 0
T (t) = cos 2 , N(t) sin 2 , B(t) = 0

0 0 1

0
o for all t, and therefore r(t) = 0 for all t.Hence B'(t) _ (0)

(2) We continue Example 4.5.3, where our calculations refer to the unit speed
reparametrization F. It can be computed that

- sin(t f
2 - cos72- sin

T (t) cost '/2) N(t) = (_sin) B(t)= -cos
72 72

T 0 1

/ cost/f)
Hence B'(t) = T 1 _ sin(,/f)) for all t, and therefore r(t) = T for all I.

\ o
Now suppose we start with the mirror image of the unit right circular helix,

obtained by reflecting the unit right circular helix in the y-z plane, resulting in
the curve f : (-oo, oo) -+ R3 given by

- Cos t
f (t) = sins .

It can be found by a similar computation that the torsion for this curve is con-
stantly which is the negative of the torsion for the original helix. It is to
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detect such differences of handedness that we made sure to allow torsion to be
positive or negative. 0

Although the torsion functions in the above example are constant, because
we chose simple curves, torsion is not constant in general, as will be seen in
some of the exercises. Just as for curvature, torsion is independent of the choice
of parametrizations, and it can be computed for non-unit speed curves either by
reparametrization or by the formula that will be given in Lemma 4.5.7.

Consider Equations 4.5.1 and 4.5.2. You will notice that we are missing
a third equation, namely one giving the derivative of N(t). The following
theorem, which for completeness includes the two equations just mentioned,
completes the picture, and really sums up much of what there is to say about
curves in R3. For convenience we drop the argument t in the statement and
proof of the following theorem.

Theorem 4.5.5 (Frenet-Serret Theorem). Let c: (a, b) -> R3 be a strongly
regular unit speed curve. Then

T' = K N

N' -KT + rB
B' _ -r N.

Proof. Only the second equation remains to be proved. Just as we saw in
Section 4.4 that (T', T) = 0. the same argument shows that (N', N) = 0, since
N is a unit vector. Hence N' is a linear combination of T and B. If we write
N' = aT + bB, take the inner product of this equation with each of T and B,
and solve for a and b, we deduce that

N' = (N', T) T + (N', B) B.

Since (N, T) = 0, we compute

0 = (N, T)' = (N', T) + (N, T') = (N', T) + (N, K N) = (N', T) + K,

using Equation 4.5.1. Hence (N', T) = -K. Since (N, B) = 0, we can
similarly deduce that (N', B) = r. 0

The formulas in the above theorem are called the Frenet-Serret formulas.
An easy way of remembering these formulas is to write them

T O K 0 T
N = -K 0 r N
B 0 -r 0 B
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though this expression is not strictly meaningful because the terms T, N and B
are not numbers but column vectors.

A typical application of the Frenet-Serret Theorem is the following result.

Proposition 4.5.6. Let c: (a, b) -+ 1R3 be a strongly regular unit speed curve.
The following are equivalent:

(1) The image of c lies in a plane;
(2) B(t) is a constant vector;
(3) r(t) = O for all t E (a, b).

Proof. (1) (2). This follows from Exercise 4.4.4.

(2) (1). Let p E (a, b) be a point. We compute

= (T(t). B(1)) = 0.

using the fact that B(t) is constant. It follows that (c(t) - c(p). B(1)) is constant
for all t E (a, b). If we plug in t = p we deduce that this constant must be zero.
Hence c(t) - c(p) is perpendicular to the constant vector B(t), and therefore the
image of c lies entirely in the plane containing the point c(p) and perpendicular
to the constant vector B(t).

(2) .. (3). This follows immediately from the third of the Frenet-Serret equa-
tions. 0

Finally, we give the promised formulas for computing the Frenet frame,
curvature and torsion of a non-unit speed curve that avoids reparametrization.
Once again we drop the argument t in the following lemma.

Lemma 4.5.7. Let c: (a. b) -+ R3 be a strongly regular curve. Then
c,(i) T =

(ii) B =

dt (c (t) - c(p), B(t)) = (c'(t), B(t)) + (c(t) - c(p), B'(t))

IIc'II
C'XC"

Ilc' x c"II
(iii) N = B x T
(iv)

(v)

K =

r=

Ilc' x c"il
11C, 113

(c' x c" c"')
IIc'xc"II2.
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Proof. Part (i) is true by definition. We prove part (iv), leaving the other parts
to the reader as Exercise 4.5.6. Let c = c o h be a unit speed reparametrization
of c, where h is an appropriate diffeomorphism. Let g = h- 1, so that c =cog;
let T, N and B denote the Frenet frame for F. Then

c'(t) = Z'(g(t))g'(t) = T(g(t))g'(t).

and hence

We now have

and thus

11c'(1)II = IIT(g(t))II Ig'(t)I = W(t)I.

c"(t) = T' (9 (0) (g'(t ))2 + T (g(t )) g"(t )

= K(g(t))N(g(t)) (g'(t))2 + T (g(t)) g"(t)
.

c'(t) x c"(t) =g'(t)T(g(t)) x {K(g(t))N(g(t))(g'(:))2+T(g(t))g"(t)}

= K(g(t))B(g(t)) (g'(:))3.

Therefore

IIc (t) x c"(t)II = K(g(t))Ig'(t)I3 = K(g(t))IIc'(t)II3,

and hence

K(g(t)) =
IIc'(t) X C"(t)II

IIc'(t)113

The desired result now follows, since by definitionx(t) = ic(h-t (t)) = K(g(t)).

0

Exercises

4.5.1. Compute the curvature and torsion for the following curves.

(i) A circle of radius R (without loss of generality in the x-y plane, centered at
the origin).

(ii) c: (0, oo) -+ JR3 given by c(t) = i
ftnt

(iii*) The logarithmic spiral in Exercise 4.3.2.

(iv) d: (0, oo) -+ J3 given by d(t) = i (:2).
13
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4.5.2*. Let c: (a, b) -> 1R3 be a strongly regular curve. If A is a rotation matrix
for 1R3 (that is, A is an orthogonal matrix with positive determinant), and if q is
a vector in R3, then the curve c: (a, b) -+ R3 given by

c (t) = Ac(t) + q

is the result of rotating and translating the image of c by A and q respectively.
Show that the curvature and torsion of functions of care the same as for c.

4.5.3*. Let K and T be any real numbers such that K > 0. Show that there
are numbers a > 0 and b such that the right circular helix

fa cost
c(t) = a sin t

bt
has constant curvature K and constant torsion T .

4.5.4. Let c: (a, b) -+ R3 be a unit speed curve such that K(t) = 0 for all
t E (a, b). Show that the image of c lies in a straight line.

4.5.5. Let c: (a, b) -). R3 be a strongly regular unit speed curve. Show that
the image of c lies in a straight line iff there is a point xo E R3 such that every
tangent line to c goes through xo.

4.5.6*. Prove Lemma 4.5.7 parts (ii), (iii) and (v).

4.5.7. Let c: (a, b) R3 be a strongly regular curve. Show that

T' = IIc'IIKN
N' _ -IIc'II K T + IIc'II r B

B' _ 11 c'11 r N.

where for convenience we drop the argument r.

4.6 Fundamental Theorem of Curves

Given a curve, we can clearly compute its curvature and torsion; can we go the
other way? That is, if we are given curvature and torsion functions, is there a
curve which has these values of curvature and torsion? We see from Exercise
4.5.5 that for any constant curvature and torsion functions there is at least one
curve with the given curvature and torsion. The following theorem shows that
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in fact arbitrary curvature and torsion functions completely determine the curve
up to translation and rotation of the image of the curve. Note the restriction in
the theorem to positive curvature, to avoid things like straight lines, for which
torsion is not defined.

Theorem 4.6.1 (Fundamental Theorem of Curves). Let ic, f : (a, b) -+ R be
smooth functions with k(t) > 0 for all t E (a, b). Then there is a strongly
regular unit speed curve c: (a, b) -* R3 whose curvature and torsion functions
are x and i' respectively. If c1, c2: (a, b) -* R3 are two such curves, then c2
can be obtained from c1 by a rotation and translation of R3.

Proof. We essentially follow [M-P] (though the idea of the proof is standard).
Let p E (a, b) be a point. We will show that there exists a unique strongly
regular unit speed curve c: (a, b) -+ R3 whose curvature and torsion functions
are K and f respectively, and such that

0 1 0 0

c(p) = (0) , T(p) = (0) , N(p) 1 B(p) = (0) .

0 0 0 1

(4.6.1)
The precise statement of the theorem then follows straightforwardly using Ex-
ercise 4.5.2.

The idea of the proof is to solve the Frenet-Serret equations, which are
differential equations, in order to find the purported tangent, normal and bi-
normal vectors of the desired curve. Integrating the tangent vector will then
give us the curve we are looking for. More precisely, consider the following
system of linear differential equations with initial conditions, which are just the
Frenet-Serret equations written out in coordinates:

U1 (t) = K(t) U4(t)

u' (t) = K(t) U5(t)

U3, (1) = K(t) U6(t)

U'40) = -K (t) U I (t) + f (t) U7 (1)

us (t) = -ic(t) u20) + f(r) Us(t) (4.6.2)

U6(t) = -K(t)U3(t)+f(t)U9(t)
u7(t) = -f (t) u4(t)
U8' (t) = -r(t) u5(t)

U' (t) = -f (r) U6(t).
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III (P) = 1, 112(p) = 0, 113(P) = 0,

144 (P) = 0, 145(P) = 1, u6(P) = 0, (4.6.3)

U7 (P) = 0,u8(P) = 0,u9(P) = 1.
By Theorem 4.2.6 there are smooth functions It 1, ... , 119: (a, b) -+ R satisfying
Equations 4.6.2 and 4.6.3, and these functions are unique. For convenience, we
define smooth vector-valued functions X i, X2, X3: (a, b) 1[83 by

fu i (t) u4(t) u7 (t)

XI(t) = I u2 (t) , X2(t) = u5(t) , X30) = 18(t)

113(t) :t6(t) (:19Q)

where we think of X1, X2 and X3 as the tangent, normal and binormal vectors
respectively. Since the u; satisfy Equations 4.6.2 and 4.6.3, we have

X; (t) = K(t) X2(t)

X',(t) = -K(t) XI(t) + f (t) X3(t) (4.6.4)

X3(t) = -r(t) X2(t),

0 0

X (P) = 0 X2(P) = (1). X3(P) = (s). (4.6.5)
0 0 1

We see in Exercise 4.6.2 that for all I E (a, b) the three vectors {X1(t), X2 W.
X3(0) form an orthonormal basis for 1(83.

We now define a curve c: (a, b) -rr> R3 by

c(t) = j X 1(s) ds.
v

From the Fundamental Theorem of Calculus it follows that c'(t) = X i (t). Thus
c is smooth (since X i is smooth) and is unit speed (since X I (t) is a unit vector
for all t by the claim). Let T and K denote the unit tangent vector and curvature
of c respectively (for convenience we will drop the argument t throughout most
of this proof). Evidently T = XI. Using Equation 4.6.4 we further compute
that

T'=Xi=KX2. (4.6.6)

Since K > 0 and X2 is never the zero vector (by the claim) we deduce that T' is
never the zero vector. Hence c is a strongly regular curve, so the unit normal,
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unit binormal and torsion of c are all defined; we denote these quantities N,
B and r respectively. Using the Frenet-Serret Theorem (Theorem 4.5.5) and
Equation 4.6.4, once again, we have

KN=T'=X1 =ii X2. (4.6.7)

Taking the norm of both sides, and using the facts that II N II = II X2 11 = 1, K > 0
and is > 0, we deduce that K = K. Cancelling by K on both sides of Equation
4.6.7 yields N = X2.

Since IT, N, B) and {X), X2, X3} are both orthonormal bases for R3, and
since T = Xi and N = X2, it follows that B(t) = ±X3(t); the continuity
of B(t) and X3(t) imply that the f sign is independent of t. However, we
observe that B(p) = T(p) x N(p) by definition and X3(p) = Xj(p) X X2(p)
by Equation 4.6.5; hence B(p) = X 3 (p), and it follows that B = X3 for all
t E (a, b). Finally, using the Frenet-Serret Theorem and Equation 4.6.4 yet
again, we have

-rN=B'=X3=-i X2. (4.6.8)

Since N = X2, and this vector is never the zero vector, we deduce that r = i.
We thus see that the curvature and torsion of the curve c are as desired. That
c satisfies Equation 4.6.1 follows from the definition of c and Equation 4.6.5.
Thus c has all the properties it is supposed to have. As for the uniqueness of c,
we note that the functions IT, N, B) are uniquely determined by the differential
equation and initial conditions given in Equations 4.6.2 and 4.6.3. Thus c is
uniquely determined since it is the unique solution to the differential equation
and initial condition

0
c' = T, c(p) = 0 . t]

0

Although in theory the above proof actually gives a procedure for finding
the curve if the curvature and torsion are known, the bulk of the procedure
involves solving some differential equations, which in practice can be quite
difficult. A worked out example may be found in [M-P, §2-5].

Exercises

4.6.1. Show that curvature alone does not determine a curve up to rotation and
translation.
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4.6.2*. In this exercise we complete the missing piece of the proof of Theorem
4.6. 1, namely to show that forall t E (a, b) the three vectors (XI (t), X2 (I), X3 (0)
form an orthonormal basis for R3. This proof has a few steps.

Step 1: For each pair of numbers i, j E (1, 2, 3), define a function pig : (a, b)
Rby

Show that

Pit (t) = (Xi(t), Xj(:))

P1I=KP21+KP12

P12P22-KPHI+ip13
P13=KP23-tP12
P21=-KP11+fp31+KP22
P22=P12+TP32-KP21+iP23
P23=-KP13+TP33-iP22
P31=P21+KP32
P32 = - t P22 - K P31 + t P33

P33 = -t P23 - t P32,
and

(4.6.9)

I ifi=j;
Pig (P) = f 0 ifi (4.6.10)

96 j.

Step 2: For each pair of numbers i, j E (1, 2, 3) define a function 8ij: (a, b) --
R by

3i (t) =
1 ifi=j;
0 ifi JI

Show that these functions satisfy Equations 4.6.9 and 4.6.10.

Step 3: Deduce the desired result.

4.7 Planar Curves

In our discussion of surfaces we will encounter certain curves with images in
planes in R3. Without loss of generality we will assume throughout this section
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that the curves under consideration have their images in R2, except when stated
otherwise. Everything that we have said about curves in R3 certainly applies
to curves whose images lie in planes. Planar curves all have zero torsion by
Proposition 4.5.6, so we loose torsion as a useful concept. On the other hand,
we can take advantage of planarity to strengthen the concept of curvature. By
definition the curvature function of curves in B3 is always non-negative; there
is no meaningful geometric way to define positive versus negative curvature
for a curve in R3, since there is no way to say that it is bending in a particular
direction. We cannot say that the curve is bending "away" from itself as opposed
to bending "toward" itself, since such a description depends entirely upon how
we look at the curve. For curves in R2, however, there is an inherent way to
describe bending, namely as either clockwise or counterclockwise.

A curve, being parametrized, comes with a direction in which it is traversed;
in Figure 4.7.1 (i) we see a curve with a given direction, and in Figure 4.7.1 (ii)
is a curve with the same image, but parametrized in the other direction. The
curve in Figure 4.7.1 (i) is bending in a counterclockwise direction from the
point of view of a bug walking along the curve in the given direction; from the
point of view of a bug walking along the curve in Figure 4.7.1 (ii), the bending
is clockwise. The notion of clockwise vs. counterclockwise bending, which
will give us positive or negative planar curvature, is thus seen to depend upon
the given parametrization of the curve.

(i)

Figure 4.7.1

Technically, we proceed by defining variants of T (t) and N(t) for planar
curves. For a planar curve B(t) is constant, so we will not make use of it.

Definition. Let c: (a, b) -+ R2 be a smooth curve. For each t r= (a, b) such
that ltc'(t)I) 76 0, the planar unit tangent vector and planar unit normal
vector to the curve at t, denoted t (t) and 1V (t) respectively, are defined by
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letting f (t) = T (t) and letting N(t) be the unit vector obtained by rotating
T (t) counterclockwise by 90°. (See Figure 4.7.2.)

Figure 4.7.2

Note that N(t) = ±N(t). Recall that rotating a vector in R2 counterclock-
wise by 90° is obtained by multiplying the vector (when written as a column

vector with respect to the standard basis) by the matrix (° -o ), and is thus a
smooth operation.

Example 4.7.1. The unit circle in R2 centered at the origin can be parametrized
in various ways; consider two such parametrizations, namely ca, cb: (-oo, oo) -+
R2 given by

ca(t)sint) and cb(t)_(csint)

Both these parametrizations are unit speed, but ca traverses the unit circle in the
counterclockwise direction, whereas cb traverses the unit circle in the clockwise
direction. For ca we compute

sin
t ) and AV (t)

sin t )T (t) = (
Cost

and for cb we compute

t (t) = (-Cost ) and N (t) = (-sint)
' 0
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It can be seen that T'(t) is perpendicular to T(t), using the same proof
as for T(t). Since the vectors {T(t), N(t)} form an orthonormal basis for R2,
it follows that T'(t) is a multiple of N(t). We are thus led to the following
definition, which is analogous to the definition of torsion for curves in R3.

Definition. Let c: (a, b) --s R2 be a unit speed curve. The planar curvature
of c at t E (a, b) is defined to be the unique real number ir(t) such that

T'(t) = ic(t)N(t). (4.7.1)

The above equation is entirely analogous to Equation 4.5.1, although in this
case the equation is taken as the definition of planar curvature ic(t). Observe
that ic(t) can be negative. However, since IIN(t)II = 1 for all t it follows that

IK(t)I = IIT'(t)II = IIT'(t)II = K(t).

Hence the only new information ic(t) brings is that it takes into account the
direction of bending by being positive or negative.

Example 4.7.2. We continue Example 4.7.1. For cQ we have

cos t

- sin t '

and hence c(t) = 1 for all t. For cb we have

(_cost)
sin t

and hence is (t) = -1 for all t. Observe that the difference in sign of the planar
curvature of these two parametrizations of the unit circle corresponds to the
difference in the orientation of the two parametrizations. 0

As before, if we start with a non-unit speed curve we can calculate planar
curvature by reparametrizing the curve so that it is unit speed and then calculating
the planar curvature. See Exercises 4.7.3 and 4.7.4 for formulas for the planar
curvature of a non-unit speed plane curve.

We will need to be able to measure the planar curvature of curves in arbitrary
planes in R", not just in R2. In an arbitrary plane there is no inherent notion
of which direction of rotation is "clockwise" and which is "counterclockwise,"
since it depends upon how we look at the plane. So, for each plane we can
arbitrarily choose a direction of rotation and call it clockwise. Such a choice
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is equivalent to choosing an ordered basis for the plane; if the plane does not
contain the origin, consider a plane parallel to it that does contain the origin, and
choose an ordered basis for this parallel plane. If the ordered basis is (x1, x2},
then we consider that counterclockwise rotation is given by a rotation of the
plane taking x, to x2 via the angle between the vectors that is less than n. If the
plane is sitting in R3 (as will be the case later on) this choice is also equivalent
to choosing a perpendicular direction to the plane, and using the right hand
rule. No matter which approach we take, there are always two possible ways
of making the choice. Such a choice is called an orientation of the plane.

Once we have made a choice of orientation for a given plane in R", we can
then compute planar curvature of the curve in the plane just as for curves in R2.
If we were to choose the opposite orientation it is not hard to see that the planar
curvature of the curve would change its sign. Thus planar curvature in arbitrary
planes is well-defined only with respect to a chosen orientation of the plane.

Exercises

4.7.1. Find T (t) and N(t) and K(t) for the following curves.

(i) c: (-oo, oo) -- R2 given by c(t) = (' );

(ii) d: (0, oo) -+ R3 given by d(t) _ (In`).

4.7.2. Find the planar curvature of the logarithmic spiral in Exercise 4.3.2.

4.7.3*. Find a formula for planar curvature analogous to the formula for
curvature given in Lemma 4.5.7 (iv). In particular, if a curve c: (a, b) -* R2 is

), where cl, c2: (a, b) -- R are smooth functions, expressgiven by c(t) = (C2
(1)

the planar curvature in terms of ci and c2.

4.7.4*. Find a formula for the planar curvature of the graph of a function of
the form y = f (x).

4.7.5. Let c: (a, b) -+ R2 be a smooth curve such that the image of c is
entirely contained in the closed ball in R2 of radius R centered at the origin. If
11c(q)II = R for some q E (a, b), show that K(q) > R.
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Endnotes

Notes for Section 4.2

(A) The openness of the domains of smooth functions is crucial if we are to
use the standard definition of derivatives. It is possible to extend the definition
of what it means to be differentiable to non-open subsets of Euclidean space,
but we will avoid doing so to help clarify the nature of smoothness, and to point
the way more clearly to smooth manifolds.

(B) Though it may seem like a stringent requirement that all smooth functions
used are infinitely differentiable, that is, all partial derivatives of all orders exist
and are continuous, such functions are actually quite plentiful. It would be
possible to deal with functions that are only twice or thrice differentiable, but
the gain in doing so is negligible, and is outweighed by the nuisance of having
to pay closer attention in all statements of theorems and proofs to the exact level
of differentiability.

(C) See [MU1, Chapter I] for a clarification of the relation between functions
of various degrees of differentiability.

Notes for Section 4.3

(A) Some books use the terminology "parametrized by arc-length" to mean
what we call "unit speed:'

(B) See [JU] for a literary look at the smoothness of curves.

Notes for Section 4.4

In single variable Calculus, the curves used are the graphs of functions of the
form y = f (x). Such functions have the form f : (a, b) -+ R. Graphs in the
x-y plane of such functions have one axis representing the independent variable
(namely x) and one axis representing the dependent variable (namely y). By
contrast, when we view the "graph" of a function of the form c: (a, b) -* R3
we are actually looking at the image of the function, since R3 only has room
for the dependent variables (namely x, y and z). Hence our definition of the
tangent vector looks slightly different than that seen in the Calculus of a single
variable.



CHAPTER V

Smooth Surfaces

5.1 Introduction

The outline for our study of smooth surfaces is somewhat like our study of
smooth curves, and we will be making use of the material concerning smooth
functions discussed in Section 4.2. In both cases we define what it means
to be "smooth" via parametrizations, define tangent and normal vectors, and
then search for geometric quantities such as curvature. There are, however,
two fundamental technical differences between surfaces and curves: A surface
usually cannot be presented via a single parametrization, and there is no analog
for surfaces to unit speed parametrizations. These complications lead to some
rather dry technical discussions in the present chapter. As for curves, we will
restrict our attention to smooth surfaces in R3.

5.2 Coordinate Patches and Smooth Surfaces

A topological surface, which is by definition a subset of R", need not have a
parametrization given as part of its definition. A parametrization for a surface
would minimally mean a map from an open subset of R2 onto the surface (or
a piece of one, since even simple surfaces such as the sphere will need to be
parametrized in pieces). To make precise this notion, which will be needed to
define smooth surfaces, recall the definition of a topological surface: A subset
Q C R" is a topological surface if for each point p E Q there is an open
subset W C Q containing p such that W is homeomorphic to the open disk
int D2 C R2. It would make no difference if the open disk int D2 were replaced
by an arbitrary open set U C R2, and we will do so for convenience. Now, fix the
point p E Q. Let us denote by x a choice of homeomorphism U --* W. Such
a map is the foundation for our parametrization of surfaces. Since an arbitrary
continuous map can have a very crinkled image, we add the requirement that
x be a smooth function. Even a smooth map can degenerate, however, and in
order to avoid this problem we need more conditions on the map x.
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If x: U -+ R3 is a smooth map, we can write x in coordinates as

fl (V)
x(v) =

1
f2(v)

MV)

for all v E U, where fl, f2, f3: U -+ R are smooth real-valued functions. The
function x thus has two partial derivatives, namely

a, alt
as ar

X, s and x2 = a
1z

as ar

Observe that x, and x2 are the columns of the Jacobian matrix Dx. To insure
that the map x is not degenerate we make the following definition.

Definition. Let U c R2 be an open set. A smooth map x: U -> R3 is a
coordinate patch if it is injective and if x1 x x2 0 0 at all points of U. 0

Equivalent conditions to the above definition are that xt and x2 are linearly
independent, or that the Jacobian matrix Dx has rank 2 at each point of U.

Example 5.2.1. (1) Let x: R2 -* R3 be given by

s

X(
s
t )= t

(S2 + t2

To see that x is injective, observe that x(( )) = x(( )) implies s
t = v. The partial derivatives of x are

1 0

X,

= 0 and x2 = 1

(2s) 2t

Hence
-2s

xi xx2= -2t
I

which is never zero. Therefore x is a coordinate patch.

(2) Let y: R2 -* R3 be given by

P-Mi u and
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To see that y is injective, observe that y((; )) = y((" )) implies s3 = u3 and
t 3 = v3, and hence s = u and t = v. The partial derivatives of y are

3s2

)' = 0
0

and

0

y2 = (32).
0

Hence

0

y1xy2= 0
9s2t2

which is zero whenever s = 0 or t = 0. Therefore y is not a coordinate patch.
0

Coordinate patches now allow us to define smooth surfaces.

Definition. A subset M C R3 is a smooth surface if it is a topological surface
and if for each point p E M there is a coordinate patch x: U -+ M C R3 such
thatpEx(U). 0

In practice, rather than finding a coordinate patch for each point p in a
smooth surface we simply find coordinate patches whose images cover the
entire surface. In many cases more than one coordinate patch will be needed.
We will not give explicit proofs that the surfaces under consideration are indeed
topological surfaces, since it will usually be quite straightforward.

Example 5.2.2. (1) Any open subset U C R2 is a smooth surface covered by
the coordinate patch x: U -+ R3 given by

s

t

(2) The unit sphere S2 is a smooth surface. One method to cover S2 with coordi-
nate patches is to use the six coordinate patches x1, x2, yt, y2, zi, z2: int D2 -+



5.2 Coordinate Patches and Smooth Surfaces

S2 given by

205

Each of these coordinate patches covers an open hemisphere; see Figure 5.2.1.
We leave it to the reader to verify that these six maps are actually coordinate
patches. 0

Figure 5.2.1

ny I

What is the relation between smooth surfaces, topological surfaces and
simplicial surfaces? By definition any smooth surface is a topological surface.
It then follows from Theorem 3.4.5 that every compact smooth surface can be
triangulated. Is every topological surface also a smooth surface? Whereas not
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every topological surface is smooth as given (the surface of a cube, for example),
it turns out that every topological surface is homeomorphic to a smooth one.
The usual route to proving this fact is to observe that every topological surface
is homeomorphic to a simplicial surface, and then to prove that every simplicial
surface is homeomorphic to a smooth surface; see [CAI] or [WH3]. Essentially,
the classes of all topological surfaces, all simplicial surfaces and all smooth
surfaces are equivalent. The analogous result is not true in higher dimensions.

When dealing with various aspects of smooth surfaces, we will have two
fundamental ways of proceeding: with reference to a coordinate patch (also
known as working in "local coordinates"), or without. This issue is analogous
to discussing linear maps with or without reference to a choice of basis. (In
fact, we will see that the choice of a coordinate patch yields a choice of basis
for the tangent plane, to be defined, at each point in the image of the coordinate
patch). Just as in linear algebra we learn what happens under a change of basis,
we need to learn how to go from one choice of coordinate patch to another. We
start with the following simple lemma.

Lemma 5.2.3. Let M C R3 be a smooth surface and let x: U -+ M be a
coordinate patch. If V C 1R2 is an open set and 0: V -* U is a difeomorphism,
then x o 0: V -+ M is a coordinate patch.

Proof. Since x and 0 are both injective, so is x oO. By the chain rule D(x o4) =
Dx Do. The hypotheses of the lemma imply that both Dx and Do are linear
maps of rank 2, and hence D(x o 0) has rank 2. It follows that x o 0 is a
coordinate patch. 0

We now turn to the more difficult situation, where two coordinate patches
with overlapping images are given.

Definition. Let M C R3 be a smooth surface, and let x: U --* M and y: V --
M be coordinate patches whose images overlap (see Figure 5.2.2). Let

Ar,, = x-'(x(U) n y(V)) and Ayr = y-'(x(U) n y(V)). (5.2.1)

The composite map

y-' o XI Axy: Axy + Ayx

is called the change of coordinate function from x to y and is denoted 4x.y
(entirely non-standard notation). 0
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x-'(x(U)ny(V )) = A.

Figure 5.2.2

Y-'(x(U)ny(V)) = AY

Since x and y in the above definition are injective, they are bijections onto
their images, so we can validly refer to maps x- i and y-' in the above definition
(though only as maps of sets, with no mention of differentiability). It is easy to
see that /x.y is bijective. Also, note that

xIAxy = YIAyx o 4x.y (5.2.2)

Example 5.2.4. We continue Example 5.2.2 (2), computing 0x,yi. It is seen
that (x')-' : x' (int D2) -+ int D2 and (y')-' : y' (int D2) -+ int D2 are given by

(x,)-,( Y ) = and (Y1)-t(
xY

) =
(x)

.

z

(Y)
z

Note that

x
x' (int D2) n y' (int D2) y E S2 (x > 0, y > 0}.

z
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It can then be seen that

A,, = (x')- (x' (int D2) fl y' (int D2)) = E int D2 I s > 0)

= (y')-' (x' (int D2) fl y' (in( D2)) = A.

We now have

z_ z
(y')-' o (x')IA,- 1

which is smooth on the given domain. Q \ ` J

Our main technical result concerning coordinate patches is the following
proposition, the proof of which is based on Theorem 4.2.2 (and hence ultimately
on the Inverse Function Theorem), as well as Invariance of Domain (Theorem
2.2.1).

Proposition 5.2.5. Let M C 1R3 be a smooth surface and let p E M be a point.

(i) If x: U -* M is a coordinate patch, then x is a homeomorphism from
U onto x(U). Further, the set x(U) is open in M.

(ii) Let T C R" be open, and let f: T - x(U) C R3 be smooth. Then
x-' o f: T -+ U is smooth.

(iii) If x' : U1 -* M and x2: U2 --* M are coordinate patches with overlap-
ping images, then the change of coordinate function is a dif/feo-

morphisnt.

Proof (i). It is a standard result in real analysis that smooth maps are necessarily
continuous (see [BT, § 191), so x is continuous. We now show that for each point
p E U there is an open subset W C U containing p such that x(W) is open in
M and x I W is a homeomorphism from W onto x (W). Since x is a bijection
onto its image (by injectivity), it will then follow from Exercise 1.4.4 that x is
a homeomorphism onto its image and that x(U) is open in M.

Let p E U be a point. By assumption the Jacobian matrix of x has rank
2 at each point of U. Hence we can apply Theorem 4.2.2 to deduce that there
is an open subset W C U containing p, an open subset V C R3 containing
x(p), and a smooth map G: V R3 such that G(V) is open in R3, that G is a
diffeomorphism from V onto G(V), thatx(W) C V and that

s

Gox(f s1)= t0 ,
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for all E W. Since G is a smooth map, note that it is also continuous.
Let 1r12: R3 -+ R2 be projection onto the first two coordinates, that is,

7r12( Y (y) for all
\

Y

/
E 1R3. The map n12 is seen to be continuous

I
z

by an argument similar to the one used in Example 1.3.1 (2). Observe that
7r12 o GIx(W) o xI W = I w, the identity map on W. Since xI W: W -+ x(W)
is bijective, it is straightforward to deduce that (xIW)-' = X12 o GIx(W). It
now follows that (xIW)-1 is continuous, because both 1x12 and GIx(W) are; we
therefore deduce that xI W is a homeomorphism from W onto x(W).

It remains to be seen that x (W) is open in M. Since M is a topological
surface, there is some open set Z C M containing x(p) that is homeomorphic
to int D2; let h: Z -+ int D2 be a homeomorphism. By replacing W with some
small enough subset of it, we can assume that x (W) C Z. It follows that h ox is
a homeomorphism from W onto the set h(x(W)) C int D2 C R2. By Exercise
2.2.2 (a corollary to Invariance of Domain) we deduce that h(x(W)) is open in
1R2, and hence in int D2. Therefore x(W) is open in Z, and hence it is open in
M.

(ii). It will suffice to show that for each point q E T there is an open subset
S C T containing q such that x-1 o f IS is smooth. Fix a point q E T, and let
p = x1(f (q)). Let G, V, W and 7r12 be as in the proof of part (i). We define
the set S to be S = f -1(x (W)); this set indeed contains q, and is open in T by
the continuity of f . We now see that

x-' ofIS=(xIW)-' ofIS=(r oGlx(W))ofIS

=l1`12oGo fIS.

Hence x-1 o f IS is smooth, being the composition of smooth maps.

(iii). This follows immediately from part (ii) of the lemma, letting f be x2
restricted to the domain of 0

The following lemma is essentially the converse of part (iii) of the above
proposition.

Lemma 5.2.6. Let M C R3 be a smooth surface and let x: U -+ M be a coor-
dinate patch. If V C R2 is an open subset, and f : V -+ U is a diJfeomorphism,
then the composition x o f : V -+ M is a coordinate patch, and f is the change
of coordinate function 0,,f,,.

Proof. Exercise 5.2.5. 0
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As an application of Proposition 5.2.5, we make the following useful ob-
servation about curves in surfaces.

Definition. Let M C R3 be a smooth surface, let x: U -+ M be a coordinate
patch and let c: (a, b) -+ x(U) be a smooth curve. The pull-back of c by x is
the curve c = x-1 o c: (a, b) -+ U C R2. The coordinate functions of c with
respect to x are the functions c1, c2: (a, b) -> R such that c(t) = (c_(')) E R2
for all t E (a, b). 0

It follows immediately from Proposition 5.2.5 (ii) that the function c in the
above definition is smooth, and hence so are cl and c2. Observe that c(t) =

C1 (r)r(c(t)) = x( X2(1) ). For the rest of this book we will use the notation c in the

above sense. Similarly, for any point p E x(U) be will let p = x-'(p) E U.
We need to define the appropriate type of maps between smooth surfaces.

A surface in R3 is not an open subset, so our usual notion of what it means for
a map to be smooth (which we sometimes refer to as "Euclidean smooth" for
clarity) cannot be applied directly. The technically convenient approach to take
is to pull back a given function to open subsets of R2 via coordinate patches.
We start with a lemma.

Lemma 5.2.7. Let M C R3 be a smooth surface, let f : M -* R be a map and
let x: U -+ M and y: V -+ M be coordinate patches whose images overlap.
Then f o x I A,,, is Euclidean smooth if f f o y I A,,x is Euclidean smooth.

Proof. Exercise 5.2.11. 0

We can now safely make the following definition.

Definition. Let M C R3 be a smooth surface, and let f : M -> R be a map.
The map f is surface smooth (or smooth if there is no ambiguity) if for each
point p E M there is a coordinate patch x: U --> M with p E x(U) such that
the composition f o x: U -+ R is smooth. 0

In practice, there are two common ways of presenting a smooth map on a
surface M C R3. First, suppose we have a map f : W --> R for some open set
W C R3 containing M; if f is Euclidean smooth it follows that the restriction
of f to M is surface smooth (observe that f o x must be Euclidean smooth
for any coordinate patch x: U -> M, since the composition of two Euclidean
smooth maps is Euclidean smooth). Second, suppose we are given a coordinate
patch x: U -> M; if we then specify a smooth map f : U -> R, we can define
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a map f : x(U) -a R by letting f = f o x-1. It is straightforward to show that
f is surface smooth. In practice we use this method by giving a formula for
f (x((; ))) in terms of s and t.

Example 5.2.8. (1) The function f : S2 -> R given by f (I Y)) = x + T is
z

a smooth function, since it is smooth in the standard sense on all of R3 - 03,
an open subset of R3 containing S2.

(2) Let M be the smooth surface that is the image of the coordinate patch given
in Example 5.2.1 (1); this surface is the paraboloid z = x2 + y2. Define a
function f : M -+ R by setting f (x((i ))) = sins. This function is smooth,
since it can be expressed as f = fox -', where f (( )) = sins, and this latter
function is certainly Euclidean smooth. 0

The following definition broadens the previous one.

Definition. Let M C R3 be a smooth surface, and let f : M --> R" be a map.
Let ft, ... , f": M -+ R be the component functions of f. The map f is
surface smooth if each of the maps ft, ... , f" is surface smooth. 0

Now suppose that we have two smooth surfaces M, N C R3, and a map
f : M -+ N. There are two approaches to the question of what it would mean
for the map f to be smooth. On the one hand, since N is in R3, we can simply
view f as a map M -+ R3, and determine whether f is surface smooth as just
defined. On the other hand, we might wish to use coordinate patches for N, just
as we did for M in the definition of surface smoothness of maps M -- R. The
following lemma shows that both approaches are equivalent.

Lemma 5.2.9. Let M, N C R3 be smooth surfaces, and let f : M --> N be a
map. Then f is surface smooth as a map M -- R3 iff for each point p E M
there is a coordinate patch x: U -> M with p E x(U) and a coordinate patch
y: V -+ N with f (p) E y(V) such that the composition

Y-' o f oxlx-'(f-(Y(V))):x-'(f-'(Y(V))) -+ V C R2

is Euclidean smooth

Proof See Figure 5.2.3. For convenience, let A= x-' (f -i (y(V ))). Suppose
first that f is surface smooth as a map M -* R3. Let x: U -+ M and y: V -- N
be coordinate patches with f (x(U)) fl y(V) 96 0. It is straightforward to see
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M

pol,xIx'(f-'(3(V))

Figure 5.2.3

N

that f o x: U -+ N C R3 is Euclidean smooth. Now, using Proposition 5.2.5
(i) we know that y(V) is open in M. The Euclidean smoothness of f o x and
x imply that these maps are continuous. Using Proposition 5.2.5 (i) it follows
that f is continuous. Hence the set A is an open subset of U, and thus of R2.
Therefore f o x I A is Euclidean smooth. It now follows from Proposition 5.2.5
(ii) that y-1 o f o xIA: A S V is Euclidean smooth.

Conversely, suppose that for each point p E M there is a coordinate patch
x: U -+ Mwith p E x(U)andacoordinatepatchy: V N with f(p) E y(V)
such that y-1 o f o xIA: A -* V is Euclidean smooth. Since y is Euclidean
smooth it follows that y o (y-1 o f o xIA) is Euclidean smooth, and this latter
map equals f ox I A . Since x l A is a coordinate patch for M, the image of which
contains p, and since p is arbitrary, it follows that f is surface smooth as a map
M -4 R3. O

We can now make the following definition.

Definition. Let M. N c R3 be smooth surfaces, and let f : M -+ N be a map.
The map f is smooth if either of the conditions in Lemma 5.2.9 hold. The map
f is a diffeomorphism if it is bijective and both it and its inverse are smooth.

0
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Exercises

5.2.1*. Show that a compact smooth surface in R3 cannot be the image of a
single coordinate patch.

5.2.2. Are the following functions coordinate patches?

(i)x:R2 -+ R3 given byx((i)) = ( t

52

(ii) y: (R - {0}) x (R - (0)) -* R3 given by y( (s )) = (:2).

(iii) z: R2 -* R3 given by z((',')) = l r ).

5.2.3. Show that S' x R C R3 is a smooth surface.

5.2.4. Let M C R3 be a smooth surface. Let A be a non-singular 3 x 3 matrix
and let q E R3 be a vector. If F: R3 --> R3 is the map given by F(v) = Av + q,
show that F(M) is a smooth surface. The map F is affine linear, as discussed
in the Appendix.

5.2.5*. Prove Lemma 5.2.6.

5.2.6*. Let M C R3 be a smooth surface, let x: U -+ M be a coordinate patch
and let c: (a, b) -+ x(U) C R3 be a smooth curve. Show that

c'(t) = ci(t)xi(c(t)) + c2(t)x2(c(t))

for all t E (a, b).

5.2.7. Let M C R3 be a smooth surface, and suppose that N C M is open in
M. Show that N is a smooth surface.

5.2.8*. Let M C R3 be a smooth surface, and let f : M -> R" be a smooth
map. If T C R'" is open and g: T -+ M C R3 is a Euclidean smooth map,
show that f o g: T -* R" is smooth.

5.2.9*. Let M C R3 be a smooth surface and let x: U --> M be a coordinate
patch. Show that the map x is a diffeomorphism from U to x(U) (both thought
of as smooth surfaces).

5.2.10*. Let M C R3 be a smooth surface and let V C R2 be an open
set. If Y: V -- M is a smooth map such that y(V) is open in M and y is a
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diffeomorphism from V onto y(V) (both thought of as smooth surfaces), show
that y is a coordinate patch.

5.2.11*. Prove Lemma 5.2.7.

5.3 Examples of Smooth Surfaces

We consider here a number of special types of surfaces. We will return to these
surfaces repeatedly in examples and exercises.

(1) Monge Patches

These surfaces are the graphs of smooth functions f : U -+ R, where
U C R2 is an open set. Such a surface M can be covered with one coordinate
patch x: U -+ M given by

s

X((s))= I3 .

To see that a monge patch is indeed a smooth surface we need to verify
that the function x is a coordinate patch. To see that x is injective, observe that
x((s )) = x((;; )) implies s = u and t = v. The partial derivatives of x are

1 0

X,

= 0 and x2 = I

fs fl
where fs and f, denote the partial derivatives of f with respect to s and t
respectively. Hence

f- fs
XI xx2= -f,

which is never zero. Therefore x is a coordinate patch. An example of a monge
patch is the graph of the function f ((s )) = st, which is a saddle surface; see
Figure 5.3.1.

(2) Surfaces of Revolution

A surface of revolution is obtained by rotating an injective regular planar
curve (called the profile curve) in R3, where the rotation is about a line that
does not intersect the curve and is contained in the plane containing the curve.
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Figure 5.3.1

Without loss of generality we will assume that the profile curve lies in the
x-z plane, and that the axis of revolution is the z-axis; we assume that the x-
coordinate of each point in the image of the profile curve is positive. See Figure
5.3.2.

Figure 5.3.2

The most general way of describing a profile curve is by an injective map
c from an open interval Jt C R to the x-z plane taking the form c(t) = (z() ),
where r(t) > 0 for all t. The regularity of c is insured by insisting that r'(t)



216 V. Smooth Surfaces

and z'(t) are not both zero for each t E J,. The surface of revolution can then
be covered by coordinate patches of the form

fr(t) cos 9
x(( )) = r(t)sin0 , (5.3.1)

Z (t)

where we use t and 0 instead of s and t to conform to standard notation for
surfaces of revolution. The domain of x is of the form J, x J2, where J2 C R
is an open interval of length 27r (a closed interval of length 27r would allow
the image of x to cover the entire surface of revolution, but then x would not
be injective). The reader is asked in Exercise 5.3.1 to verify that maps x of the
above form are coordinate patches and that surfaces of revolution are indeed
smooth surfaces. The curves on the surface of revolution obtained by holding
0 constant and varying t are called meridians (or longitudes), and the curves on
the surface obtained by holding t constant and varying 0 are called circles of
latitude (or parallels). See Figure 5.3.3.

Figure 5.3.3

There are many familiar examples of surfaces of revolution. A sphere of
radius R (missing the north and south poles) is obtained by rotating a semi-circle
of radius R centered at the origin. A typical coordinate patch is given by

\ RcostcosB
x (( I) = R cost sin 0 (5.3.2)

JJJ R sin t
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A torus of large radius R and small radius r is obtained by rotating a circle
R

in the x-z plane with radius r and center o ), as in Figure 5.3.4. A typical
0

coordinate patch is given by

(R -l- r cos t) cos 0

x(t f) _ (R + r cos t) sin 0
r sin t

Figure 5.3.4

(5.3.3)

The coordinate patch of a surface of revolution can be given in a slightly
simpler form if the profile curve can be realized as the graph of a function of
the form x = r(z), where we assume that r(z) > 0 for all z in the domain of
the function. We can then parametrize the profile curve as c(t) and
proceed as before.

(3) Ruled Surfaces

Intuitively, ruled surfaces are obtained by moving a straight line through
R3. If we fix a point on this line and trace its path as the line is moved we
obtain a smooth curve in R3; for each point on this curve we can describe a
corresponding line on the surface. See Figure 5.3.5. More precisely, we start by
specifying two smooth functions c: J, -+ R3 and S: J2 -+ R3, where J1, J2 C R
are open intervals. We think of c as the smooth curve described above, and we
assume that it is injective and regular. For each point c(s) in the image of c, we
think of 8(s) as giving the direction of the line that is in the ruled surface and
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that contains c(s). We can therefore parametrize a ruled surface by a coordinate
patch x: J, x J2 -). R3 of the form

x((5 )) = c(s) + t5(s).

Note that for fixed s we do obtain a straight line as we vary t; these lines
are called rulings. If we impose no restrictions on c and S then x need not
satisfy either of the conditions of a coordinate patch. However, we compute
that x, = c'(s) + tS'(s) and x2 = 5(s), and we observe that these vectors
are linearly independent for small t if c'(s) and 5(s) are themselves linearly
independent. Further, if t is taken to be small enough then it can be seen that x
is injective. We will assume that these criteria hold.

Figure 5.3.5

A nice example of a ruled surface is the parametrization of the Mobius strip
(from which one line segment has been removed) given by

(S) f cos s cos ? cos s
X( t ) = sins + t cos i sins

0 sin f
2

where s E (-n, n) and t E (- i , 1). As we go around the unit circle in the x-y
plane once, the rulings make a 180° turn. See Figure 5.3.6.

Another ruled surface is the right helicoid, which is a smoothed out version
of a spiral staircase. See Figure 5.3.7. This surface can be parametrized by

/ \ 0 cos s

x(I I)= 0 +t sins
bs 0

where b 0.
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Figure 5.3.6

Although in general the function S (s) is chosen independently of the curve
c(s), there is a useful case where 8(s) does depend upon c(s). The rectifying
developable surface generated by an injective unit-speed curve c: (a, b) -+ R3
is the ruled surface parametrized by

x(( ) = c(s) + t B(s),

where B(s) is the unit binormal to the curve c(s). For example, if c is a planar
curve then B(s) is constant by Proposition 4.5.6, and the rectifying developable
surface generated by such c is a right cylinder with cross section the image of
the curve c.

A somewhat surprising example of a ruled surface, seen in Figure 5.3.8, is
the elliptic hyperboloid of one sheet, given by the quadratic equation

x2 y2 z2T2 + b2 - C2 = 1.

That this surface is ruled can be seen by the parametrization

a cos s -a sins
x(1 t )) = (bsins) + t b coss

0 c

The reader may verify that this parametrization does indeed yield the elliptic
paraboloid. Figure 5.3.9 shows how to visualize this ruling of the surface in the
case of a circular cross section. But not only is this surface ruled, in fact there
is a second way to rule it! Simply twist the string construction in Figure 5.3.9
the other way. The other ruling is left to the reader to construct.
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Figure 5.3.7

(4) Level Surfaces

These are smooth surfaces of the form F-I (a) = (p E R3 I F(p) = a)
for some smooth function F: V -* IR, where V C JR3 is an open set and a E R
is a number. An example of such a surface is the elliptic hyperboloid of one
sheet mentioned in the discussion of ruled surfaces, which could be written as

F-1(l) for F((v I)
=

7 + hr -- r. If we arbitrarily write down a smooth
\Z

function F: V -* JR and arbitrarily choose a number a E R, then the set F_i (a)
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Figure 5.3.8

Figure 5.3.9

might not be a surface, though we do obtain a surface in many instances. The
following definition and proposition allow us to verify that certain sets of the
form F- I (a) are indeed smooth surfaces; the proof of the proposition, which
uses the Inverse Function Theorem, is in Appendix A5.1.
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Definition. Let V C R3 be an open set and let F: V -)- R be a smooth function.
A number a E IR is called a regular value of F if DF(p) has rank 1 for all
p E F-1(a); if the set F-1(a) is empty then a is automatically considered
regular. 0

The condition that DF(p) has rank I (the maximal possible rank) in the
above definition is equivalent to the condition that at least one of av (p), a ,2 (p)

and au (p) is not zero.

Proposition 5.3.1. Let V C R3 be an open set, let F: V -a R be a smooth
function, and let a E R be a regular value of F. Then if the set F- '(a) is
non-empty it is a smooth surface.

Example 5.3.2. The hyperbolic paraboloid is the quadric surface given by the
equation

x2 y2

Z =
a2

- b2.

To prove that the set of all points in 1R3 that satisfy this equation is truly a

smooth surface, let F(I y)) = 3 - 5 - z. The hyperbolic paraboloid is then
\\z

F- 0). We compute that aF = Zr IF = _2 aF(ax QTR av and a = -l. Since the last of
these partial derivatives is never zero, then every point in R is a regular value of
F. Hence Proposition 5.3.1 implies that the hyperbolic paraboloid is a smooth
surface. 0

There is, unfortunately, no simple way to write explicit coordinate charts
for level surfaces, so these surfaces will at times be hard to deal with compu-
tationally, even though many familiar surfaces, such as spheres and ellipsoids,
are level surfaces.

Exercises

5.3.1*. Verify that maps of the form given in Equation 5.3.1 are coordinate
patches, and that surfaces of revolution are smooth surfaces.

5.3.2. Show that the ellipsoid + + = I is a smooth surface.

5.33. Explicitly parametrize the hyperboloid of one sheet a + 4 - 9 = 1.
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5.3.4. Show that a circular cone in R3 with its vertex removed is each of the
four types of surfaces considered in this section. Without loss of generality
assume that the cone has its vertex at the origin, has angle a at the vertex (where
0 < a < ir), and has as its axis of symmetry the positive z-axis.

4 z

x

Figure 5.3.10

5.3.5. Show that the hyperbolic paraboloid (in Example 5.3.2) can be ruled in
two different ways.

5.3.6. Find an example of a smooth function F: V -* lR and a number a E R
such that a is not a regular value of F but such that the set F- I (a) is nonetheless
a smooth surface. Hence we cannot improve Proposition 5.3.1 to be "if and only
if."

5.4 Tangent and Normal Vectors

For a smooth surface, the tangent plane at a point on the surface is the plane that
best "fits" the surface at the point of tangency. Smoothness is crucial here, since
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at a non-smooth point on a surface there need not be a well-defined plane of
best fit, as in Figure 5.4.1. We will start with a definition of individual tangent
vectors at a point on a surface, and then prove that this collection of vectors
form a plane. Although we might think intuitively of tangent vectors at a point
p on a surface as starting at the point p, for convenience we will consider all
vectors as being translated so that they to start at the origin. The intuitive idea
behind the following definition is the observation that any vector tangent to a
smooth surface is tangent to some smooth curve in the surface.

Figure 5.4.1

Definition. Let M C R3 be a smooth surface and let p E M be a point. A
vector v in R3 is a tangent vector to M at p if there is a curve c: (-E, c) -+ M
for some number c > 0 such that c(0) = p and c'(0) = v. The collection of all
tangent vectors to M at p is denoted TAM, and it is called the tangent plane to
M at p (see Figure 5.4.2). 0

For each tangent vector v as in the above definition there will be many
corresponding curves c.

Example 5.4.1. (1) Consider R2 as a smooth surface in R3. Since the tangent
vector to any curve in R2 is itself in R2, it is not hard to see that for each point
p E R2 we have TTR2 = R2

(2) Let p = I o) E S2, and let v E R3 be any vector of the form v = (a) .

\\\o/ \b
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Figure 5.4.2

Letting D = a + b , then the curve c: (-n, ,r) -+ S2 given by

f cos Dt
c(t) _ (a/D) sin Dt

(b/D) sin Dt

has the property that c(O) = p and c'(0) = v. We thus see that TpS2 contains
the y-z plane. That TpS2 in fact equals the y-z plane will follow from Lemma
5.4.2 below. 0

The following lemma not only shows that the collection of tangent vectors
at a point forms a plane, but it also gives an easy way of finding tangent planes.

Lemma 5.4.2. Let M C R3 be a smooth surface and let p E M be a point.
Then TpM is a two-dimensional vector space. Moreover, if x: U -+ M is a
coordinate patch such that p E x(U), then TTM is the subspace of R3 spanned
by the vectors {xt, x2} evaluated at x-' (p).

Proof. It will suffice to prove the second part of the lemma. Let span{xt, x2}
denote the vector subspace of R3 spanned by the vectors {XI, x2}, where xl
and x2 are evaluated at x-t (p); we will prove that TpM = span{x1, x2}. First,
suppose v e TpM, so that v = c'(0) for some curve c: (-E, c) -+ M such
that c(O) = p. We can assume without loss of generality that the image of
c is entirely contained in x(U). Let Cl, c2: (-E, E) -+ R be the coordinate
functions of the curve c with respect to x. Using Exercise 5.2.6 we see that
v = c'(0) = c1'(0)xi + c2'(0)x2 E span{x1,x2}.
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Next, suppose v E span{x,, x2}, so that v = ax1 + bx2 for some real
numbers a and b. Without loss of generality we may assume that the coordinate
patch x has been chosen so that 02 E R2 is contained in the set U, and that
x(02) = p (the reader should show why it is safe to make this assumption).
Since U is open, all points in 1R2 close enough to the origin are contained in U.

Wenow define acurve c: (-E, E) -* x(U) C M bytheformulac(t) = x((at
for some small enough number E (to insure that the points (b,) are contained
in U for all t e (-E, c)). It is now straightforward to verify that c(O) = p and
c'(0) = ax1 + bx2 = v. Hence V E TpM. O

The proof of this lemma follows a very typical pattern. The set TpM
was defined without reference to a coordinate patch, but we needed coordinate
patches to prove something about TpM. We could have taken the alternative
route of defining TpM as the vector space spanned by {x1, x2} evaluated at
x-1(p), making the lemma unnecessary, but we would then have had to have
proved that the definition did not depend upon the choice of coordinate patch.

Example 5.4.3. We use the parametrization of S2 given in Equation 5.3.2, with

R = 1. Let p be a point on the equator of S2, so that p = x((0)) for some 0.
We compute that

- sin t cos 8 - cost sin 0
t

XI( 8))
=(-sin

sin t sin 8 and x2 (t, 8) = cost cos 0 . (5.4.1)
cost 0

Hence the tangent plane at a typical point on the equator of S2 is the vector
space spanned by the two vectors

x1((8 J)
/ (0)

l (-sinO)
x2((0 I) = cos0 .

0
0

What is the analog for surfaces in R3 of the Frenet frame for curves
{T, N, B)? Without a choice of a coordinate patch there are no distinguished
tangent vectors at any point on a surface, only a tangent plane. With a chosen
coordinate patch, however, we can select x1 and x2 as two of our three distin-
guished vectors; different choices of x yield different of x1 and x2. The vectors
x, and x2 are in general neither unit vectors nor orthogonal. We could replace
x, and x2 by an orthonormal basis for TpM, but we would then lose useful
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information about the behavior of x. We can, however, find a unit vector that is
orthogonal to both x1 and x2 and hence orthogonal to TPM.

Definition. Let M C ]R3 be a smooth surface, and let x: U -+ M be a coordinate
patch such that p E x(U). The normal vector function n: U -+ S2 with respect
to x is defined by

XI(P) X x2(P)
n(P) _ IIxi(P) X x2(P)II

for each p E U. 0

We can think of n is a smooth function U -+ E3. Also, we note that up to
sign, n is independent of the choice of coordinate patch.

Example 5.4.4. (1) From Example 5.4.1 (1) it follows that the normal vector
0(

at each point of the plane R2 is ( 0

.±i
(2) Continuing Example 5.4.3, we see that at a typical point on the equator of
S2 we have

xt(( e)) X x2(1 -cosO /O\n((0O)

= = -sin0 = -z(I 8 I).

)
Ilxt((0UJ) X

x2((O0))II

fi

By the symmetry of S2 we/see that the normal vector at any point p E S2 is thus
-p. Some other choices of coordinate patches would yield p as the normal
vector rather than -p. 0

Exercises

5.4.1. Describe the tangent plane and normal vector to the following surfaces
at the specified points; does your answer make sense intuitively?

(i) M is the monge patch for the function f (s, t) = st, and p is the origin in
1R3

(ii) M is the right helicoid parametrized in Section 5.3, and p is on the z-axis.

5.4.2*. Let M C IR3 be a smooth surface, let p E M be a point, let v, w E TP M
be vectors, and let a, b be real numbers. Suppose that x: U --* M is a coordinate
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patch such that U contains the origin in 1182 and x(02) = p (we can always find
such a coordinate patch). Suppose further that c,,, cw: (-E, c) -+ x(U) are
curves in M such that cw(0) = p, that c;,(0) = v and c;,,(0) = w.
Show that the curve c: (-S, S) --> M given by

c(t) = x(a(x-I o b(x-I o cw)(1))

is well-defined for some small enough number S > 0, that c(O) = p and
c'(0) = av + bw.

5.4.3. Find the normal vector at any point on a monge patch.

5.4.4. Find the normal vector at any point on a surface of revolution.

5.4.5. Show that S2 is orientable using coordinate patches.

5.4.6*. Let M = F-I (a) be a level surface for some smooth function F: V -+
R (where V C 1183 is an open set) and some regular value a of F. Show that the
function n: M -+ 1183 defined by

(DF)'
II(DF)`II

is a normal vector field defined on all of M (where t denotes transpose).

5.4.7*. Let M C 1[83 be a smooth surface, and let x: U -s M be a coordinate
patch, with U assumed to be connected. Suppose there is a number k and a vector
w in 1R3 such that the normal vector n satisfies the equation n(p) = kx(p) + w
for all p E U. Show that if k = 0 then x(U) is contained in a plane, and if
k 0 then x(U) is contained in a sphere of radius I-

5.5 First Fundamental Form

In classical Euclidean geometry it is necessary to measure things such as lengths
and angles. From linear algebra we know that these two quantities can be
computed using the standard inner product in Euclidean space. One of the truly
important ideas in differential geometry is to use the inner product of vectors
in the tangent plane at each point on a surface as the basic tool for geometric
measurements in the surface. This idea is found at least as far back as the work
of Gauss, and was brought to prominence by Riemann in his amazing lecture of
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1854 entitled "Uber die Hypothesen, welche der Geometrie zu Grunde liegen."
See [SK3 vol. II] for a translation of Riemann's text, as well as very useful
commentary on the work of both Gauss and Riemann.

The inner product is an example of a bilinear form. Details and examples
concerning bilinear forms may be found in many linear algebra texts, for exam-
ple [LA 1, Chapter VIII]. We will restrict our attention to vector spaces over the
real numbers.

Definition. Let V be a vector space over the real numbers. A bilinear form on
V is a map B: V x V -* R that is linear in each variable; that is, for all vectors
v, w, z E V and all real number a and b we have

(1) B(av + bw, z) = aB(v, z) + bB(w, z),

(2) B(v, aw + bz) = aB(v, w) + bB(v, z).

A bilinear form B is symmetric if B(v, w) = B(w, v) for all V. w E V. 0

The most familiar example of a bilinear form on a vector space is an inner
product. As stated in the following definition, a bilinear form on a finite di-
mensional vector space gives rise to a matrix once a basis for the vector space
is chosen.

Definition. Let V be a finite vector space over the real numbers, and let B be
a bilinear form on V. Suppose (v1, ... , vn) is a basis for V. The matrix for B
with respect to this basis is defined to be

f B(vl, vi) ... B(vl, vn) 1
.M=I 0

B(vn, v1) ... B(vn, vn)

Suppose that V, B and M are as in the above definition. If X. y E V are
vectors, and X and Y are column vectors representing x and y with respect to
the basis B, then

B(x, y) = X' M Y,

where X' is the transpose of X.
We now return to smooth surfaces, starting with the following simple but

important definition.

Definition. Let M C JR3 be a smooth surface, and let p E M be a point. The
first fundamental form of M at p is the function 1 p: Tp M x Tp M -- . R defined
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by

Ip(v, w) = (v, w),

where (v, w) is the standard inner product in R3 of the vectors v, w E TPM C
R3. The first fundamental form of M is the collection, denoted 1, of all
functions 1,, at all points p E M. 0

Though it may appear as if we are doing nothing other than renaming an
already familiar concept, the use of the above definition will become more
apparent in later sections. The first fundamental form is a geometric quantity,
not a topological one, since it very much depends upon the way M sits in R3.
As we will discuss more thoroughly in Section 5.9, if we were to deform M
in R3 then the first fundamental form would, in general, change. On the other
hand, the first fundamental form was defined with no reference to a particular
choice of coordinate patch. Also, by using the properties of the standard inner
product in Euclidean space, we see that Ip is a symmetric bilinear form for each

p E M.
To carry out computations it will be useful to express I in terms of a given

coordinate patch. Let M C R3 be a smooth surface, let x: U -+ M be a
coordinate patch and let p E x(U) be a point. We now compute the matrix for
the bilinear form Ip with respect to the basis {x1, x2} of TM; we denote this

matrix (',: s,2 ). Hence
82i 922

gij = (Xi, xj) (5.5.1)

for i, j = 1, 2, where both sides of this equation are being evaluated at x- I (P).
We can think of the gij as smooth functions U -- R, since the vectors x1, x2 are
smooth functions with domain U. Due to their absolute centrality in the study
of surfaces, we give the quantities gij a name.

Definition. Let M C R3 be a smooth surface and let x: U -+ M be a coordinate
patch. The functions gij: U -+ R for i, j = 1, 2 defined by Equation 5.5.1 are
called the metric coefficients of M with respect to the coordinate patch x. For

convenience we use (gij) to denote the matrix (8$21 i 912
822). 0`

The metric coefficients definitely depend upon the choice of coordinate
patch used. Also, note that g12 = 92, by the symmetry of the standard inner
product on 1R3; thus (gij) is a symmetric matrix. Gauss used the symbols E,
F and G to denote what we (and most modem books) call grl, 912 and 922
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respectively; at times we will use Gauss' notation in certain formulas where the
subscripts of the gj j notation become too cumbersome.

Example 5.5.1. (1) The plane 182 C 183 can be parametrized as a monge patch
by the function

X(( )) =
(i).

We then see that

911

1 0
x1 = 0 and X2 = I

0 0() ().
l 1 0 0

0 0 )=1, 922 1 1

)0 0 0 0

1

(?)=o.912=g21=( 0 .

0 0

1

Thus we have

(gii) = 1 0 I
0).

(2) The saddle surface is parametrized by the monge patch

Thus

and hence

1 0
x1 = 0 and X2 = 1 ,

t s() , ()
(1+t2 St

(gjt) St 1+s2).

The following lemma will be useful for later calculations.
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Lemma 5.5.2. Let M C R3 be a smooth surface, and let x: U - M be a
coordinate patch. Then

(i) det(gij) = lixl x x2112
X1 x x2

(ii) n =
Idet(ga1)

Proof. (i). We compute

det(gil) = 911 922 - (812)2 = (xl,xi)(x2.x2) - (XI, X2)2

= Ilxl 11211x2112 - 11xl 11211x2112 cost P

= Ilxl 11211x2112 sin2 gp

= Ilxl x x2112,

where cp is the angle between xl and x2.

(ii). This follows immediately from the definition of n and part (i) of the
lemma. 0

It will be important to know how the matrix (gii) changes under a change
of coordinate patches. Observe that a change of coordinate patches essentially
yields a change of basis in each tangent plane.

Lemma 5.5.3. Let M C R3 be a smooth surface, and let x: U --> M and
y: V -+ M be coordinate patches with overlapping images. Let (gii) denote the
metric coefficients with respect to x, and let (gig) denote the metric coefficients
with respect to y. If J denotes the Jacobian matrix of the change of coordinate
function 0,,,y, then at all points in the domain of 4,.y we have

o Ox.r) = (J-l) (Sri) J-l and det(gii o 0=.y)
=(detdet(giiJ

))2(8ii (5.5.2)

Proof Recall that xl and x2 are the column vectors of the matrix Dx, and
similarly for y. It follows that

(gii) = (Dx)` Dx and (gil) = (Dy)' Dy.

Using the chain rule and Equation 5.2.2, though dropping the notation for the
restrictions to the sets x-1(x(U) fl y(V)) and y-1(x(U) fl y(V)) ), we deduce
that Dx = (Dy o Or.y) J. We now have

(gij) _ [((Dy o -ox.y)J]' (Dy o 0x.y)J = J` (Dy o &x.y) (Dy o mx.y)J

=if (g11 0 0x.y)J.



5.5 First Fundamental Form 233

The result now follows using standard properties of matrices and determi-
nants.

An example of the above lemma is given in Exercise 5.5.7.

Exercises

5.5.1. For a general monge patch, as parametrized in Section 5.3, show that

1 + (fl)2 AA f2
(g'j) = ( f, f2 1+(f2)2

where fi and f2 are the partial derivatives of f.

5.5.2. Find (gij) for the torus as parametrized in Section 5.3.

5.5.3*. The catenold is the surface of revolution obtained by revolving
the graph of x = cosh z (called a catenary) about the z-axis. An alternate
parametrization of the catenary is given by the curve

c(t) = 1 + t2 ,( sinh- (t) )
(use hyperbolic trigonometry identities to verify that this parametrization works);
we use this parametrization to construct our surface of revolution. Show that
the metric coefficients for the catenoid are

_ 1 0
(gij) 1 + t2

5.5.4*. For the surface of revolution parametrized by

t sin B

A = (tcosO).\ lII In t

show that !`
(gii) = `\ 0

0 )
12

5.5.5*. For a general surface of revolution, as parametrized in Section 5.3,
show that

((r')2 + (Z')2 0 1
(gij) ` 0 r2 )
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5.5.6*. For a general rectifying developable surface, as parametrized in Section
5.3, show that

(1 0
(g'j) = 0 1 -F s2t2(s)

where =(s) is the torsion of the curve c.

5.5.7. Consider the two coordinate charts for the sphere S2 given by

\ R cost cos 9

X ( 0 I) = Rcostsin9 and
/ Rsint

V-1 -- _U -I-- -VT

U

V

(1) Find O,,,y and its Jacobian matrix.

(2) Using the notation of Lemma 5.5.3, compute (g;j), det(gi;), (g;;), (gjj o
0X.y), and det(gr; o

(3) Verify that the conclusion of Lemma 5.5.3 holds for this example.

5.5.8*. For the parametrization of the right helicoid given in Section 5.3, show
that - (

`
t 2 + b2 0)

(g'') 0 1 J

5.5.9*. This exercise has three steps.

(1) Show that

ag'
e

= (x1, x;) = (xIk, x;) + (XJk, xi )
auk auk

for i, j, k = 1, 2.

(2) Show that
i 139jk ag'k - agf; ](x,;, xk) = 2 au; + au; auk

for i, j, k = 1, 2.

(3) Show that

1 3911 1 agll
(x11, x1) = 2 au, , (x12, x1) = 2 au '2

a912 _ 1 8g22 39 12 _ 1 ag11
(x22, xl) = au2 2 aul

, (x11, x2) = aul 2 au2 (5.5.3)

1 agjk a922 I ag22
(x12, xz) = 2 our au, ' (x22, x2) = 2 au2
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5.6 Directional Derivatives - Coordinate-Free

A directional derivative on a surface is, intuitively, very much like the directional
derivatives studied in multivariable Calculus, namely a derivative of a function
in the direction of a given vector (not necessarily of unit length). This idea will
be developed in stages in this section and the next, following the treatment in
[BO, §VII].

Let M C 1183 be a smooth surface and p E M be a point. Suppose we have
a smooth function f : M --> R and a vector v E TpM. To find the derivative of
f in the direction v, we use our definition of tangent vectors on surfaces. Let
c: (-E, E) -> M for some number c > 0 be a smooth curve such that c(0) = p
and c'(0) = v. The function f o c: (-E, c) -> R is smooth by Exercise 5.2.8,
so we can then compute (f o c)'(0), which would be a good candidate for the
derivative of f in the direction of v, except that there are many possible curves
c. The following somewhat surprising lemma shows that there is in fact no
ambiguity here.

Lemma 5.6.1. Let M C R3 be a smooth surface, let f : M -+ R be a smooth
function, let p E M be a point and let v E Tp M be a vector. If c1, c2: (-E, E) -+
M for some number c > 0 are curves such that c' (0) = c2 (0) = p and
(c')'(0) = (c2)'(0) = v, then

(f o c')'(0) = (f o c2)'(0).

Proof. Let x: U -+ M be a coordinate patch such that p E x(U). We may
assume without loss of generality that c is chosen small enough so that the images
of c' and c2 are contained in x(U). For each i = 1, 2 let ci, c2: (a, b) -* R be
the coordinate functions of c' with respect to x. Using Exercise 5.2.6 we have
(c')'(t) = (ci)'(t)xl + WV(t)X2 for i = 1, 2, where xt and x2 are evaluated
at x-t o c(t). Since (c')'(0) = (c2)'(0), and since the vectors (XI, x2} form a
basis for the tangent plane, it follows that (ck)'(0) _ (c.2)'(0) for k = 1, 2. Note
further that

c(t)x-'oc`(t)(cut)
for each i = 1, 2; taking the derivative at t = 0 of both sides of this equation
and using our previous observations implies (x'' o c')'(0) = (x-' o c2)'(0).

Next, observe that f o x is Euclidean smooth, and by Proposition 5.2.5 (ii)
we know that x-' o c' is Euclidean smooth as well. Using the chain rule we
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now have

(f o c')'(0) = [(f o x) o (x-' o c')]'(0)

= D(f ox)(x-' oc'(0)) (x-' oc')'(0)

= D(f o x)(x-' o c2(0)) (x-' o c2)'(0) = (f o c2)'(0),

where D(f ox) denotes the Jacobian matrix, and -is matrix multiplication.

We can now make the following definition safely.

Definition. Let M C 1R3 be a smooth surface, f : M --> R be a smooth function,
let p E M be a point and let u E TAM be a vector. If c: (-E, E) -* M for some
number E > 0 is a curve such that c(0) = p and c'(0) = v, the directional
derivative of f at p in the direction v is the number V, ,f defined by

Oaf = (f o c)'(0) 0

The directional derivative satisfies a number of standard properties.

Lemma 5.6.2. Let M C 1R3 be a smooth surface, let f. g: M -+ R be smooth
functions, let p E M be a point, let v, w E TAM be vectors, and let a, b be real
numbers. Then

(i) Dav+hwf =aOvf +bOwf
(ii) Ot,(f + g) = Ovf + ;O" g.
(iii) wfg = (Ot,f)g(p) + f

Proof. Let c,,, ca,: (-E, c) -> M for some number c > 0 be curves such that
cw(0) = p, that c'(0) = v and cu,(0) = w.

(i). Let x: U --+ M be a coordinate patch such that U contains 02 and x (02) = p
(such a coordinate patch can always be found). We may assume that e is
small enough so that the images of cv and cw are in x(U). Let the curve
c: (-S, S) -- M be as in Exercise 5.4.2. so that c(0) = p and c'(0) = av +bw.
Observe that x -' o c (0) = x -' o c,,, (0) = x'' o c(0) = 02. Then, proceeding
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similarly to the argument in the proof of Lemma 5.6.1, we have

V.,,+bwf = (f o c)'(0) = [(f o x) o (x-' o c)]'(0)
= D(f o x)(x-' o c(0)) (x-' o c)'(0)

= D(f o x)(02) (x' o x(a(x-' o b(x-' o c.)))'(0)

= D(f o x) (02) (a(x' o b(x-' o cw))'(0)

= aD(f o x)(O2) (x-' o ct,)'(0) + bD(f o X)(02) (x-' o c')'(0)

= aD(f o x)(x-t o (x-' o

bD(f o x)(x-' o c,,,(0)) (x o c')'(0)

. = bO f

(ii) & (iii). Exercise 5.6.2. 0

Example 5.6.3. Let f : S2 --* 88 be given by f ( V 1) = xy + xz, let p =

0)C o
E S2 and let v = I o E TPS2. To find V f we choose the curve

\oJJJ
sin t

c: (-tr, n) -+ S2 given by c(t) = o , which has c(O) = p and c'(0) = v.
cost

Thus

V, f = (f o c)'(0) = (sin t cos t)'(0) = 1. 0

Next we consider vector fields on surfaces (not necessarily tangent vector
fields). As before, we will think of all vectors in J3 as being translated so that
they start at the origin.

Definition. Let M C 883 be a smooth surface. A smooth vector field on M is
a smooth function Z: M --> 883. A smooth vector field Z is a tangent vector
field if Z(p) E TAM for each p E M. 0

The function Z in the above definition can be written in terms of components
as

fzi(P)
Z(P) = z2(P)

Z3(P)

where z 1, z2. z3: M -+ 88 are smooth functions.
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Definition. Let M C R3 be a smooth surface, let Z: M --- R3 be a smooth
vector field, let p E M be a point and let v E TPM be a vector. The directional
derivative of Z in the direction v is the vector defined by

Vuz2

VUz3

0

Using the notation in the above definition, we note that if c: (-e, e) -+ M
is a curve such that c(O) = p and c'(0) = v, then

V.' Z = (Z o c)'(0).

Once again, the directional derivative for vector fields satisfies a number of
standard properties.

Lemma 5.6.4. Let M C R3 be a smooth surface, let Z, Y: M -+ R3 be smooth
vector fields, let f : M -+ R be a smooth function, let p E M be a point, let
v, w E TpM be vectors, and let a, b be real numbers. Then

(i) Va v+b w Z = a V. Z + b_V,,, Z.
(ii) Y) =
(iii) VvfZ = (V" )Z(P) + f
(iv) VU(Z, Y) = (VVZ, Y (p)) + (Z (p), V" Y).

Proof. Exercise 5.6.3. O

Example 5.6.5. Let Z: S' x R -+ R3 be given by Z(( r)) xy ), let
z \ o //

p = (o E S' x R and let v = E TP S' x R. To find V, ,Z we choose
0 (00)

!cosy
the curve c: (-ir, n) -* S' x R given by c(t) = ( sin t , which has c(O) = p

\ 0
and c'(0) = v. Thus

f-sins -1
Z = (Z 0 c)'(0) = cost (0) = 0

0 0
0

For the next-to-last stage in this line of development, suppose that a vector
field Z on M is actually a tangent vector field. If p E M and V E TPM we
can compute considering Z as a vector field (tangent or not). There is
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no reason to expect that E TAM, even though both v and Z are tangent
to M. For example, the vector field Z in Example 5.6.5 is actually a tangent

vector field, whereas o ) is not a tangent vector at p = o ). Since
\\\o/// \o/

tangent vectors are particularly useful, we remedy this situation essentially by
brute force (the need for this remedy will become apparent in Section 6.2). We
use the following notation. Let H be a plane in R3 containing the origin; the
map 17H: R3 --). H will denote orthogonal projection of R3 onto H.

Definition. Let M C R3 be a smooth surface, let Z: M -+ R3 be a tangent
vector field, let p E M be a point and let v E TAM be a vector. The covariant
derivative of Z with respect to v is the vector VZ defined by

Dug=IZT,M(VuZ) 0

By definition E TAM. All the expected properties hold.

Lemma 5.6.6. Let M C R3 be a smooth surface, let Z, Y: M -). R3 be smooth
tangent vector fields, let f : M -> R be a smooth function, let p E M be a point,
let v, w E TAM be vectors, and let a, b be real numbers. Then

(i) The function TAM -- TAM given by v t-+ is a linear map.
(ii)

VfZ = (V"f)Z(P) + f
(iv) VV(Z, Y) = (VvZ, Y(p)) + V(P), VUY)

Proof. (i). Using Lemma 5.6.4 (1), as well as the linearityof IITPM, we have

Vav+bwZ = RT,M(Vav+bwZ) = J1 M(aV.Z +bVwZ)

= allTPM(VVZ) +b11T'M(VwZ) =

This proves what we are trying to show.

(ii) and (iii). These are similar to part (i).

(iv). By Lemma 5.6.4 (iv) we have Y) = Y(p)) + (Z(p), VVY).
By writing the vectors and Y in terms of the basis (XI, x2, n) of its, and by
observing that FIT, M has the effect of removing from any vector its component in
then direction, it can be shown that (V Z, Y (p)) = (V Z, Y (p)), and similarly
with the roles of Z and Y reversed. 0
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Example 5.6.7. Continuing Example 5.6.5, we see that
0

pendicular to TpS' x R at the given point p. Hence DUZ is the zero vector.
0

We now turn to directional derivatives of vector fields defined along curves
in a surface. Since the image of a curve in a surface may intersect itself, we
take the domain of the vector field to be the domain of the curve, namely the
interval (a. b), rather than on the image of the curve.

Definition. Let M C R3 be a smooth surface and let c: (a, b) -+ M C R3 be
a smooth curve. A smooth vector field along the curve c is a smooth function
Z: (a, b) --> R3. The vector field Z is tangent to M along c if Z(t) E Tc(,)M
for all t E (a, b). 0

The definition of a vector field along a curve looks just like the definition
of a curve itself; it's simply a matter of how we view things - as vectors or as
endpoints of vectors. We can define the derivative dZ in the usual way, taking
the derivative of each component of Z. All the usual rules for derivatives hold
for d7 . As before, even if Z is a tangent vector field along a curve c in M, there
is no reason to expect that 7, will be tangent to M. We remedy this problem
as before.

Definition. Let c: (a, b) -+ M C R3 be a smooth curve, and let Z: (a, b) -+ R3
be a smooth vector field along c that is tangent to M along c. The covariant
derivative of Z along c is the vector field dZ along c defined by

DZ dZ
dt = nTr(i,tit (dt ). 0

By definition eZ E Tc(,)M for all t E (a. b). All the expected properties
hold.

Lemma 5.6.8. Let M C R3 be a smooth surface, let c: (a, b) -> M be a smooth
curve, let Z, Y: (a, b) -+ R3 be smooth vector fields along c that are tangent to
M along c, and let f : (a, b) -+ R be a smooth fimction. Then

(i) D(Z + Y) DZ DY

dt
_

WT

+
dt

(ii) D(f Z) = df DZZ(t) + f (t)dt (it dt
d (-Z , Y) + (Z,

DY
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Proof Exercise 5.6.5. 0

What is the relation of the constructions and z? We can ask this
question in two ways. Let M C R3 be a smooth surface, and let p E M. First,
suppose we are given a smooth tangent vector field Z: M -+ R3, and suppose we
are given v E Tp M. Can we express V Z as a for some smooth tangent vector
field Y: (a, b) R3 along some smooth curve c in M? Conversely, suppose
we are given a smooth tangent vector field Y: (a, b) -* R3 along some smooth
curve c in M. Can we express °Y as for some appropriate Z and v? The
following proposition, which will be of use later on, resolves these questions.
Note that for a given smooth tangent vector field Y: (a, b) --). R3 along some
smooth curve c in M, we cannot always extend Y to a smooth tangent vector
field on M, and if we can extend Y, there might be more than one way of doing
so. In the proposition, it will suffice to have an extension of Y to some open
subset of M (rather than all M), since we can take directional derivatives on any
open subset of M.

Proposition 5.6.9. Let M C R3 be a smooth surface.

(i) Let Z: M -+ R3 be a smooth tangent vector field on M, let p E M
be a point, and let v E TPM be a vector. If c: (-E, c) -+ M for some
number c > 0 is a curve such that c(0) = p and c'(0) = v, then

dt
V0Z

D(Z
c) (0).

(ii) Let c: (a, b) -> M be a smooth curve and let Y: (a, b) --)- R3 be a
smooth vector field along c that is tangent to M along c. If Y: V --+ R3
is a smooth tangent vectorfeld for some open subset V C M containing
the image of c, such that Y o c(t) = Y(t) for all t E (a, b), then

DY
dt `1

= V Y

at each t E (a, b). In particular Ve(,)Y does not depend upon the
choice of extension Y of Y.

Proof. (i). This simply requires tracing through the definitions.

(ii). Note that Y is a smooth vector field on an open subset of M. For each
t E (a, b) the point c(t) is in the domain of Y, and the vector c'(t) is in Tc(,) M for
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t E (a, b). The curve c is thus a curve such that c(t) = c(t) and c'(t) = c'(t).
Now use part (i). U

Exercises

5.6.1. Let f : S' x R --> R be given by f (
z

xz2 + 3y, let p = (0) E
i /o

S2, let v =
o

E TTS' x R and let w = I of E TTS' x R. Find v f and

vwf.

5.6.2*. Prove Lemma 5.6.2 (ii), (iii).

5.6.3*. Prove Lemma 5.6.4.

5.6.4*. Let M C 1R3 be a smooth surface, let W C R3 be an open set containing
M, let p E M be a point and let v E TpM be a vector. Suppose that v can be

U,

written as v = ` V3) E R3.

(i) If f : W - 1[8 is a smooth function, show that o f = Df (p) v.

(ii) If Z: W --> R3 is a smooth vector field, show that DZ(p) v.

5.6.5*. Prove Lemma 5.6.8.

5.6.6. Let T2 be the torus as discussed in Section 5.3. Let Z: T2 -+ R3 be
x R+0

given by f (
Z

Find

I) _ +y ), let p = (') E T 2 and let v = 1 1 E TT 2.

V,Z and VZ. ` / \ JJJ

5.7 Directional Derivatives - Coordinates

We now develop an expression for the covariant derivative (both and z-)
in terms of a coordinate patch. Although in the previous section we discussed
functions and vector fields defined on all of M, we could apply the directional
derivative to functions, vector fields and curves defined only on x(U), which
is an open subset of M. For the rest of this section let M C I113 be a smooth
surface, let p E M be a point, let x: U -* M be a coordinate patch such
that p E x(U), let v E TTM be a vector, let c: (a, b) -+ x(U) be a smooth
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curve, let Z: x(U) -+ R3 be a smooth tangent vector field on x(U), and let
Y: (a, b) --> R3 be a smooth vector field along c that is tangent to M along c.
We let p = x-'(p), let c = x-1 o c, and let c1, c2 be the coordinate functions
of c with respect to x. It is evident that there are numbers vi and v2 such
that v = v' xl (p) + v2x2 (p). It is shown in Exercise 5.7.1 (i) that there are
unique smooth coordinate functions Z', Z2: U -- R such that Z o x(q) =
Z' (q)x, (q) + Z2(q)x2(q) for q E U. Similarly, it is shown in Exercise 5.7.1
(ii) that there are unique smooth coordinate functions Yt , y2: (a, b) -+ R such
that Y(t) = YI (t)x1(c(t)) + Y2(t)x2(c(t)) for all t E (a, b). Finally, to make
effective use of the summation notation we will at times denote the variables in
the function x by uI and u2 instead of s and t.

Our goal is to express in terms of Z', Z2, v1, v2 and x, and similarly

for dY . We start with the following technicality, since the vector field Z is
defined on x(U), whereas when things are expressed in terms of a coordinate
patch (for example, the metric coefficients) they are defined on the set U.

Definition. Let M c R3 be a smooth surface and let x: U M be a coordinate
patch. A tangent vector field on M with respect to x is a smooth function
X : U --)- R3 such that X (p) E T,, (p) M for all p E U. If V E Tx(p) M is a vector,
then the covariant derivative of X in the direction v is the vector defined

by ox-1). Q

It is straightforward to see that Vi, has all the usual properties, analogous
to Lemma 5.6.6. If the above definition is viewed backward then we see that
for the tangent vector field Z as above, we have V,, (Z o x).

We can think of the partial derivatives x, and x2 as tangent vector fields
on M with respect to x. Our first step is to compute the covariant derivative
Vx,(p)xj for each p E U, where i, j = 1, 2. This covariant derivative is itself a
tangent vector in TX(p)M, so that it is uniquely expressible in terms of the basis
{xI(p), X2 (M of Tx(p)M. Hence there are unique numbers r j(p) and ri(p)
such that

V.,(n)xj = r j(p)x1(P) + rj(P)x2(P). (5.7.1)

Because the above equation works at each p E U, we obtain a real-valued
function q: : U -+ R for each i, j, k = 1, 2, eight functions in all. For ease of
notation we will often drop the arguments in the above equation and write

2

Oz,xj = r,J XI + r F. X2 = r xk. (5.7.2)
k=l



244 V. Smooth Surfaces

Though we have dropped the arguments in expressions of the form Ox;xj, it
is important to keep in mind that we are really using the symbols xj in two
different ways: The xj in the subscript of V is shorthand for a single vector
x; (p), whereas the x3 being operated on by the V is a vector field.

Definition. Let M C JR3 be a smooth surface and let x: U -+ M be a coordinate
patch. The functions F'1: U --+ JR for i, j, k = 1, 2 defined by Equation 5.7.1
are called the Christoffel symbols for the coordinate patch x. 0

The following lemma simplifies things a bit.

Lemma 5.7.1. Let M C R3 be a smooth surface and let x: U -+ M be a
coordinate patch.

(i) For all i, j = 1, 2 and at all points p E U we have

vx,(p)xj = vxl(P)xi.
(ii) For all i, j, k = 1, 2 we have

Proof. (i). Let p E x(U) be a point. Using the definition of V, Exercise 5.7.2
and the equality of mixed partial derivatives for smooth functions, we compute

V.t,(n)Xj = Vx,(p)(xj o X-1) = nTTM (V.,(fi)(xj o x-1))

x; a2X lnGauj)

f Gui auj/
a2x

=nTM(au;au;) (P)xi

(ii). By the definition of the Christoffel symbols and part (i) of this lemma we
have

2 2

E r j xk = °irxj = Vx,xi = E rJ; Xk,
k=1 k=1

where for convenience we drop the arguments. Since the vectors {x1, x2) form
a basis for the tangent plane their coefficients must be equal in the first and last
terms of this equation. 0

The next lemma tells us three things about Christoffel symbols: it shows
that they only depend upon the metric coefficients, and not on the choice of
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coordinate patch (and are thus considered "intrinsic," to be discussed in the
smooth case in §5.9); it shows that they are smooth functions of u( and u2
(since the gi j are smooth); it gives us a convenient way to compute them.

Lemma 5.7.2. Let M C R3 be a smooth surface and let x: U
coordinate patch. For all i, j = 1, 2, we have

t -tFt +
aaI (gt t 1 (au u au\,i,

p22 agt3 _ at\r,/1 2l g2t /1 +
0a aUi u2141

-+ M be a

Proof. Let P E x(U) be a point. Using Exercise 5.7.2 and Lemma 5.6.6 we
compute

agij agij ox-t ox t)

auk
(P) =

auk
(P) = V."(P)(gij o x-

= Vxk(0)(Xi oX -t,Xj o X-

= (Vxk(p)xi OX-xj o x-t (P)) + (xi o x-t (P), Vx!(p)xj o x-( )

= (Vxt(p)Xi, xj(p)) + (Xi(P), Vxt(p)xj).

By permuting the three subscripts and dropping the arguments in the functions
we obtain two other equations:

agik = (Vxj, x
aui

xi k)+(xj,Vxixk)+

agik
au; = (V.,,Xi, Xk) + (Xi, Vx, Xk)

Using Lemma 5.7.1 (i) we now solve for (Vx,xj, xk) by adding the second and
third equations and subtracting the first, obtaining

1 agjk
+ agik - agijaau

k

On the other hand, by definition Ox, xj = >i r xt. Taking the inner product
with xk yields

)

2 2

(ox,Xj+ Xk) r . (xi, xk) _ r ghk-t ra
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Combining these last two equations, we obtain

08+jrt 1 agJk a8k -l=1 t/ 81k =
2 ` 8c1i + auk 8uk

(5.7.3)
2

For each i, j = 1, 2 Equation 5.7.3 can be rewritten in matrix form as

811

821

812 1 A2 (5.7.4)
822) (rh)ri;- 2 (At f) .

Multiplying on the left by the matrix (gtf)-l yields the desired result.

For ease of computation we write out the conclusion of the above lemma
for each possible combination of i and j, noting that r =

81t 812

821 822

( 811 812

1\ 821 822
F-I

(811 812

821 822

2 au,

aS!a !a&U)(!&ftau, 2 au2

2 2

122
1

ag"2 ,Y 2M - 121U )

i 21U
2 au2

(5.7.5)

Example 5.7.3. (1) We continue Example 5.5.1 (1). Since the g11 are all con-
stant, their partial derivatives are all zero. Hence Lemma 5.7.2 implies that
r =Oforalli. j.k= 1,2.
(2) We continue Exercise 5.5.8, though we now substitute u, and u2 for s and
t respectively. We see that - = 2u2, and all the other partials of the g; j's are
zero. Plugging these values into Equation 5.7.5, we obtain

_( r,' l

(
0 0

(
:

2rl/ 0(!12)2+62 (u2)2+b2/ -i2u2/ - \-u2/
1r 1 1 0 2
12 ) u2

2 ) (u2 b )
C

12

12 +b2 (0 (u2)2+b2) ( 0 - \ 0
1

r22 1 1 0
0

C ) (0)1
2
22 (112)2+b2 (Q o.

0(u2)°+b2)

We now take our first step toward computing directional derivatives. We
make use of the notation mentioned at the start of this section.
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Lemma 5.7.4. Let M C R3 be a smooth surface, let x: U -+ M be a coordinate
patch and let c: (a, b) -+ x(U) be a smooth curve. Then

D(xi o c) 2 2

_ F,Erp(c(t))cj'(t)xk(c(t))-dt k=1 j=1

Proof. Since the tangent vector field xi ox-1 is defined on the open subset x(U)
of M, and since (xi o x-1) o c = xi o c, we can use Proposition 5.6.9 (ii) and
Exercise 5.2.6 to see that

D(xi o c)
dt

= VV(t)(xi 0 x ) = Ve(t)xi = V(c1'(t)xi(i'(t))+c2'(t)x2(E(t)))xi

c1'(t)Vx1V(:)X + c2(t)Vx2(c(t))xi
2

= cl'(t) L rii(c(t)) xk(c(t)) + c2(t) E ri;(c(t))xk(,E(t))

k=1 k=1

The desired result is obtained by rearranging the terms and using summation
notation.

The following proposition is what we have been after for tangent vector
fields along curves.

Proposition 5.7.5. Let M C R3 be a smooth surface, let x: U -> M be a
coordinate patch, let c: (a, b) -+ x(U) be a smooth curve, and let Y: (a, b) -->
R3 be a smooth vector field along c that is tangent to M along c. Then

dt -Ed
k

k=1 i=1 J=1

Proof. Using Lemmas 5.6.8 and 5.7.4, we see that

DY _ 2 D
Y' t c t

2 (dY' D(xi o c)
Y'( )xi( ( ))]dt = dt [ dt xi(c(t))+ (t)

dt )
i=1 i=1

2 ' 2 2

_
d

(E(t)) + Y' (t) Erk t ' t Exid
,(. ( )) cj ( ) xk( (t)))

t
i=1 k=1 j=1

This last expression is seen to equal the desired result after some rearranging
and changing of indices, and using Lemma 5.7.1.

Finally, we turn tangent vector fields on surfaces.
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Proposition 5.7.6. Let M C R3 be a smooth surface, let x: U --> M be a
coordinate patch, let Z: x(U) - R3 be a smooth tangent vector field, let
p E x(U) be a point, and let v E TAM be a vector. Then

2 2 aZk 2

v,z = (v1 -(P) + F I' j(P)
vj

ZA(P)) xk(P)
k=1 j=1 au; i=1

Proof. Let c: (-E, E) x(U), for some number e > 0, be a curve such that
c(0) = p and c'(0) = v. Observe that c(0) = P, using our usual notation.
We know by Exercise 5.2.6 that c,(0)xi(p) + c2(0)x2(P) = c'(0) = v =
vIxi(P) + v2x2(P). Equating coefficients, we deduce that c'(0) = vt and
c2(0) = v2.

The function Z o c: (-E, E) -+ ]R3 satisfies the hypotheses of Proposition
5.7.5. Further, it is straightforward to see that Z o c(t) = Z'(c(t))xl (c(t)) +
Z2(c(t))x2(c(t)), so that Z' o c and Z2 o c must be the unique coordinate
functions for Z o c. By the chain rule we have

d(k 2 ko

dt c) _ az vw)c;'(t)

for each k = 1, 2. At t = 0 this last equation yields

k 2 kd(Z o c)
(O) _ E

aZ (P)u,
dt j=t auj

Propositions 5.6.9 (i) and 5.7.5 now tell us that

V°Z D( c) (0)dt
2 d(Zk 0,F) 2 2

(0) + r (E(0)) c; (0) z' (e(O))) xk (C(O))
k=l dt i=Ij=t
E(r, aZk E

2 2

E k
v2 Z` (P)) xk(P)

k=t ;=t au1 ;=t;=t
2

= E E(v' aZk (P) + > 1' (P) v2 Z`(P)) xk(P). 0
k=1 j=1

au;
;=1
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Example 5.7.7. We view the sphere S2 as a surface of revolution, using the
coordinate patch x given by Equation 5.3.2, with R = 1. Note that r(t) = cos t

fez ( 1 \
and z(t) = sin t. Let p E S2 be p = o , let v E TS2 be v = l and

fez 1/ cosrsine
let Z be the tangent vector field on the image of x given by Z ox = 1 oos r cos e\ 0
(Although in our discussion above we had Z given directly, there is no reason
not to give Z by giving Z o x, since we could in theory always compute Z =
(Z o x) o x-1.) We want to find using Proposition 5.7.6.

First, observe that p = ("04 ). Next, we have

f- sin t cos B - cos t sin B
x

=
- sin t sin O , and x2 = cost cos 9

cost 0

and hence

0
x,(p) = 0 and X2(p) _ ,,0/2).

/2

Note that Z o x = 0 xi + I x2, so that the coordinate functions Z' and Z2 of
Z are the constant functions Z' = 0 and Z2 = 1. Hence the partial derivatives
of the Z` are all zero. Also, the vector v can be written as v = (4/2)xI (p) +
(/2)x2 (p); hence v I = v2 = J/2. Finally, we need the Christoffel symbols
for the coordinate patch we are using, and these can be obtained by substituting
our particular functions r(t) and z(t) into the result of Exercise 5.7.3. We obtain
1'22 = sin t cost, r 2 2 = rii = - tan t, and all the other Christoffel symbols
are zero. Hence r22(p) = 1/2, i'1 2(p) = ri(p) _ -1, and all the other
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Christoffel symbols at p are zero. We then compute

Z =0 .0 + I" ) 2
k=1 f=1

I "" Z)(= r

(p
i=I

2 2
( x( ) (

xk(P)

" 1Zp22 2
x1 P) + 12 15)n 2 (n) x2(P)

+ 1'2'1 (fi) 2 Z`(P) x2(P)

-//2 0
0 +(-1)-.0. /2/2

2 2 2-/2 2 0

0

2 1/2
0 1/4

We conclude this section with the following lemma, to be used in Section
7.3. Let (a, b) x (d, e) be a subset of R2, and let h: (a. b) x (d, e) -+ M be a
smooth function. We then have two obvious tangent vector fields on the image

. We can restrict each of these vector fields to curvesof h in M, namely a and at
of the form t = k for some constant k E (d, e), and we can then calculate ° of
these vector fields along each of these curves; similarly, we can restrict each of
these vector fields to curves of the form s = m for some constant m E (a, b),
and we can then calculate a of these vector fields along each of these curves.
See Figure 5.7.1. In particular, we can compute each of a ah and a as

Lemma 5.7.8. Let M C R3 be a smooth surface, let (a, b) x (d, e) be a subset
of R2, and let h: (a, b) x (d, e) -* M be a smooth function. Then

D ah D ah
as at =atas

at all points in (a, b) x (d, e).

Proof. Exercise 5.7.8. 0

Exercises

5.7.1*. Let M C R3 be a smooth surface and let x: U -+ M be a coordinate
patch.
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Figure 5.7.1

(i) Let Z: x(U) -+ R3 be a smooth tangent vector field on x(U). Show that there
are unique smooth coordinate functions Z', Z2: U -- R such that Z o x(q) _
Z' (q)x1(4) + Z2(q)x2(4) for q E U.

(ii) Let Y: (a, b) -* R3 be a smooth vector field along c which is tangent to M
along c. Show that there are unique smooth coordinate functions Y' , y2: (a, b) -+
R such that Y(t) = Y' (t)x1 (c(t)) + Y2(t)x2(c(t)) for all t E (a, b).

5.7.2*. Let M c R3 be a smooth surface and let x: U - M be a coordinate
patch. If Z: x(U) -+ R3 is a smooth vector field (not necessarily tangent), show
that

azox
vmfi)Z = au (P)

at each point in p r= U.

5.73*. Show that the Christoffel symbols for a general surface of revolution,
as parametrized in Section 5.3, are

r'r" + z'z"
1'

1 rr' r2 I.2 r'
I1 = (r')2 + (Z,)2' 22 = (r')2 + (Z')2' t2 = 2t = r
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and all other r, are 0. If the profile curve of the surface of revolution is unit
speed, verify that r = 0 and r22 = -rr'.

5.7.4*. Suppose that a coordinate patch has gi i = 1, $12 = 0 and $22 = G for
some smooth function G. Show that the Christoffel symbols for this coordinate
patch are

,

1-
1 aG 2

17

2 1 aG
17

2 1 aG
17

22 2 au, 12 - 21 = 2G au1' 22 = 2G au2

and all other r are 0.

5.7.5. Let c: (a, b) -+ R3 be an injective, unit-speed curve. Show that
the Christoffel symbols for the rectifying developable surface generated by the
curve are

1 2 2 2 1r2(s) 2 t2r(s)r'(s)
1722 r,2 = 1721 = 1 + t2r2(s)' r22 = 1 + t2r2(S)

and all other 1+1 are 0 (where r (s) is the torsion of the curve c).

5.7.6. Show that for any coordinate patch

1 a 12
2 aul

Indet(g;i) = r11 + r12.

5.7.7. Let M be the right helicoid, as parametrized in Section 5.3 (though once

again using u 1 and u2 instead of s and t), let p E M be p = o let v E TPM
0

2

be v = ( i and let Z be the tangent vector field on the image of x given by
b

U2 cos u i

Z ox = u251nut . Find V,Z.
a

5.7.8*. Prove Lemma 5.7.8.

5.8 Length and Area

We wish to find the lengths of smooth curves contained in smooth surfaces in R3,
and the areas of regions contained in such surfaces. We begin with the lengths
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of curves. Let M C R3 be a smooth surface and let x: U -+ M be a coordinate
patch. If c: (a, b) -- x(U) is a smooth curve, we can certainly compute its
length using Equation 4.3.1, simply ignoring the fact that the image of c is in
M. However, if we let cl, c2: (a, b) -* R denote the coordinate functions of
c with respect to x, the following lemma gives a formula for the length of c
expressed in terms of c1, c2 and x.

Lemma 5.8.1. Let M C R3 be a smooth surface, let x: U -+ M be a coordinate
patch, and let c: (a, b) -j- x (U) be a smooth curve. Then the length of c is given
by

b

Length(c) = f (c1'(t))2 gu (c(t)) + 2c1'(t) c2'(t) g12(c(t)) + (c2'(t))2 g22(c(t)) dt.
a

Proof. Exercise 5.8.1. 0

Example 5.8.2. Let M C R3 be the right helicoid with the parametrization
given in Section 5.3. We wish to find the length of the curve c: [0, 1) -+ M
given by

(bt2/2) cos t
c(t) _ (bt2/2) sin t

bt

It is seen that c(t) = x((6,212)), so that c(t) = and thus c1(t) = t and

c2(t) = k-. Hence c' (t) = I and c'2(t) = bt. Using the values for the metric
coefficients of the right helicoid computed in Exercise 5.5.8 we see that

glt(c(t)) = t2 +b2, 912(0(t)) = 0, g22(c(1)) = I.

Hence

r 7b
Length(c) = J 12 (b2t4/4 + b2) + 2. 1 bt 0 + b2t2 1 dt = 6 . 0

0

We now find the area of a region in a smooth surface in R3, a problem not
as simple as it may appear at first. Recall from Calculus how to find the area of a
region of R2 by double integration: Divide the region into small pieces (most of
which are rectangles), find the areas of all the rectangles, add these areas up, and
take the limit as the little rectangles have smaller and smaller areas. Although
a similar construction for a non-planar surface might be attempted, examples
show that such an attempt is doomed to failure. See [SKI, pp. 128-130].
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An alternative approach is as follows. Let M C R3 be a smooth surface,
and let x: U -+ M be a coordinate patch. Suppose S C M is a region contained
in x(U). (For regions not contained in the image of a single coordinate patch
we can break up the region into pieces, each of which is contained in the image
of a coordinate patch.) Intuitively, we cover S by a lot of small parallelograms,
which are spanned by the vectors (x1, x2) at various points in U. The area of the
parallelograms spanned by these vectors is simply IIx, x x2IJ, which by Lemma

5.5.2 (i) is equal to det(gi1). If we add the areas of these parallelograms, and
take the limit as the parallelograms get smaller and smaller, we are led to the
following definition.

Definition. Let M C R3 be a smooth surface, let x: U -+ M be a coordinate
patch and let S C x(U) be a set. The area of S, denoted Area(S), is the number

Area(S) = Jf1(gij)dsdt. (5.8.1)
cs

provided the integral exists. 0

We cannot "prove" that Area(S) as we have defined it corresponds to our
intuition, though a more detailed explanation that this definition is plausible can
be found in [DO1, §2-81. The following lemma shows that the area computed
using a coordinate patch is independent of the choice of coordinate patch.

Lemma 5.8.3. Let M C R3 be a smooth surface, let x: U -+ M and y: V -+ M
be coordinate patches, and let (gi1) and (gi1) denote the metric coefficients for
x and y respectively. If S C x(U) fl y(V) is a set, then

ff det(gi1)dsdt det(gij)dgdr.

Proof. The essence of the proof is the change of variable formula for double
integrals (see [SKI, p. 67]). Let J denote the Jacobian matrix of the change of
coordinate function ¢x,,,. Then by Lemma 5.5.3 we have

det(gi1) = det(gi1 0 0s,y) (det J)2.

Recalling that y o 0x,y = x for suitable restrictions of the domains of x and y,
we compute
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JJ', det(gij) ds dt = J J det(gjj (&x,y)) I det J I ds dt

Jdet(gj) dq dr,
fin(s)

where the last equality is precisely the change of variable formula. D

Example 5.8.4. Let us compute the area of the sphere SR of radius R centered
at the origin. The coordinate patch of SR given by Equation 5.3.2, taking
U = (-n/2, it/2) x (-ir, ir) as the domain, covers all of the surface except
for an arc, so it suffices to find the area of x(U). Using Exercise 5.5.4 in the
special case of SR it can be computed that det(g;j) = R4 cos2 t. Hence

Area(SR) = Area(x(U)) = Jf det(g,j) dt dO
(x(U))

rr n/2
R2costdtdO =4irR2. 0

_,r/2f
We are now in a position to compute the integrals of real-valued functions

defined on a surface, once again assuming that the region over which we are
integrating is contained in the image of a coordinate patch.

Definition. Let M C R3 be a smooth surface, let x: U -+ M be a coordinate
patch, let S C x(U) be a set and let f : S -* R be a function. The integral of
f over S, denoted fs f d A, is the number

J
fdA ff f(x(())) det(gii)dsdt,

s '(S) \ t
provided the integral exists. 0

The symbol "d A" is analogous to the use of "dx" in single variable integrals.
The nice feature of the above definition is that it takes an integral on a surface
and converts it into an integral over a region in R2. We now verify that this
definition does not depend upon the choice of coordinate patch used.

Lemma 5.8.5. Let M C 1[83 be a smooth surface, let x: U -> M and y: V M

be coordinate patches, and let (g;j) and (j) denote the metric coefficients for
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x and y respectively. If s C x (U) fly (V) is a set, and if f : S -+ R is a function
for which the following two integrals exist, then

s

JL'S)
f(x( )) det(gjj)dsdt =f(y((q))) det(gij)dgdr.ff- I(s) r

Proof. Exercise 5.8.6.

Example 5.8.6. Continuing Example 5.8.4, let us integrate over all of SR the

function f : SR -+ R given by f ((Y)) = z2 x2 -+y2. We compute that
z

f (x((B ))) = R3 sin2 t cost. Hence

rn >r/2

J fdA=J
J

R3sin2tcostR2costdtdO=
sR T >f/2

Exercises

5.8.1*. Prove Lemma 5.8.1.

7r2R5

4

5.8.2. Let M C R3 be the saddle surface with the parametrization given in
Example 5.5.1 (2). Find the length of the curve c: [-1, 1] -+ M given by

e`

c(t) = e`

(e2t

5.8.3. Find the area of the torus of large radius R and small radius r.

5.8.4. Find the area of one complete turn of the right helicoid for t E (-1, 1).

5.8.5. Find the area of a general monge patch restricted to a region R in the x-y
plane. Compare what you get to the formula for the surface area of the graph
of a function of two variables found in any Calculus text.

5.8.6*. Prove Lemma 5.8.5.

5.8.7. Integrate the function given by f((r I) = x2 + y2 + z2 over the focus
z

of large radius R and small radius r.
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5.9 Isometries

An arbitrary smooth map f : M -+ N of smooth surfaces might or might not
intuitively "deform" M by stretching, shrinking, etc. Think of the fact that it
is easy to wrap a cylinder with a sheet of wrapping paper, but difficult to wrap
a ball. We construct here a rigorous definition that corresponds to the intuitive
notion of preserving the geometry of a surface. Since we can compute quantities
such as length and area by using the first fundamental form, we will define a
class of maps that preserve the first fundamental form. We start with a useful
technicality.

Definition. Let M C lR be a smooth surface, let f : M -+ ilV be a smooth map
and let p E M be a point. The differential off at p is the map d fp: TpM -)- R3

given by

dff(v) = o,f
for all v E TAM. 0

Though this definition appears to be no more than renaming the directional
derivative, it has the effect of changing our point of view. When we write V j
we are thinking of v as fixed, with V acting on the set of smooth functions (or
vector fields) on M by taking their directional derivatives. By contrast, when
we write d fp we are thinking off as being fixed, with d fp acting on the vectors
in TAM. What makes the differential useful is the following result.

Lemma 5.9.1. Let M. N C R3 be smooth surfaces, let f : M -+ N be a smooth
map, and let p E M be a point. Then the map d fp is a linear map from TAM
into Tf(p)N.

Proof The linearity follows immediately from Lemma 5.6.4 (i). Let v E TAM
be a vector. Then there is some curve c: (-e, e) -+ M such that c(O) = p and
c'(0) = v. Hence

dfp(v) = V.f = (f o c)'(0).

Observe that f o c: (-E, E) -+ N is a curve in N such that f o c(O) = f (p).
By the definition of tangent vectors we have (f o c)'(0) E Tf(p)N, and thus
dff(v) E Tf(p) N. 0
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Example 5.9.2. Consider the map f: R2 -+ St x R given by

cos s

f( s
t ) = (sins).

t

Let P E 1R2 be the origin, so that f (p) = (o). It is not hard to see that Tp1R2
(OD

i s the x-y plane, and Tf(p)(S' x R) is the y-z plane. Let v = (b) E Tp1R2 be
a vector. The function c: (-oo, oo) 1R2 given by c(t) = (b') has c(O) = p

cos at
and c'(0) = v. Then f o c(t) = sinat . Hence

bt

0

dfp(v)=V,f = (f oc)'(0)= a
b

The notion of the differential can be used to formulate the analog for smooth
surfaces of the Inverse Function Theorem.

Proposition 5.9.3. Let M C 1R3 and N C R3 be smooth surfaces, let f : M
N be a smooth map and let p E M be a point. If dfp is a non-singular linear
map then there is an open subset W C M containing p such that f (W) is open
in N and f I W: W -s F (W) is a

Proof. Since f is a smooth map it follows from Lemma 5.2.9 that there is a
coordinate patch x: U -* M with p E x(U) and a coordinate patch y: V -* N
with f (p) E y(V) such that the composition

y-t o f oxlx-'(f-'(y(V))):x-'(f-'(y(V))) -+ V C II82

is Euclidean smooth. For convenience we let A = x-' (f -' (y(V ))) and g =
y-' o f o x1A. Observe that f o x1A = y o g. As usual let p = x-' (p). It now

follows from Exercise 5.9.8 that dfp o dxp = dyg(p) o dgp. Since dfp, dxp and
dy8(p) are all non-singular linear maps (using the hypothesis of the proposition
and Exercise 5.9.7), it follows that dgp is also non-singular.

The map dgp is a linear map from Tp A to Tg(p) V ; both these tangent planes

are just R2. We wish to compute the matrix of dgp with respect to the standard
basis {e1, e2} of 1R2. For each i = 1, 2, let c;: (-oo, oo) -* R2 be the curve
given by c; (t) = p + tei. Thus c, (0) = p and ci (0) = e1. Using the definition



5.9 Isometrics 259

of the differential of a map we now compute

8g
dgp(ej) = Veg = (g o ci)'(0) = Ip,

8ui

where the last equality holds by the definition of partial derivatives. It follows
that the matrix of dgp with respect to the standard basis of R2 is precisely the
Jacobian matrix Dg(p). Hence Dg(p) is non-singular. Applying the Inverse
Function Theorem tog we deduce that there is an open subset T C A containing
p such that g(T) is open in V and gIT is a diffeomorphism from T onto g(T).
It is now straightforward to verify that the set W = f (T) C M has the desired
properties. 0

We can now use the concept of the differential of a map to define what we
mean by a map that preserves the first fundamental form.

Definition. Let M, N C R3 be smooth surfaces and let f : M --)- N be a smooth
map. The map f is an isometry if it is a diffeomorphism and if

If (p) (dfp (v), dfp(w)) = 1p(v, w) (5.9.1)

for all p E M and all v, w E TpM. The map f is a local isometry if for each
point p E M there is an open subset V C M containing p such that f (V) is
open in N and f I V: V --). f (V) is an isometry. 0

Note that we can write Equation 5.9.1 as

(dfp(v), dfp(w)) = (v, w). (5.9.2)

All isometrics are local isometrics, but as we will see in Example 5.9.5 the
converse is not true. Isometrics are relatively rare, and it is local isometries
that will be of most use. The following proposition helps determine in practice
which maps are local isometries.

Proposition 5.9.4. Let M, N C R3 be smooth surfaces and let f : M -+ N be
a smooth map. The following are equivalent:

(1) The map f is a local isometry.
(2) Equation 5.9.1 holds for all points p E M and all vectors v, w e TpM.
(3) For each point p E M and each coordinate patch x: U -+ M with

p E x (U), there is an open subset V C U such that p E x (V) and that
f o x I V : V --> N is a coordinate patch with the same metric coefficients
asxlV.
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(4) For each point p E M there is a coordinate patch x: U -+ M such
that p E x(U) and f o x: U -# N is a coordinate patch with the same
metric coefficients as x.

(5) For each point p E M there is an open set A C M containing p such
that if c: (a, b) --)- A is a smooth curve then Length(c) = Length(f oc).

Proof. We prove (2) (3), leaving the other parts to the reader in Exercise
5.9.2. Let p E M be a point, and let x: U -- M be a coordinate patch with
p E x(U); we will show that there is some open subset V C U containing p
such that y = f o x I V : V -* N is a coordinate patch, and that it has the same
metric coefficients as x. By hypothesis on f we know that f o x is a smooth
map. Let e, _ (o) and e2 = (°) in 1R2. Let q E x (U) be a point, and let
q = x (q). For i = 1, 2 we define a curve cq.j: (-E, e) -* x(U) by

cq.j (t) = x(4 + te;),

where c > 0 is some small enough number so that the cq,i are well-defined. We
then see from the definition of partial derivatives that

cq,; (0) = q and C9., (0) = x; ,

and

f o cq.i (0) = f (q) and (f o cqj)'(0) = (f o x)r,
where the functions x; and (fox); are evaluated at q E U. It now follows from
the definition of dfq that

dfq(xi) = Ox f = (f o cq.e)'(0) = (fox);. (5.9.3)

Since Equation 5.9.2 holds for all points in M it follows from Equation 5.9.3
that

((f o x)i, (f o x)1) = (dfq(xi), dfq(xj)) = (xi, x!) (5.9.4)

for all i, j = 1, 2. We deduce from this equation that II (f o x), II = Ilxe II for
i = 1, 2, and that the angle between (f o x), and (f o .r)2 equals the angle
between x, and x2. Since x, and x2 are linearly independent so are (f o x), and
(f o x)2 at 4. It follows that f o x has rank 2 at all points of its domain, and by
making use of Corollary 4.2.3 we deduce that there is some open subset V C U
containing x- 1 (p) such that f o x I V is injective. It follows that f o xI V is a
coordinate patch. The equality of the metric coefficients of x1 V and f o x1 V
follows immediately from Equation 5.9.4. 0
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Note that Condition (3) of Proposition 5.9.4 does not say that any coordinate
patch for M and any coordinate patch for N have the same metric coefficients;
it is only stated that there are coordinate patches for the two surfaces with the
same metric coefficients.

Example 5.9.5. We are now in a position to verify that rolling a piece of paper
into a cylinder is a local isometry; more precisely, we will show that the map
f :R2-+ S' x 118 given in Example 5.9.2 is a local isometry. Let p = (PZ) E R2

be a point, and let U = (p, -n, pl +7r) x R. Then the inclusion map x: U -- 1182

given by x(q) = q is a coordinate patch for 1R2 with p E x(U). It is not hard to
see that the map f o x: U -> S' x R is injective. Further, the partial derivatives
off o x are

- sins 0
(fox), = coss and (f o x)2 = 0

0 1

Hence
coss

xt xx2= sins(o)
which is never zero. Therefore f o x is a coordinate patch. It is straightforward
to compute the metric coefficients for both x and f o x, and they are both

1 ). Thus Condition (4) of Proposition 5.9.4 is satisfied for each(gU) = ( of
p E R2. However, there cannot be an isometry between the two surfaces, since
any such isometry would be a diffeomorphism, and hence a homeomorphism,
and it was shown in Exercise 3.8.5 that 1R2 0 S' x R. 0

Local isometries help us express rigorously what it means for a quantity
measured on a smooth surface to be intrinsic. We have mentioned the concept of
intrinsicness in Section 3.7 when discussing simplicial surfaces, and intuitively
the idea is the same in the present case. Since the first fundamental form is
the source of geometric measurements such as length and area, it is reasonable
to say that a quantity is intrinsic if is can be measured strictly in terms of the
first fundamental form. More practically, we say that a quantity is intrinsic if it
can be measured entirely in terms of the metric coefficients when expressed in
terms of a coordinate patch. For example, the Christoffel symbols are intrinsic,
using Lemma 5.7.2. It is seen from Proposition 5.9.4 that if f : M --> N is a



262 V. Smooth Surfaces

local isometry, then any intrinsic quantity will be the same at p and f (p) for
each p E M.

Exercises

5.9.1. Let the map f : S1 x R -* R2 be given by

Let p E S' x 1[8 be p = o . Describe the map d f p.
0

5.9.2*. Prove the remaining parts of Proposition 5.9.4.

5.93. Show that R2 and a cone (without its vertex) are locally isometric.

5.9.4. The catenoid is defined in Exercise 5.5.3. See Figure 5.9.1. Show that
the catenoid and the right helicoid with b = 1 are locally isometric. It turns
out that these surfaces can be continuously deformed one into the other without
changing the metric coefficients during the deformation; see [SK3 vol. III, pp.
248-249] or [SR, p. 121] for nice illustrations of this deformation.

z

Figure 5.9.1
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5.9.5*. Let M C R3 be a surface and let x: U -+ M be a coordinate patch.
Define the set Tx(U) C R3 x R3 = R6 to be

Tx(U)=((q,v)ER3xR31gEx(U)andvETgM}.
Let

WY:UxR2-+ Tx(U)CR6

be defined by

(q, v)i..!+(x(q), dxq(v)).

Show that 'P is a homeomorphism. (Although we have not defined what it
would mean for a map defined on a set such as Tx(U) to be smooth, such a
definition is possible, and the map 41 is in fact a diffeomorphism.)

5.9.6*. Let M C R3 and N C R3 be smooth surfaces, and let f : M -> N be
a diffeomorphism. Show that d fp is a linear isomorphism from TpM to Tf(p)N
for each point p E M.

5.9.7*. Let M C R3 be a smooth surface, let x: U - * M be a coordinate
patch, let p E x(U) be a point and let v E TpM be a vector. Let p = x-I (p),
and suppose v is written in coordinates as v = vIxi(p) + v2x2(p). Combining
Exercises 5.2.9 and 5.9.6, it follows that dxp is a linear isomorphism from
T,U = R2 to TpM. Show that

'
(dx,3Y' (v)

v
_ ( 2 /

.
V

In particular, observe that dxp((a )) = x1 (p) and similarly for X2-

5.9.8*. Let M, N, Q C R3 be smooth surfaces, let f : M -+ N and g: N Q
be smooth maps and let p E M be a point. Show that d (g o f)p = dg f( p) o d fp.

5.9.9*. Let M C R3 be a smooth surface and let p E M be a point. If
v, w E TpM are any two linearly independent vectors, show that there is a
coordinate patch x: U -- M such that p E x (U) and x1(p) = v and x2(p) = w,
where p = x-gy(p).

5.9.10*. Let M C R3 be a smooth surface. Let R be a non-singular orthogonal
3 x 3 and let q E R3 be a vector. If F: R3 R3 is the map given by
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F(v) = Rv+q, show that F: M --> F(M) is an isometry. (The set F(M) C ]R3
is a smooth surface by Exercise 5.2.4.)

Appendix A5.1 Proof of Proposition 5.3.1

Proof of Proposition 5.3.1 We use the Inverse Function Theorem, following
PT

[DO 1 ]. Let p = PZ

/
E F' t (a) be a point. We will construct a coordinate

P3 JJI

patch x: U --+ F't (a) such that p E x(U), where U is some open subset of R2
to be determined, such that x(U) is open in F't (a) and x is a homeomorphism
onto x(U). It will then follow that F'1 (a) is a topological surface and that it is
smooth.

We start by noting that since DF(p) has maximal rank, at least one of
au (p), a , (p) and L (p) is not zero. Let us assume that 3 (p) ,E 0. We now

OU3

define a function G: V -+ R3 by

I ut
G(u) = u2

F(u)

where it C d2 ). Clearly G is a smooth function. It is straightforward to
IUU3'

verify that det DG(p) # 0. Hence we can apply the Inverse Function Theorem
(Theorem 4.2.1) to G at the point p, to deduce that there is a subset W C V
that contains p and that is open in 883, such that G(W) is open in R3 and G is a
diffeomorphism from W onto G(W). Observe also that

fpi Pi
G(P) = P2 11= P2

F(P) a
P1

so P2 E G(W).

By Lemma 1.2.9 (ii) we can find an open subset U C R2 containing G')
and a number c > 0 such that

Ux(a -E, a+e)CG(W).
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The function G-1: G(W) W is a smooth map and can be written in compo-
nents as

I 8i (u)

G-'(u,) = g2(u)

g3 (U)

for some smooth functions g, , 92, $3: G (W) -> R. By the definition of inverse
functions we have

Therefore

g'

(U)

g2(u)
=u=GoG-'(u)= gt(u)

F g2(u)
g3(u)

81(u) = ul, 82(u) = 112

Define a map h: U -> R by

u,
and F( 112

83(u)

U,

u2 )
2U

a
It follows from Equation A5.1.1 that

u,
F( U2 ) = a

h(u)

for all u = (42) E U.
Let x: U -+ F-' (a) be given by

u3. (A5.1.1)

(A5.1.2)

U1

X(0 = u2

h(u)
Observe that p E x(U). The desired properties of x will follow from Equation
A5.1.3 below; note that the left hand side of Equation A5.1.3 is an open subset



266 V. Smooth Surfaces

of F-' (a) containing the point p, and the right hand side of Equation A5.1.3 is
the graph of the function h, which is simply a monge patch.

The equation we need to prove is

ui
F-'(a)nG-'(Ux(a-E,a+E)) =

l U2 I u= (u2) E U}. (A5.1.3)
h (u) /

First, suppose that z = (Z2) E F-' (a) n G-' (U x (a - E, a + E)). Since
Z3

z E G-' (U x (a - E, a + E)) it follows immediately from Equation A5.1.1 that
i = (Z=) E U. Using Equation A5.1.2 we deduce that

zi

f Z' Z2 fz
G( Z2 ) = zt = Z2 (A5.1.4)

h(i) F( Z2 ) a

(h(i)
For convenience, let z,, = ( D. . Now, on the other hand, it follows from the

a

hypothesis on z and from the definition of G that

zi
G(z) = Z2 = Za. (A5.1.5)

F(z)
Combining Equations A5.1.4 and A5.1.5 with the fact that G is injective on W
we deduce that Z3 = h(z). Thus z is in the right hand side of Equation A5.1.3,
and we have therefore proved the inclusion c of that equation.

Next, let ( z2 ) be an element of the right hand side of Equation A5.1.3. It
h Q)

follows immediately from Equation A5.1.2 that this point is in F-' (a). Further,
from the definition of U we know that Za E G(W). Hence, using the definition
of h, we have

z z

Z2 = Z2 j = G-1(Za) E G-' (U x (a - E, a + e)).
h(z) g3(za)

We have therefore proved the inclusion D of Equation A5.1.3. 0
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Endnotes

Notes for Section 5.2

(A) In contrast to surfaces, where the the topological, simplicial and smooth
categories are essentially equivalent, in higher dimensions the topological prop-
erties of smooth manifolds are quite different from the topological properties
of topological and piecewise linear manifolds (which generalize simplicial sur-
faces); for example, there are topological manifolds that are not homeomorphic
to any smooth manifold. The relations between the three categories of mani-
folds has been a very active area of research for the past thirty years. For results
in dimensions higher than four see [K-S); for a summary of spectacular recent
work in four dimensions see [F-Q] and [F-L].

(B) Our use of Theorem 3.4.5 to demonstrate that every smooth surface can
be triangulated makes for an indirect, and needlessly hard, way of proving this
fact. See [WH2] or [MU1] for a more direct proof.

(C) Many differential geometry texts avoid using Invariance of Domain (Theo-
rem 2.2.1) in the proof of Proposition 5.2.5 by restricting to the use of coordinate
patches that have continuous inverses. The advantage of such a restriction is
that it is not necessary to assume a priori that smooth surfaces are topological
surfaces; on the other hand, when verifying that a given map is indeed a coor-
dinate patch, the verification of continuity of the inverse map is often neglected
(and tedious if carried out), giving our approach an advantage.

Notes for Section 5.3

In the discussion of level surfaces, we make use of the concept of regular values
of a smooth function. By Sard's Theorem (see [MI3] or [SKI]), it follows that
the regular values of any given smooth function F: V -+ R consist of "most"
of the numbers in R, where the word "most" can be given a precise meaning.

Notes for Section 5.4

Recall the notion of orientability of topological surfaces in Section 2.5. Since
a smooth surface is also a topological surface the notion of orientability is
applicable to smooth surfaces as well. It is also possible to give a description
of orientability of smooth surfaces in terms of coordinate patches. In Section
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2.4 the Mobius strip was distinguished from the right circular cylinder using
the idea of coloring the two sides of the cylinder. Alternately, note that we can
choose a normal vector at each point of the cylinder so that the choice of normal
vectors is a continuous function on the whole cylinder; on the Mobius strip, on
the other hand, no such choice of normal vectors can be made. In other words,
we can cover the cylinder with coordinate patches such that when any two of
these coordinate patches overlap, they determine the same normal vectors at all
points of the overlap; on the Mobius strip no such choice of coordinate patches
can be made. See Figure 5.E.1. This last observation holds in general: A
smooth surface in R3 is orientable if it can be covered with coordinate patches
such that when any two of these coordinate patches overlap, they determine the
same normal vectors at all points in the overlap.

M2

S
i x R

Figure 5.E.1

Notes for Section 5.5

In very classical books on differential geometry, expressions of the form ds2 =
E d x 2 + 2F d xd y + G dy2 are often found. Such expressions were the method
of writing the metric coefficients before the modern formulation came into use,
and they can be given meaning in terms of differential forms. See [SKI].
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Notes for Section 5.6

The notation V j is non-standard, but I do not like the more standard notations
I have encountered, and V, is very much analogous to the (completely standard)
notation V,, that we use.

Notes for Section 5.7

In some texts (particularly older ones) the Christoffel symbols are called the
"Christoffel symbols of the second kind," indicating, as you might expect, that
there are also "Christoffel symbols of the first kind" - though fortunately
people seem to make do without them these days.



CHAPTER VI

Curvature of Smooth Surfaces

6.1 Introduction

Just as we defined curvature for simplicial surfaces in Section 3.9 and for smooth
curves in Section 4.5, in the present chapter we define curvature for smooth sur-
faces - technically more difficult than the previous cases, but more rewarding as
well. Throughout this section, let M C R3 be a smooth surface, let x: U -* M
be a coordinate patch and let p E x(U) be a point.

Computing the curvature of a smooth surface means assigning a number to
each point of the surface, where this number quantifies the amount of curving
at the point. Thus, the curvature of our smooth surface M should be a function
k: M -+ R that satisfies a number of properties. Among those properties are
the following:

(1) The function k: M -+ R is a smooth map;

(2) a point with an open neighborhood contained in a plane has zero curvature;

(3) if p, q E M are points such that p has a neighborhood that is more of a
sharp peak than a neighborhood of q, then k(p) > k(q). (See Figure 6.1.1.)

(4) the quantity k(p) is intrinsic, as discussed in Section 5.9.

q

Figure 6.1.1
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The first successful definition of curvature for smooth surfaces in R3 is due
to Gauss. Prior to Gauss the approach was to view a surface as a collection
of curves, in the hope that understanding the curves could yield information
about the surface. More precisely, let SZ C R3 be a plane that contains p and
is parallel to the normal vector to M at p (recall that we translate all normal
vectors so that they start at the origin). Then there is an open subset of St f1 M
that contains p and that can be parametrized as the image of a smooth curve
c: (a, b) -+ M (see Exercise 6.1.1 for details). We can compute the planar
curvature of this curve. If we consider all possible planes (Z then we obtain a
collection of curves through p, and the planar curvatures of these curves ought
to tell us how the surface as a whole is curving at p. Unfortunately, it is far
from obvious how to assemble the information from the curvatures of all these
curves into one number. This approach will turn out to work with hindsight,
and we will return to it in Section 6.3 after developing other methods.

Gauss' approach to surfaces was more subtle, involving the surface as a
whole rather than considering a surface as a collection of curves. The essence
of Gauss' approach is to see how the normal vector to a surface varies as a
function of points in the surface. As we have defined it, the normal vector n has
as its domain the set U rather than the surface itself (or at least a piece of the
surface). To remedy this problem, we use the following definition.

Definition. Let M C R3 be a smooth surface and let x: U -> M be a coordinate
patch. The Gauss map of x is the map n: x(U) -+ S2 given by n = n o x-r.

0

If we change coordinate patches then n might change at most by a minus
sign, and it will turn out that our calculations will not be affected. The Gauss
map is smooth, as can be seen immediately from the definition of smooth maps
on smooth surfaces. The Gauss map certainly depends upon the way in which
the surface is sitting in R3, and might change if the surface is deformed.

Gauss' idea was to choose a small region T C x(U) containing p in its
interior, and then to compare Area(T) with something like Area(n(T )). In
simple cases, such as a sphere, the quantity Area(i (T)) works fine; in more
complicated situations, however, the map n is not necessarily injective, and we
need to define something like the area of n(T), but something that takes into
account whether n "flips T over" or not by giving a positive result if it does not
flip T over and a negative result if it does. If n folds over only part of T, the
positive and negative areas would cancel.
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Example 6.1.1. (1) Consider SR, the sphere of radius R in R3 centered at the
origin. If we choose the function n to be the outward pointing unit normal to SR
then n(p) = p/pp1j, and this function is defined on all of SR (so we need not
restrict attention to the image of a single coordinate patch). As seen in Figure
6.1.2 the Gauss map simply has the effect of shrinking any region T C SR by a
factor of R2, and there is no problem with using Area(n(T)) in this case.

(b)

Figure 6.1.2

(2) Consider the saddle surface shown in Figure 6.1.3, with p the origin. We
choose the upward pointing normal vectors. Draw a diamond with vertices a,
b, c and d surrounding the point p, as in the figure. The image of the diamond
under the Gauss map is still a diamond, but it is flipped over; going around the
boundary of the image of the diamond in the alphabetical order of the vertices,
we see that the direction is reversed in comparison to the boundary of the original
diamond. If T were the region bounded by the diamond, we would want to take
the area of n(T) with a negative sign. 0

Figure 6.1.3
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Instead of figuring out some detailed geometric way of defining what we
mean by "area" that takes flipping, and worse, into account, we use integration
to take care of the problem. First, note that it follows from the definition of n
and Lemma 5.5.2 (i) that

(xl x x2, n) = (llxl x x2IIn, n) = Ilxi x x211 = det($jj). (6.1.1)

Using Equation 5.8.1 we then deduce that

Area(T) = JJ (XI x x2, n) ds dt. (6.1.2)
s (T)

Now we can think of nIx-1 (T) as if it were a coordinate patch for n(T) (though
strictly speaking this isn't necessarily true). The map n would then be its own
normal up to ±, since the image of n is in S2, and vectors from the origin to S2
are normal to S2. Hence, by analogy to Equation 6.1.2, it is not unreasonable
to define the oriented area of n(T) to be the number Area,, (h (T)) given by

Area, (n(T)) = ff. _ (nt x n2, n) ds dt, (6.1.3)
'(T)

where n 1 and n2 are the partial derivatives of n.
Gauss considered the ratio '+"AO("(T))ma(r) . This ratio has some of the properties

that we would expect of curvature, for example, property (3) listed above, but
unfortunately it depends upon the choice of T. To remedy this situation, Gauss
defined his curvature to be

K(p) = lim
Areao(n(T))

Tlimip) Area(T)
where the limit is over all regions T that shrink down to the point p. We would
have to go to some effort to define rigorously what is meant by this limit, and
to show that the limit always exists, and even if we did all this, the result would
still end up rather technically unwieldy. We will therefore turn to a somewhat
more modern (and very standard) approach, which turns out to be equivalent to
Gauss' definition (to be seen in Section 6.4).

Example 6.1.2. Let M C R3 be a surface contained in a plane in R3. Then the
Gauss map for any coordinate patch for M will be constant, so Areao(n (T)) will
be zero for any subset T C M. Hence K (p) = 0 for all p E M. Thus Gauss'
definition of curvature satisfies property (2) of curvature mentioned earlier. 0
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Exercises

6.1.1*. Let M C 1R3 be a smooth surface, let p E M bea point and let S2 C i(P3
be a plane that contain p and is parallel to the normal vector to M at p. Our
goal is to show that there is an open subset of c2 fl m that contains p and that
can be parametrized as the image of a smooth curve; more precisely, there is
some injective smooth curve c: (-E, E) -+ M for some number E > 0 such that
c((-E, o) C n fl M and c(O) = p. By a rotation and translation of R3 we
can assume without loss of generality that p is the origin of R3 and the normal

/0
vector to M at p is I o . The proof is broken into three steps.

i

(1) Show that there is an open neighborhood U C M containing p such that
orthogonal projection flT.M: U -* Tp M is an injective smooth map.

(2) Show that the subset U (or some open subset of it) is the image of a monge
patch.

(3) Prove the desired result.

6.1.2. Calculate the curvature at all points of each of the following surfaces
using Gauss' definition of curvature, though dealing with the limit intuitively.
(By symmetry it suffices in each case to find the curvature at one point in each
surface.)

(i) S' x18;

(ii) SR.

6.2 The Weingarten Map and the Second Fundamental Form

We develop in this section the technical tools needed for defining Gaussian
curvature. We start with a brief discussion of bilinear forms induced by linear
maps; see Section 5.5 for basic definitions concerning bilinear forms.

Definition. Let V be a vector space, and let (. ) be an inner product on V.
If F: V --). V is a linear map, the induced bilinear form, denoted BF, is the
bilinear form on V given by

BF(V, w) _ (F(v), w)

for all v,WE V. 0



6.2 The Weingarten Map and the Second Fundamental Form 275

Now suppose that V is finite-dimensional and that a basis has been chosen
for V. If F: V -+ V is a linear map, then we can form two matrices using this
basis: the matrix for the linear map F and the matrix for the bilinear form BF.
The following two lemmas express the relation between these matrices. We
omit the proofs of these lemmas, which use standard ideas from linear algebra
(see [FR] for an outline of the proofs). Note that an inner product is itself a type
of bilinear form, and it thus has a matrix with respect to the given basis.

Lemma 6.2.1. Let V be a finite-dimensional vector space for which an inner
product and a basis have been chosen; let G denote the matrix of the inner
product with respect to the basis. Let F: V V be a linear map, let BF be
the induced bilinear form and let A and M denote the matrices for F and BF
respectively with respect to the basis. Then M = At G.

Lemma 6.2.2. Let V be a finite-dimensional vector space.

(i) If B is a bilinear form on V, then B is symmetric if the matrix for B
with respect to any basis of V is a symmetric matrix.

(ii) Let F: V -+ V be a linear map. The following are equivalent:

(a) F is self-adjoint;
(b) the matrix for F with respect to any orthonormal basis is symmetric;
(c) the induced bilinear form BF is symmetric.

We now turn to surfaces. Throughout this section let M C R3 be a smooth
surface, let x: U -+ M be a coordinate patch and let p E x(U) be a point. We
wish to see how the normal vector changes at a point on a smooth surface. We
proceed technically by viewing the Gauss map n: x (U) - S2 C R3 as a vector
field on x(U), though it is certainly not a tangent vector field, and taking the
directional derivatives for all tangent vectors v E TpM.

Lemma 6.2.3. Let M c 1R3 be a smooth surface, let x: U -+ M be a coordinate
patch, let p E x(U) be a point and let v E TpM be a vector. Then E TpM.

Proof. The vector field n is a unit vector field, so that (n, n) = I at all points
in x(U). Hence

0 = n) = 2 (V,,n, h).

Thus Vvn is perpendicular to n, so it must be in TpM. 0
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The above lemma justifies the following definition; the minus sign in the
definition, found in most books, is for later convenience.

Definition. Let M C R3 be a smooth surface, let x: U --> M be a coordinate
patch and let p E x(U) be a point. The Weingarten map of M at p is the map
L: TpM --> TpM given by L(v) = for all v E TpM. Q

There is a Weingarten map for each point p in the surface, but since there
will never be any ambiguity about the point p under consideration, we use the
letter L to denote the Weingarten map at each point. Although we chose a
coordinate patch in order to have a Gauss map, if we had chosen a different
coordinate patch the only possible change in the Weingarten map could be its
sign, since the vector field n could at most change sign. Hence L is well-defined
up to ±; the sign cannot be chosen in any intrinsic way.

The following lemma, which gives a crucial property of the Weingarten
map, is derived straightforwardly from Lemma 5.6.4 (i), and we omit the proof.

Lemma 6.2.4. Let M C R3 be a smooth surface, let x: U -> M be a coordinate
patch, and let p E x(U) be a point. The map L: TpM -> TpM is a linear map.

Example 6.2.5. (1) Let p be a point in a surface M such that p has a flat open
neighborhood. In the flat open neighborhood the normal map is constant, and
thus the directional derivative of the normal map in any direction is zero. The
Weingarten map is thus the zero map.

(2) We continue Example 6.1.1 (1). By the symmetry of the sphere it is clear
that the Weingarten map is the same at all points of the sphere, and that at any
point p E SR the Weingarten map has the same effect on all vectors in TpSR.
Hence, we only need to compute the Weingarten map acting on one tangent

vector at one point. Let p o , and let v i E TpSR. The curve
R

(00)0
c: (-7r/2, Tr/2) -- SR given by

R cos

c(t) = R sin R

0

has c(O) = p and c'(0) = v. The definition of the directional derivative and a
simple calculation now show that
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0
=-(noc)'(0)=-R I = - v.

0

By symmetry it follows that L is simply R times the identity map. 0

The Weingarten map very much depends upon the way in which the surface
sits in R3. A bug living on a surface, that could not see off the surface, could
not determine the Weingarten map.

For ease of computation we make the following definition.

Definition. Let M C R3 be a smooth surface, let x: U -* M be a coordinate
patch and let p E x(U) be a point. The second fundamental form of M
at p is the bilinear form II.: TPM xTpM -+ R induced by the linear map
L: TpM -> TPM, that is

lip (v, w) = (L(v), w)

for all v, w E TPM. We let II denote the second fundamental form at all points
p in x(U).The second fundamental form of M is the collection, denoted II,
of all functions lip at all points p E M. 0

As for the Weingarten map, the second fundamental form is an extrinsic
quantity, and is only determined up to f.

Example 6.2.6. We continue Example 6.2.5. (1) Since the Weingarten map in
this case is the zero map, the second fundamental form is the constantly zero
bilinear form.

(2) Since the Weingarten map at each point is R times the identity map, the
second fundamental form at each point is

II(v, w) = (I v, w) = R (v, w). 0

Having used coordinate patches so far only to determine a choice of normal
vectors, we now turn to calculations making specific use of a given coordinate
patch x: U -+ M. The vectors (xI, x2) form a basis for TPM, and we can use
this basis to compute matrices for the Weingarten map L: TPM TPM and the
second fundamental form lip: TPM x TPM -+ R (as discussed in Section 5.5);
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we will denote these matrices C L 1 L 12 111and 112 f respectively, ab-
L21 L22 121/ \ 122 /

breviating them (Lid) and (lid). We can think of the Li! and the l,j as functions
U - R for i, j = 1, 2; it will follow from Equations 6.2.1 and 6.2.3 below that
the Lid and lil are smooth functions. For ease of notation we will usually not
write the variables in the Lil and lid.

Since the bilinear form II is the bilinear form induced by the linear map L,
it follows from Lemma 6.2.1 that

(lii) = (L1 )' (gii),
noting that (gig) plays the role of the matrix G in the lemma. Since (gig) is
symmetric, and using standard results about transposes of matrices, we can
solve for (Lid) to obtain

(L1) = (gi!)-1 (li!)'. (6.2.1)

The following lemma shows how to calculate the lid (and hence the Li3) in
terms of the coordinate patch x. As usual it 1 and n2 denote the partial derivatives
of n with respect to the variables s and t.

Lemma 6.2.7. Let M C R3 be a smooth surface, let x: U -* M be a coordinate
patch and let p E x(U) be a point.

(i) (Weingarten Equations) For all i = 1, 2 we have

is, = -L1ixl - L2ix2. (6.2.2)

(ii) For all i, j = 1, 2 the entries of the matrix (lii) can be computed by

lii = -(n1, xj) = (n, xji). (6.2.3)

Proof. (i). By applying Exercise 5.7.2 to the vector field is = n ox1, and using
standard results from linear algebra, we see that

8(nox)
ni = = Vr,r = -L(xi) = -L11 xl - L2i x2,

where all functions are evaluated at x-1(p).

(ii). By the definition of the matrix of a bilinear form, and using the first part
of the above computation, we have
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1,j = II(xi, xj) = (L (x,), x1) = -(os,n. xj) = -(n;, x,),

which is the first equality we are trying to prove. To see the second equality,
observe that (n, xj) = 0. Hence

0= a (n,x1)=(n1,xj)+(n,xj;).
au;

The second equality we are proving now follows.

The following result plays a crucial role in the study of curvature.

Lemma 6.2.8. Let M C R3 be a smooth surface and let x: U -+ M be a
coordinate patch. The linear map L is self-adjoint, and the bilinear form II is
symmetric.

Proof. The symmetry of the matrix (1;j) follows from Lemma 6.2.7 (ii) and the
equality x12 = x21. The rest of the lemma now follows using Lemma 6.2.2.

Whereas the matrix (Iii) is always symmetric, it is not guaranteed in the
above lemma that the matrix (L1j) will be symmetric; the basis {XI, x2) is not
orthonormal, so we cannot use Lemma 6.2.2. Further, using Lemma 6.2.8 we
can re-write Equation 6.2.1 as

(Lj) = (gij)-1 (i ) (6.2.4)

Example 6.2.9. (1) From Examples 6.2.5 (1) and 6.2.6 (1) it follows that for
any coordinate patch for the plane R2 C R3, the matrices (1,j) and (Ltd) are
both zero matrices.

(2) We compute the (l;j) and (L,3) matrices for the saddle surface, discussed in
Example 5.5.1 (2). Using the computations made in that example we see that

0 0 0

X 1 1 x12= 0 , x22= 0 ,

0 0

and

xl x x2
=

1

-t
n

Ilxt Xx2ll 1+s2+t
I
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Using Lemma 6.2.7 (ii) we then have

1

12 21 ,

1 1+s2+t 1 1+s2+t2

0 1 -t
122=C 0 -s 0.

0 1 +s2+t2
1

0 1 -t
111 = 0 -s 0.

0 1 +s +t2
1

0 1 -t
=1 = 1(0

From Equation 6.2.4 it now follows that

1L11 L12

=
1 1 +s2

-St
1

(0(L21 L22) 1+S2 -} t2 ( -St 1+t2) 1+S +t2 (1 0)
I -St 1 +S 2

(1 + S2 + 12)3/2 (1 + t2 -St ) O

Exercises

6.2.1. Describe the Weingarten map for the cylinder S' x R.

6.2.2. For a general monge patch, as parametrized in Section 5.3, show that

(f11 f12
(1j1

1 + (fl )2 + (f2)2 f12 f22

where f, and f2 are the partial derivatives of f .

6.2.3. Find (1;j) and (L,) for the torus as parametrized in Section 5.3.

6.2.4. For a general surface of revolution, as parametrized in Section 5.3, show
that

(i )_
1

(r,z,,-r,,z,
0

(r')2-+(Z,)2 0 rz
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6.2.5. For the right helicoid, as parametrized in Section 5.3, show that

1 0 6 1 0 b

l0 = and L,j =
b +t b 0 b +t b 0

6.2.6. For a general rectifying developable surface, as parametrized in Sec-
tion 5.3, show that

l 0 -r(s)
t`+1) 1 + t2r2(s) ( -r(s) K(s) + t2K(s)r2(s) '

where K (s) and r (s) are the curvature and torsion of the curve c.

6.2.7*. Let M C R3 be a smooth surface, and let Z: M --> R3 be a smooth
vector field such that Z(p) is orthogonal to TM for all p E M. If P E M is a
point and v E TpM is a vector, show that

II(v, v) = --
I

IIZ(p)II
(DZ(p) v, v).

6.2.8*. Let M and -F be as in Exercise 5.9.10. If p E M is a point, let L I
denote the Weingarten map of M at p and let L2 denote the Weingarten map of
F(M) at F(p). Show that L2(v) = R Li(R-'v) for all u E TF(p) F(M).

6.3 Curvature - Second Attempt

The definition of curvature is now easy, using the tools we have developed. The
Weingarten map summarizes how the normal vector field is changing at each
point in the surface. Since curvature should assign a single number to every
point on the surface, we need to squeeze a single number out of the Weingarten
map; the determinant and trace are the two obvious candidates to get a number
out of a linear map. (Recall that the concepts of "determinant" and "trace"
apply to linear maps, not just matrices.)

Definition. Let M C R3 be a smooth surface. We define two functions
K, H: M -+ R as follows. For each point p E M let L be the Weingarten
map of M at p, and define
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K(p) = detL and H(p) = 2 trL.

The number K (p) is called the Gaussian curvature at p, and the quantity H (p)
is called the mean curvature at p. 0

To see whether the choice of Weingarten map (which is only defined up
to ±) has any effect on the above definition, note that if F: lit2 -+ 1R2 is a
linear map then det(- F) = det F and tr (- F) = -tr F (this uses the even-
dimensionality of the vector space R2). It follows that K is independent of the
choice of Weingarten map, whereas H is only defined up to ±.

According to Lemma 6.2.8 the linear map L is self-adjoint at each point p in
the surface. Using the finite-dimensional spectral theorem for self-adjoint linear
maps (see for example (LA1, p. 193]) we deduce that L has two real eigenvalues
(not necessarily distinct), denoted k, and k2; we label the eigenvalues so that
k, > k2. (The numbers k, and k2 are really functions of M, but we drop the
arguments.) If k, = k2 then all vectors in TTM are eigenvectors; if k, # k2,
then by the spectral theorem the eigenvectors for k1 and k2 are orthogonal. We
then deduce from the definition of determinant and trace that

K(p) = k, k2 and H(p) =
1

2(k, +k2).

Since these eigenvalues are of such significance geometrically, we give
them a name.

Definition. Let M c R3 be a smooth surface and let p E M be a point. The
eigenvalues k, and k2 of the Weingarten map of M at p are called the principal
curvatures of Al at p, and their eigenvectors are called the principal directions
of M at p. 0

Both Gaussian and mean curvature were defined using the Weingarten map,
which depends upon the way in which the surface sits in R3. Thus, neither type of
curvature appears at first glance to be intrinsic, which was one of the properties
we postulated for curvature in Section 6.1. Remarkably, however, Gaussian
curvature turns out to be intrinsic even though it is not intrinsically defined.
Gauss was so taken by this fact that he called it the Theorema Egregium, which
means the outstanding (or remarkable) theorem in Latin. We will prove this
theorem in Section 6.5. Mean curvature is definitely not intrinsic. Though mean
curvature is still quite useful, Gaussian curvature is universally accepted as "the
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curvature" for surfaces; if one encounters the unadorned word "curvature" in
reference to surfaces, the reference is virtually always to Gaussian curvature.
We will stick to Gaussian curvature from now on, except in some examples of
calculations.

We can now compute Gaussian and mean curvature in a few simple cases.

Example 63.1. We continue Example 6.2.5. (1) The Weingarten map in this
case is the zero map, and both its determinant and trace are zero. Therefore
the Gaussian and mean curvatures are both zero for a point with a flat open
neighborhood.

(2) The Weingarten map at each point is R times the identity map, and the
determinant of this map is R and the trace is R. Hence the Gaussian curvature
of any point on the sphere of radius R is R , and the mean curvature is R. As
expected, a sphere of larger radius has smaller curvature, and as the radius goes
to infinity the curvature goes to zero (which is reasonable, since as the radius
goes to infinity the sphere looks locally more and more like a plane). 0

To get a better feel for Gaussian curvature let us return to our original at-
tempt at defining curvature in Section 6.1 via curves through a point p in a
surface M C R3. We considered curves obtained by intersecting the surface M
with planes S2 C R3 that contained p and were parallel to A(p). To compute
the planar curvature of these curves we will need to use oriented planes. Ob-
serve that oriented planes containing p and parallel to n(p) are in one-to-one
correspondence with unit vectors in Tp M. For any such vector v, let 92 be the
oriented plane in R3 containing p and parallel to the plane spanned by the vectors
{v, n(p)}, with the orientation of S2 given by the ordered basis {v, h(p)} (that
is, we consider a rotation of the plane taking v ton (p) to be counterclockwise).
Conversely, for any oriented plane 0 containing p and parallel to h(p), let vo
be the unique unit vector in TpM such that f2 is parallel to the plane spanned by
the vectors {vn, n(p)}, and such that the oriented basis {vn, n(p)} corresponds
to the orientation of 0.

Let 0 be an oriented plane containing p and parallel to h(p). By Exercise
6.1.1 we know that there is some injective smooth curve cn: (-E, E) -+ M for
some number E > 0 such that cn((-E, c)) is an open subset of u fl M and
cn(0) = p. Without loss of generality we may assume that the curve cn is unit
speed, and that cn (0) = vn. Since cn is contained in n it is a planar curve, and
thus we can compute its planar curvature k using the method of Section 4.7,
making use of the orientation of 0. The following proposition, the importance
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of which becomes apparent with the subsequent theorem, relates the geometry
of M and the curvature k(0).

Proposition 6.3.2. Let M C 1R3 be a smooth surface, let x: U -- M be a
coordinate patch and let p E x (U) be a point. If St is an oriented plane
containing p and parallel to n(p), and if co: (-e, E) -* M is an injective
smooth curve such that cn((-E, E)) is an open subset of 0 fl M and cn(0) = p,
then

IIp(vn, vn) = K(0),

where k is the planar curvature of co.

Proof. By choosing E > 0 small enough we may assume that the image of cn
lies in x(U). By the definition of n we see that

(n o cn(t), cn(t)) = 0

for all t E (-E, c). Taking the derivative of both sides of this equation and
rearranging we have

((n 0 cn)'(t), cn(t)) (n" o cn(t), ca" (t)). (6.3.1)

Next, combining the fact that co is unit speed with Equation 4.7.1 we know

c" (t) = T'(t) = k(t)N(t). (6.3.2)

Because rotation from vo to it (p) is considered counterclockwise, we have
N(0) = h(p). Thus

cn(0) = ic(0)n(p). (6.3.3)

Using the definition of the directional derivative and the above observations we
now compute

IIn(vn, vn) _ (L(vo), vn) = vn) = - (n o c'(0), c'(0))
_ (n o ca (0). c"Q (0)) = (A (p), k(0)i (p)) = ic(0).

The following theorem gives the relation of the curvature of curves in a
surface to the curvature of the surface itself.



6.3 Curvature - Second Attempt 285

Theorem 6.3.3. Let M C R3 be a smooth surface and let p E M be a point.
The principal curvatures k, and k2 of M at p are the maximum and minimum
values of I lr,(v, v) over all unit vectors v E TPM. If v is any such vector, then

I /P (v, v) = k, cos' 9 + k2 sin2 9,

where 9 is the angle between v and the eigenvalue for k,. If k, 0 k2, the
eigenvalues for k, and k2 are the only critical points for I Ip (v, v) thought of as
a. function of 0.

The formula for IIp(v, v) in this theorem is called Euler's formula. Com-
bining Theorem 6.3.3 with Proposition 6.3.2 we see that k, is the maximal planar
curvature of any of the curves cu, and k2 is the minimal such curvature. Thus
the Gaussian and mean curvatures can be calculated from the planar curvatures
of curves in the surface by multiplying and averaging respectively the maximal
and minimal such curvatures. We have as a consequence of Theorem 6.3.3 and
Proposition 6.3.2 the somewhat surprising fact that for any point in a smooth
surface the maximal and minimal planar curvature of the curves co always occur
at perpendicular curves (unless the planar curvatures of all cn are equal).

Proof of Theorem 6.3.3. Let e, and e2 be eigenvectors fork, and k2 respectively.
Since the linear map L is self-adjoint we may choose e, and e2 to be orthogonal
unit vectors (whether or not k, and k2 are distinct). Give TpM an orientation.
By replacing e2 with -e2 if necessary, we may assume that (e,, e2) determines
the given orientation of TpM. Any unit vector v E TPM can thus be written as
v = cos 0 el + sin 9 e2, where 9 E (-ir, nr] is the signed angle from et to v.
We then have

IIp(v, v) = (L(v), v) = k, cos20 + k2 sin2 9,

where the last equality is obtained using the expression for v in terms of 0 and
the orthonormality of the basis (e,, e2}.

We can now view IIp(v, v) as a function of 0, with domain all R; this
function is periodic with period 27r. To find the extrema of lip (v, v) we simply
have to look at the critical points with respect to 0. We compute

d9 lip (v, v) = 2 (k, - k2) sin9 cos0.

If k, = k2 then IIp(v, v) is constant, so every v is both a maximum point and
a minimum point, and there is nothing to prove. Now assume that k, 96 k2.
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The extrema can only occur at 0 = k2 for k E Z. However, 0 = k7r for all
k E Z correspond to v = ±ei, and 0 = (21+1)n2for all k E Z correspond to
v = fee. Substituting 0 = 0 into Euler's formula we have IIP(ei, ei) = ki,
and substituting 0 = n/2 into Euler's formula we have IIP(e2, e2) = k2. Using
the periodicity of IIP(v, v) as a function of 0 it follows that kr and k2 are the
maximum and minimum values, respectively, of IIP(v, V). 0

Example 6.3.4. (1) It is not hard to verify that at any point on the right cir-
cular cylinder S' x III the maximal and minimal curvatures of curves of the
form cn occur at horizontal curves (with curvature 1) and at vertical curves
(with curvature zero). Thus the maximal and minimal curvatures are indeed in
perpendicular directions.

(2) The monkey saddle is the graph of the function z = x3 - 3xy2 (see Figure
6.3.1.). We want to compute the curvature of the monkey saddle at the origin.
Suppose the function Ilo, (v, v) were not constantly zero. By the Extreme Value
Theorem it would have a maximum value and a minimum value that are distinct,
and by differentiability these extrema must occur at critical points. In Figure
6.3.1 there are three equally spaced straight lines through the origin contained in
the surface. These three lines are curves of the form cu for appropriate choices
of S2, and hence by Proposition 6.3.2 the function llo, (v, u), defined over all
unit vectors v E To, M, equals zero for the six unit vectors in To, M along the
three lines. At least one of the extrema of 1Io, (v, v) must occur strictly between
two of these unit vectors. Since the six vectors divide the surface into six pieces,
identical except for sign, then Ilo, (v, v) must therefore have at least six critical
points, impossible by Theorem 6.3.3. Hence 110, (v, v) must be constantly zero
for all unit vectors in To, M. It follows from Theorem 6.3.3 that kI = k2 = 0,
and hence K(03) = H(03) = 0.

This result may seem somewhat counterintuitive, given that the monkey
saddle seems to be "curving" a fair bit at the origin. However, the nature of
smoothness forces a surface that has as many ups and downs as the monkey
saddle does at the origin to flatten out so much that the Gaussian and mean
curvatures must be zero. (In the simplicial case, by contrast, no such restriction
occurs, and a simplicial monkey saddle would have non-zero curvature at the
origin.) 0

Theorem 6.3.3 helps us gain insight into the meaning of the sign of K.
If K (p) > 0 then either k1, k2 > 0 or k1. k2 < 0; this means that the curves
through p corresponding to the two principal directions both either curve in the
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Figure 6.3.1

direction of n(p) or curve away from it. See Figure 6.3.2 (i). If K(p) < 0, then
either k i > 0 and k2 < 0 or vice-versa; this means that one of the curves through
p corresponding to a principal direction curves in the direction of n(p) and the
other curves away from h(p). See Figure 6.3.2 (ii). Finally, if K(p) = 0,
then at least one of the principal curvatures is zero, though not necessarily both.
Note, however, that the curve through p corresponding to a principal curvature
with value zero need not be a straight line, it just needs to have zero planar
curvature. See Figure 6.3.2 (iii).

Exercises

6.3.1. Find the Gaussian and mean curvatures for the cylinder S' x R.

6.3.2. Let c: [a, b] -+ R2 be a smooth curve. The generalized right cylinder
with cross section c is the surface M C R3 given by

x
M = { y E R3

(x)
= c(s) for some s E [a, b] }.
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K (p)>0

0)

K (p)<O

Figure 6.3.2

See Figure 6.3.3. (Observe that a generalized right cylinder is a special case of
a ruled surface, where the rulings are all parallel to the z-axis.) Compute the
Gaussian curvature at all points of a generalized cylinder.

z

Figure 6.3.3
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6.3.3. The "dog saddle" is the surface given by z = 4x3y - 4xy3. Sketch the
graph of this surface. What is the curvature of the surface at the origin?

6.3.4. Let M C R3 be a smooth surface and let p E M be a point. The point
p is called umbilic if all vectors in TPM are principal directions. For example,
on a sphere all points are umbilic. (See [RT, index] for a tangential comment
on the term "umbilic.") Show that if p is an umbilic point then there is some
real number k such that the following properties hold.

(i) The Weingarten map at p is multiplication by the scalar k.

(ii) For any coordinate patch x: U -+ M we have lid (p) = kg;j (p) and n, (p) _
-kx; (p) for i, j = 1, 2 (where as usual p = x-I (p)).

6.3.5. The goal of this exercise is to compute the Gaussian and mean curvature
functions on level surfaces (as defined in Section 5.3). More specifically, let
M C R3 be a smooth surface given as M = F-' (a) for some smooth function
F: V --* R. where V C R3 is an open set and a E R is a number. For this
method to work we will assume additionally that all the mixed second partial
derivatives of F are constantly zero, that is F, f = 0 for i 54 j (this assumption
still allows us to handle the standard quadric surfaces). Our treatment follows
[SK3 vol. III, Chapter 3]. Fix a point p E M.

(1) Let V E TPM be a vector; suppose v = (I2) E R3. Show that

IIP(v, v) _ - (vi)2Fti(P) + (v2)2F22(P) + (v3)2F33(P)
IIDF(P)II

(2) Using Theorem 6.3.3 we can find the principal curvatures of M at p by finding
the maximum and minimum values of IIp(v, v) with respect to the variables v1,
v2 and V3, subject to the constraint that v is a unit tangent vector, this latter
condition is expressed by the equations IIvI12 = I and (v, (DF(p))') = 0. To
find the extrema of Up (v, v) we use the method of Lagrange multipliers, which
states that the extrema will occur at the solutions to the three equations

D(up(v, v)) =,X D(11v112) + µ D((v, (DF(p))'))

IIvII2 = I

(v, (DF(P))`) = 0.

where the derivatives in the first equation are with respect to the v1. Show that
the extrema of IIp(v, v) occur at vi, v2, v3, A and µ satisfying
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0 0 F, vi 0

0 (F22 - A) 0 F2 V2 0
- (6.3.4)

0 0 (F33 - A) F,

VI

0

F, F2 F3 0 -. 0

where for convenience we drop the argument p in the partial derivatives of F.

(3) Show that

A = (vi)2 F + (v2)2 F22 + (v3)2 F33 (6.3.5)

for any solution of Equation 6.3.4.

(4) If A, and A2 denote the maximal and minimal values of A, show that the
maximal and minimal values of IIp(v, v) are

A,_
k,

IIDFII
and k2 =

IIDFII
(5) Show that the matrix in Equation 6.3.4 must have zero determinant, and
derive a quadratic equation for A. Find A,A2 and A, + A2 using facts about the
relation between the solutions of a quadratic equation and the coefficients of the
equation. Deduce that

K(p) =
(F,)2F22F33 + (F2)2F F33 + (F3)2F,, F22

((F, )2 + (F2)2 + (F3)2)2

H(p) _
(Fi)2(F22 + F33) + (F2)2(F,i + F33) + (F3)2(F11 + F22)

2((F, )2 + (F2)2 + (F3)2)3/2

6.2.6. Find formulas for the Gaussian and mean curvature functions of
x2 y2 z2

(1) the ellipsoid
a2

+
62

+ -2 = I;
Y2 2

(2) the hyperbolic paraboloid a2 - Y2 - z = 0.

6.2.7*. Let M and F be as in Exercises 5.9.10 and 6.2.8. Show that K(F(p)) _
K (p) and H(F(p)) = H (p) for each point p E M, where the curvatures at
F(p) are computed for the surface F(M), and the curvatures at p are computed
for the surface M.

A2
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6.4 Computations of Curvature Using Coordinates

Our discussion of Gaussian and mean curvature so far has not involved the use
of coordinate patches (other than to choose a well-defined Gauss map), to em-
phasize that our curvature functions do not depend upon coordinate patches. To
compute the Gaussian or mean curvature for any but the simplest surfaces, how-
ever, coordinate patches are definitely needed. In principle we could compute
K and H by simply taking the determinant and half the trace of (L;j), which is
just the matrix for L with respect to the basis {XI, x2}, and which we saw how to
compute in Section 6.2. To simplify matters we use the following notation and
lemma (though we will at times revert to our previous notation when we need to
use summation notation). As usual, let M C R3 be a smooth surface, let p E M
be a point, and let x: U -s M be a coordinate patch such that p E x(U). We let

E=g1i, F=g12=g21. G=g22

and

A =111, B=lie=121, C=122

Recall from Lemma 5.5.2 that EG - F2 = OOxi x x2112 0 0. The following
proposition is our main computational tool for curvature of surfaces.

Proposition 6.4.1. Let M C R3 be a smooth surface, let x: U -+ M be a
coordinate patch and let p E x (U) be a point. Then

AC-B2K( )-V
'

(6.4.1)EG - F2
and

EC - 2FB + GA
H(P) = (6.4.2)

2(EG - F2)
where A, ... , G are evaluated at x I (p).

Proof. We will drop all arguments p and p from our equations. By Equation
6.2.4 we have

( L L
(6.4.3)

B

L21 L22) - (F G) (B C).
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Hence

A = AC - B2K=detL=detGE G)-I

dett
B C) EG-F2*

The formula for H is obtained by
multiplying`

the two matrices in Equation 6.4.3
together after taking the appropriate inverse, and then taking half the trace.

Because the quantities E, F, G, A, B and C are all smooth functions
U -+ R, so are the functions K and H. For convenience we now summarize
all the formulas needed for calculating the curvature of smooth surfaces:

E = (x1,x1), F = (xi,x2), G = (x2,x2)

XI x x2 x, x x2
n

ix1
X

x2f, EG - F2

A = (n, x,1), B = (n, x12), C = (n, x22)

K- AC-B2 H- EC-2FB+GA
EG - F2' 2(EG - F2)

(6.4.4)

Now comes the payoff - we can compute the curvature of a variety of
surfaces almost mechanically.

Example 6.4.2. We compute the curvature of the right helicoid, using the
parametrization given in Section 5.3. We have

1-t sin s
x, = t cos s

b

x,1

-1 COS s

- , x12t sins =
0

n =

E=b2+t2,

I

x22

cos s
x2 = sin s

0

f- sins
c oss
0

F=O, G=I
bsins

hcoss
-t

bA=O, B= , C=O
b2 + t
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2

K
(b2 +

12)2 H - 0.

Observe that the curvature is always negative (since b is assumed positive), that
the maximal curvature occurs at t = 0 (which is along the z-axis), and that as t
goes to infinity the curvature goes to zero. Since H is constantly zero the right
helicoid is a minimal surface. 0

We now have the tools to ascertain that our definition of Gaussian curvature
is equivalent to Gauss' original definition, as discussed in Section 6.1. Given that
our discussion of Gauss' original definition was not entirely rigorous (especially
when it came to the limiting process involved), we cannot be entirely rigorous
here either. Let M C R3 be a smooth surface, let x: U -+ M be a coordinate
patch, let p E M be a point and let P = x (p). Recall that Gauss' original
definition of curvature was

Areao(A(T)) = ffx-,(T)(nI x n2,n)dsdt
m ) Area(T)T )

ff px- (T) (det(gjl) ds dt

where the terms were defined in Section 6.1. To evaluate this limit (which is
reminiscent of L'H8pital's rule) we use the Mean Value Theorem for multiple
integrals (see [BT, §24]). From this theorem it follows that for each set T there
must be points aT, bT E x-t (T) such that

(nt x n2,n)dsdt = (nI(aT) x n2(aT),n(aT)) Area(x-'(T)),ff-' (T)

fL-I(T)
det(gij) ds dt = det(gij(bT)) Area(x(T)).

Observing that as T -+ (p) then aT - P and bT and making use of
Exercise 6.4.5, we now see that

lim
T-+(p)

Areao(n(T)) = lim (nl(aT) x n2(aT),n(aT)) Area(x-1(T))
Area(T) det(gij(bT)) Area(x(T))

(nt(P) x n2 (p), n(P)) _ K(p) det(gij(P))
= K(p).

Vdet(gjj(P)) det(gij (P))
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Exercises

6.4.1*. For the catenoid (see Exercise 5.5.3) show that

K
7T-1

2)2. H = 0.

6.4.2. Show that for a general monge patch (as parametrized in Section 5.3)

K - fl i f22 - (f12)2

(1 + (fl)2 + (f2)2)2

H = (1 + (fl)2)f22 - fLf2fl2 + (1 + (f2)2)fit

2(1 + (fi)2 + (f2)2)3/2

6.4.3*. Show that for a general surface of revolution (as parametrized in
Section 5.3)

Z,(r,Z - r"z')
K=

r((r,)2 + (Z,)2)2

N - r(r'z" - r"z') + z'((r')2 + (z')2)
2r((r')2 + (z')2)3/2

6.4.4*. For the surface in Exercise 5.5.4 show that

K=-

H=

1

(1 + t2)2
t

2(1 + t2)3/2'

6.4.5*. Let M C R3 be a smooth surface, let x: U -* M be a coordinate patch,
let p E M be a point and let p = x- 1 (p). Show that

(n (j) x n2(P). n(3)) = K(p) det(g1/(P)).
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6.4.6*. Suppose that in a coordinate patch with connected domain we know
that A = B = C = 0 at all points in the domain of the coordinate patch. Show
that the image of the coordinate patch is contained in a plane.

6.4.7*. Suppose that K = H = 0 everywhere on a connected smooth surface.
Show that the Weingarten map at all points is the zero map, and that the surface
is contained in a plane. Give an example to show that K = 0 alone at all points
does not suffice to imply that the surface is contained in a plane.

6.4.8. Suppose that all points on a given connected surface M are umbilic (see
Exercise 6.3.4). Show that the following hold.

(i) The value k as in Exercise 6.3.4 is a constant over the whole surface.

(ii) If k = 0 the surface is contained in a plane.

(iii) If k 0 the surface is contained in a sphere of radius .

6.4.9*. Let M C 1R3 be a smooth surface, let x: U --> M be a coordinate patch,
let p E x(U) be a point and let v E TM be a vector. Let p = x-'(p), and
write v in coordinates as v = v I x I (p) + v2x2 (p). Show that v is a principal
direction of M at p if

(EB - FA)(vl)2 + (EC - GA)v' v2 + (FC - GB)(v2)2 = 0,

where all the functions are evaluated at p.

6.4.10*. Let M C R3 be a smooth surface, letx: U -* M be a coordinate patch,
let p E x(U) be a non-umbilic point (see Exercise 6.3.4) and let p = x- I (P).
Show that xi (p) and x2 (p) are principal directions of M at p if F(p) = 0 =
B(p).

6.4.11*. Let M C R3 be a compact smooth surface. The goal of this exercise
is to show that M has positive Gaussian curvature on some non-empty open
subset. (This result is not true for surfaces in higher-dimensional Euclidean
space.)

(1) Suppose we can show mat there is a single point on M with positive Gaussian
curvature. Use the continuity of K to show that K must be positive on a non-
empty open subset of M.

(2) The rest of the proof is to find a single point of positive Gaussian curvature.
Define f : M -* R by f (x) = (x, x). Show that f takes on a maximal value at
some point q E M.
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(3) Let x: U -+ M be a coordinate patch containing q in its image, and let
4 = X-1 (q). It follows from Exercise 5.9.9 that we can choose x so that x1 (4)
and x2(q) are principal directions of M at q. Show that

(f o x)1(4) = 0 = (f o x)2(4),

(f o x)11(4) < 0, (f o x)22(4) 0,

where as usual the subscripts indicate partial derivatives.

(4) Show that I1 x(4)II > 0 and that

n(4)
x(4)

Iix(4)II
Assume without loss of generality that there is a plus in the above equation.

(5) Let R = IIx(4)II. Show that

A(4) C(4) <
1

E(q) ' C(4) - R

(6) Deduce that K(q) > > 0.

6.5 Theorema Egregium and the Fundamental Theorem
of Surfaces

The two main results in this chapter, which we now present, are the Theorema
Egregium and the Fundamental Theorem of Surfaces. Our discussion of both
theorems relies upon formulas known as the Gauss Equation and the Codazzi-
Mainardi Equations, which are given in Theorem 6.6.2. To prove this theorem,
we start by finding the analog for surfaces of the Frenet-Serret Theorem (The-
orem 4.5.5).

The Frenet-Serret Theorem tells us the derivatives of the vectors T, N
and B. The best analogs we have for surfaces of T, N and B are the vectors
x1, x2 and n, though the latter are not orthononmal. Note also that xl, x2 and
n are only defined for a coordinate patch, not for the whole surface, and that
they very much depend on the choice of coordinate patch; thus we will restrict
our attention to a single coordinate patch x: U -+ M. Since x1, x2 and n are
functions of two variables, we are looking for formulas that express the partial
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derivatives of x1, x2 and n as linear combinations of these three vectors. We
already have one such formula, namely the Weingarten equations from Lemma
6.2.7, which gives the partial derivatives of n. The following proposition gives
us the desired formulas for x, and x2. As usual we will let x;j denote the jth
partial derivative of x;; we will most often drop the arguments in all functions
defined on U.

Theorem 6.5.1 (Gauss Formulas). Let M C R3 be a smooth surface and let
x: U -> M be a coordinate patch. Then for all i, j = 1, 2

x;; = r fix, + rx2 + l;j n. (6.5.1)

Proof. Since (XI, x2, n} form a basis for R3, there must be unique numbers Pi
and Q;j such that

x1 = Pjx, + P,Jx2 + Q1jn, (6.5.2)

for each i, j = 1, 2. Taking the inner product of both sides of this equation with
each of the three basis vectors yields

(x1j, x!) = P jgi2 (6.5.3)

(xi j , x2) = P; j 821 + (6.5.4)

(x;j, n) = Q. (6.5.5)

It follows from Equations 6.5.5 and 6.2.3 that Q;j = l,, . To solve for the P
let us rewrite Equations 6.5.3 and 6.5.4 in matrix form:

91

0821 822)
C(xiJ,x2)

Using Exercise 5.5.9 we have

11 812

2ga

+ua( l
8z1 822

18)
ji2b / 2 au,

u, + au, awe

Multiplying both sides of this last equation by
(g;j)-1,

and then using Lemma
5.7.2, we deduce that P! = q, which is precisely what we needed to show. 0

We now turn to the main technical tool of this section. The equations in this
result, which may appear somewhat unmotivated, are derived from the equality
of mixed third partial derivatives.
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Theorem 6.5.2. Let M C R3 be a smooth surface, and let x: U -1 M be a
coordinate patch. Then the following equations hold.

(i) (Gauss Equation)

2 Jarr arr 2

r111122 - (112)2 = gtrl aul2 au 12 +L(ri2rml - r2irm2)}. (6.5.6)

(ii) (Codazzi-Mainardi Equations)

2

au, auz + >(ri21r1 - 0. (6.5.7)
r=1

2

all, all I + r=1
2 r-=1

Proof. Starting with the Gauss formulas (Equation 6.5.1) and taking the partial
derivative with respect to Ilk of both sides of the equation yields

1 z
al

Xijk = auk xl + NjXlk + auk X2 +
aNk

n + lijnk.

Substituting in Equations 6.5.1 and 6.2.2 we obtain

Xijk = z, + r, (r;kx, + r21kX2 + llkn)
a r;j

L r2i.
+ -x2+r,?)- (rI x, +r x2+12kn)2k 2kallk

a l;
+ n + lij (- L Ikxl - L2kx2)allk

1

auk
+r'r,k+r rk-lijLlk}XI

H?.

+ I auk + r, r2 + r r2 - l;jL2k }x2j )k ij 2k

auk

(6.5.9)

1 2 011
+ Irij Ilk + rijl2k + auk }n.

By interchanging the roles of j and k in the above computation we also obtain
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1

xikj =
I au(k + rikrlj + rkr2j - likLlj }x1

J

2

+ aU,k + r kr'J + r kr2j - likL2j }x2r

+ {rii'j + r kl2j + au
J
k

}n.

(6.5.10)

The equality of mixed partial derivatives implies that Xijk = xikj, so we can
equate the final expressions in Equations 6.5.9 and 6.5.10; since x1, x2 and n
form a basis for R3 we can equate the coefficients of these three vectors in the
two expressions that have been set equal, yielding

a r'. 1
IJ 1 1 2 1 a rik 1 1 2

au +rijrlk +rijrlk - lijL1k =
au j

rikrlj + rikr2j - 1IkL,;,
k

3 (6.5.11)

are
1,1 1,2 + 2 2 ark . l l 2 -

A" +rijrlkrijrlk-lijL2k= au
+rikrlj+rikr2jlikL2j,

(6.5.12)

r ki+ a lij a likr
k1+ r 1ri l 6 5 13

= ll +
2j

+
j lk 2k ( . . )

aUk aUj

Rearranging the terms of Equation 6.5.13 yields

alij alik 2

ll 0 6 5 14
aUk

rj) =rk - r'kL(r Jau
. ( . ).

j
J r=1

Substituting the values i = k = I and j = 2 into Equation 6.5.14 yields
Equation 6.5.7, and substituting in i = j = 2 and k = I yields Equation 6.5.8.

By substituting i = k = 2 and j = 1 into Equations 6.5.11 and 6.5.12 and
doing some rearranging we obtain

1 1 2

1 L L- 1
2

21 rm r' \r r n22 11 12 21 =
a

a
1
-+ ( 22 , 21 m2ju1

u

2 m=1
6 5 15

z ,2 2
,

( . . )

L1

i3 r22 -
1- 1

1a I 21 rm r2rnr22 21
,22 =21 + E( 22 1 21 ,n2)auI )u2 ,n_1
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If we let

a r22 a r2, 2
m m

T` au1 au2 + E(r22rm, - r2,rm2)
M=1

for r = 1, 2, then we can rewrite Equations 6.5.15 in matrix form as

L,: L12 122 Ti

L2, L22) (-l2,) (T2 )
Using Equation 6.2.4 we obtain

(811 812)-1 (111 112) ( 122

_ (T,)821 922 121 122 -121 ) T2

Hence

1 1 1 112 122 _ 911 912 T,

121 122 -121 821 922 T2

Multiplying both sides of this equation out and setting the top entries equal
yields Equation 6.5.6.

Our next result, Gauss' famous Theorem Egregium, is one of the more
amazing and important theorems of differential geometry. It is this theorem
that ultimately makes Gaussian curvature so special. The notion of a quantity
associated to surfaces being intrinsic was discussed in Section 5.9; the Theorema
Egregium states that Gaussian curvature is intrinsic. Though not difficult to state
formally, this theorem is nonetheless somewhat mysterious; it is not clear how
Gauss thought of it, and the proof is not particularly enlightening.

Theorem 6.5.3 (Theorema Egregium). Let M C R3 and N C R3 be smooth
surfaces and let f : M -+ N be a local isometry. Then K(f (p)) = K(p) for
each point p E M, where the curvature at f (p) is computed for the surface N,
and the curvature at p is computed for the surface M.

Proof. It follows from Proposition 5.9.4 (3) that to prove this theorem it would
suffice to show that, given a surface and a coordinate patch for the surface,
Gaussian curvature can be expressed entirely in terms of the functions E, F and
G and their derivatives. More specifically, let M C R3 be a smooth surface, let
x: U -- M be a coordinate patch and let p E x(U) be a point. Throughout this
proof all functions defined on U are to be evaluated at x-1(p).
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From Proposition 6.4.1 we know that

K(P) =
AC - B2
EG-F2

It will thus suffice to show that the quantity AC-B2 can be expressed entirely in
terms of the functions E, F and G and their derivatives (although the individual
functions A, B and C cannot be expressed entirely in this way). Note that
AC - B2 is just another notation for 111122 - (112)2, and Theorem 6.5.2 says that
this quantity only depends upon the g,t and the r . By Lemma 5.7.2 we know
that the q can be expressed in terms of the g,j and their derivatives, and thus
AC - B2 can be expressed in terms of the g,j and their derivatives alone.

To get an intuitive feel for the Theorema Egregium, think of local isometries
as transformations of surfaces that do not stretch or shrink the domain. As
discussed in Example 5.9.5, a classic example of such a map is obtained by
taking a piece of paper and rolling it up into a right circular cylinder. The
Theorema Egregium then says that the Gaussian curvature at all points of a
cylinder must be zero, as indeed it is; in Section 6.3 it was shown that the
Gaussian curvature at all points of a generalized cylinder is zero, and the standard
right circular cylinder is a special case. (This example also shows that the analog
of the Theorema Egregium does not hold for mean curvature, since the mean
curvature of the plane is constantly zero, and the mean curvature of the unit
right circular cylinder is constantly 1/2.) On the other hand, we now see why a
ball cannot be wrapped with wrapping paper without crumpling or tearing the
paper. The curvature of a plane (the paper) is zero at every point, whereas the
curvature at every point of a sphere of radius R is z. Thus by the Theorema
Egregium there can be no local isometry from the plane to the sphere. Any
map from the plane to the sphere must stretch or shrink the plane, and wrapping
paper (unless it is made of rubber) cannot be stretched.

We end this section by pointing out that the converse to the Theorema
Egregium does not hold. More precisely, there are smooth surfaces M C R3
and N C R3 for which there is a smooth function f : M -- N such that
K (f (p)) = K (p) for all p e M, and yet the function is not a local isometry.
A standard example (following [SK3 vol. III, p. 242]) is to let M be the surface
in Exercise 5.5.4 and N be the right helicoid (as parametrized in Section 5.3)
with b = 1. Both these surfaces are covered by one coordinate patch each; let
y: (0, oo) x (-,r, n) -+ R3 denote the coordinate patch for M and let x: R2 -*
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R3 denote the coordinate patch for N. Define a map f : M -- N by setting
f (y ((B) )) = x ((0) ). Using a remark in Section 5.2 it is not hard to see that
this map is smooth.

Using Example 6.4.2 and Exercise 6.4.4 we see that for all (0) in the
domain of y we have

K(f(y(( 8 )))) = K(x((O ))) _ (1 + t2)2 = K(y(( )))
Thus the map f satisfies K (f (p)) = K (p) for all p E M. The f is not a local
isometry, however. If it were a local isometry then by Proposition 5.9.4 the
coordinate patches x and y would have the same metric coefficients (with the
roles of t and 0 reversed), and this is seen to be not true using Exercises 5.5.8
and 5.5.4.

The Fundamental Theorem of Surfaces is the analog for smooth surfaces of
the Fundamental Theorem of Curves (Theorem 4.6.1), which said that curvature
and torsion determine a smooth curve up to rotation and translation of 1[23. We
have no notion of torsion for surfaces, but perhaps the curvature of a surface
determines the surface up to rotation and translation. Both a plane and a right
circular cylinder have constant curvature K = 0, and yet one surface cannot be
obtained from the other by a rotation and translation of R3, so Gaussian curvature
does not determine the surface. (We can map the plane onto the cylinder by a
local isometry, but such a map is not an isometry of all of 1123 taking one surface
to the other.) Perhaps K and H together determine the surface? Unfortunately,
the right helicoid (Section 5.3) and the catenoid (Exercise 5.5.3) have the same
formulas for K and H (see Example 6.4.2 and Exercise 6.4.1), but one surface
cannot be obtained from the other by a rotation and translation of 1123.

The problem is that we are viewing the question incorrectly; we need to
look not at the statement of the Fundamental Theorem of Curves but at its
proof. The reason that curvature and torsion determined the curve up to rotation
and translation is that they were the coefficients in the Frenet-Serret Theorem,
which we integrated to find the curve. The combination of the Gauss Formulas
(Equation 6.5.1) and Weingarten Equations (Equation 6.2.2) are the analogs
of the Frenet-Serret Theorem, so we need to look at the coefficients in these
equations. At first glance there seem to be too many different quantities involved
in these coefficients. However, the I' can be expressed in terms of the gi j and
their derivatives using Lemma 5.7.2, and the L;j can be expressed in terms of
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the g; j and the 1, j using Equation 6.2.4. Thus the eight functions gi j and l; j
determine the coefficients of x1, x2 and n in Equations 6.2.2 and 6.5.1, so they
are good candidates to determine surfaces up to rotation and translation.

Just as there was the restriction that K > 0 in the Fundamental Theorem of
Curves, we can make some obvious restrictions on the g; j and 1; j . First, we know
that g,1 = g1 and l;j = lji. Also, we know that 811 = (xl, x1) = IIx1II2 > 0,
and similarly g22 > 0. Moreover, we know that

811822-(812)2=11xl xx2112>0

using Lemma 5.5.2 (i) and the definition of coordinate patches. This last in-
equality combined with $11 > 0 implies automatically that g22 > 0. There
are no such simple positivity restrictions on the li j. We now ask: Given eight
smooth functions gi j and 1; j defined on an open subset U C R2, satisfying the
symmetry and positivity restrictions just mentioned, is there a coordinate patch
x: U -+ R3 with these functions forming the entries of the matrices for the first
and second fundamental forms of the coordinate patch?

The answer, unfortunately, is still no, as seen in the following example.
Let functions gjj, lq: R2 -+ R3 for i, j = 1, 2 be defined to be the constant
functions

x811 812 _ l11 112 _ 1 0

821 922 -(121 122)-(0 1

Certainly these functions satisfy all the symmetry and positivity conditions
mentioned. We attempt to solve the Gauss formulas and Weingarten equations
for x 1, x2 and n given these gi j and 1q; if there were a coordinate patch x: U --). M
with the desired first and second fundamental form, then these equations would
certainly have a solution. We start by computing the other coefficients for x1,
x2 and n. First, observe that (gjj)-1 is also constantly the identity matrix. Next,
using Lemma 5.7.2 as the definition of the r k J in terms of the g, j, we see that all
the I' = 0, since the g,j are all constant functions. It follows from Equation
6.2.4 that (L1j) is constantly the identity matrix. Substituting these values into
Equations 6.2.2 and 6.5.1 yields

x11 =n, x12 =x21 =0, x22 =n,

n 1 = -x1, n2 = -x2.

(6.5.16)

(6.5.17)
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Suppose there were a solution to this system of linear partial differential
equations. By taking the various partial derivatives of n1 and n2 as given in
Equation 6.5.17, and substituting the values from Equation 6.5.16, we obtain

n11 = -x11 = -n, (6.5.18)

n12 = n21 = -x21 = 0, (6.5.19)

n22 = -x22 = -n. (6.5.20)

Since the only partial derivatives in Equation 6.5.18 are with respect to u 1 we
can solve the equation as if it were an ordinary differential equation, but having
our constants be functions of u2. Thus viewed, Equation 6.5.18 is a standard
differential equation, and its solution is

n(1 ul )) = fl(u2)sinul + f2(u2)cosul, (6.5.21)
U2

for some vector-valued functions fl and f2 of u2 alone. Substituting this formula
for n into Equation 6.5.20 yields

f1'(u2) sin ul + f2 (u2) cos ur = -fl(U2) sin ul - f2(u2) cos ul. (6.5.22)

Equating coefficients we see that fi"(u2) = -fl(U2) for i = 1, 2. As before,
we deduce that

ff (U2) = Al sin u2 + Bi cos U2 (6.5.23)

for i, = 1, 2, where the A; and Bi are constant vectors. By substituting Equation
6.5.23 into Equation 6.5.21, and then plugging the resulting expression for n
into Equation 6.5.19, the reader can verify that A 1 = B1 = A2 = B2 = 0.
Thus n is the zero function. It follows from Equation 6.5.17 that x1 and x2 are
constantly zero, which is certainly never the case in a coordinate patch. Hence
there can be no coordinate patch with the desired first and second fundamental
form.

What went wrong in the above attempt was nothing more than our overly
high expectations. Unlike ordinary differential equations, for which there are
nice existence theorems, there are no Such simple existence theorems for partial
differential equations, so we should not have expected a solution for any choice
of Xij and 1;; subject only to our simple symmetry and positivity conIltions.
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It turns out that in order to guarantee solutions to partial differential equations
certain integrability conditions must be satisfied; we will not state these con-
ditions in general (see [SK3 vol. I, Chapter 6] or [FL, pp. 92-101]), though in
essence the integrability conditions express the equality of mixed partial deriva-
tives. In our particular situation these integrability conditions should be some
equations that the gi j and lij must satisfy for any coordinate patch. Remark-
ably enough, the necessary equations are precisely the Gauss Equation and the
Codazzi-Mainardi Equations (Theorem 6.5.2).

Theorem 6.5.4 (Fundamental Theorem of Surfaces). Let U C R2 he a con-
nected open set. Suppose that there are eight smooth functions gi j , I: U -- R
for i, j = 1, 2 satisfying the following two conditions.

(I) gij = gji,

for all i, j = 1, 2, and

and lij = lji

gli > 0, and 911922 - (912)2 > 0.

(2) If eight functions r : U -+ R, for all i, j, k = 1, 2, are defined by

I -I
JL

P la t _(Itj ) = 1 (ii g12) ( out - auj au1

r2 J 2 `921

922

J J 09,2 - 191.1ri Jut + auk Jut
then

2 arr arr 2

111122 - (112)2 = E glr
22 _ 21 + (r22rm1 - rm rm2)21

r=1 au1 8u2 m=1

2
a112 a 111 + L(r12lrl - -r142) = 0,
all, au2 r=1

a
2

+ L(r221r1 - r211r2) = 0.
a1121 au21

r
2 r=1

Then for each point p E U there is an open subset V C U containing p and
a coordinate patch x: V -* R1 for which (gij) and (lij) are the matrices for
the first and.second fundamental forms respectively. Any one such coordinate
patch call be obtained from anv other by a rotation and translation of R'.
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Proofs of this theorem may be found in [DO1, p. 311] or [SK3 vol. III,
p. 79]. The connectivity of the set U in the theorem is needed to insure the
uniqueness of the image of x up to rotation and translation, since if U were not
connected we could rotate and translate the image of only one component.

Exercises

6.5.1*. Let M C R3 be a surface and let x: U -+ M be a coordinate patch.
Suppose that x has metric coefficients E = I and F = 0 on all of U. This
exercise has two steps.

(1) Express the quantity AC - B2 in terms of G.

(2) Show that

1 a2 /Kox=- as2,IG

6.5.2. Find a formula for the Gaussian curvature at all points of a rectifying
developable surface (as parametrized in Section 5.3). Deduce that K < 0 at all
points on the surface, and that K(x((" ))) = 0 iff i(s) = 0.

6.5.3. Let functions gig, Ii j: R2 -+ R3 for i, j = 1, 2 be defined by

(8ii 812) _ ((u1)2+1 0)
and (111 112 = 1 0).

g21 922 J J \ 21 122 ) 0 U1

Is there a coordinate patch x: R2 -3- R3 with these g;j and lij ?

Endnotes

Notes for Section 6.1

Gauss laid out the foundations of modem differential geometry in his landmark
work [GA]. See [SK3 vol. II, Chapter 3] for an exposition of Gauss' original
approach restated in more modern terminology. The importance of Gauss' work
cannot be overestimated.
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Notes for Section 6.2

(A) Defining curvature via the Weingarten map is not the only possible approach
for surfaces, though all approaches yield Gaussian curvature. See [SK3 vol. II]
for a variety of approaches in the more general setting of manifolds, and [OS2]
for a survey of some recent work on curvature.

(B) In some books the Weingarten map is referred to as the shape operator.

(C) Unlike the notation (gi j ), which is fairly universal, there is no universal
notation for the matrices of L and II.

(D) Although we will be sticking to the matrix equation given in Equation
6.2.1, the reader might find in other differential geometry books that the same
equality is expressed by equations of the form

2

Lij = rgirlrj, (6.E.1)
r=1

where the gki denote the entries of the matrix (gi j)- to obtain Equation 6.E.1
simply multiply out the right hand side of Equation 6.2.1 using the g'ki nota-
tion and take a typical element. Equations of the sort seen in Equation 6.E.1,
involving a careful use of subscripts and superscripts, predominated in older
treatments of differential geometry, and are still often used by physicists (for
example, in general relativity). Though the eyesore of indices gets worse in
higher dimensions, if we want to do computation using coordinate patches in
higher dimensions the use of such formulae is probably unavoidable; in the case
of surfaces we can fortunately reformulate everything in terms of matrices (in
higher dimensions we would need something like n x n x . . . x n "matrices").
See [SK3 vol. II] for a very thorough comparative treatment with and without
indices.

Notes for Section 6.3

(A) Mean curvature is particularly useful for the study of minimal surfaces;
see [OS1], [DO1, §3-5] or [SK3 vol. III, Chapter 3].

(B) The reader might wonder why something called Euler's formula appears
after we have defined something called Gaussian curvature, since Euler lived
before Gauss. If we combine Proposition 6.3.2 with Theorem 6.3.3 we see that
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Euler's formula can be stated without any reference to the second fundamental
form, and that it is really a theorem about the curvature of certain curves in
surfaces; the curvature of curves was known by Euler's time.

Notes for Section 6.4

The notation E, F and G was used by Gauss, and is quite standard. The use
of A, B and C is not standard, but there appears to be no standard usage in this
case.

Notes for Section 6.5

Another proof of the Theorems Egregium can be found in [SK3 vol. II, chapter
3], who claims that this proof is not all that different from Gauss' proof. This
other proof is simply a long calculation, but it has the advantage of avoiding the
Christoffel symbols entirely.



CHAPTER VII

Geodesics

7.1 Introduction

Geodesics are curves in surfaces that play a role analogous to that of straight
lines in the plane. Straight lines in the plane have three important properties:

(1) There is a unique straight line containing any two distinct points;

(2) the straight line between any two points is the shortest path between the
points;

(3) a straight line "does not bend to the left or right as we travel along it." (This
could be restated more precisely by saying that some appropriate derivative is
constant.)

Although all three of these properties hold simultaneously for straight lines
in the plane, things are not so simple on more general surfaces. Consider driving
on a road that is part of a great circle on Earth, that is, a circle of largest possible
diameter, such as the equator or a longitude. It would feel as if you were going
in a straight line, since relative to Earth you would not be veering to the right or
the left. Thus, whatever a rigorous definition of our notion of "straight lines"
on surfaces might be, great circles intuitively satisfy property (3). On the other
hand, they do not satisfy either property (1) or (2). For property (1), observe
that there are infinitely many longitudes between the North and South poles on
the Earth. For property (2), take two nearby points on a sphere, and join them
by the piece of the great circle that goes around "the long way." Such a great
circle still doesn't bend, but it is certainly not the shortest path between the two
points.

We see that not all three of the properties (1)-(3) will always hold simulta-
neously, and we thus have to choose the most useful of the three properties to
use as the basis for defining geodesics. Though it may appear at first to be the
least appealing, we choose property (3). This property is a local property (that
is, it depends only on what is happening near a given point), making it more
suitable to differential methods. Properties (1) and (2) are, by contrast, global
properties, since they need to take into account what happens at possibly far
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away points. We now turn to a more precise look at property (3), though we
will return to properties (1) and (2) briefly later on.

7.2 Geodesics

What criteria can be used to generalize property (3) to surfaces? We note that
nothing as simple as requiring curves to have zero curvature as curves in R3
can be used, since a great circle on a sphere does have non-zero curvature when
viewed as a curve in R3, and yet it is what we want to call a geodesic. Rather,
we use the idea of vectors remaining parallel as they are moved around on a
surface. The concept of "parallel" is really in the eye of the beholder. Suppose
that you are driving along a straight road (which is a great circle on the surface
of Earth), and suppose you are holding a stick out straight in front of your car.
Since you are driving on what appears to you to be a straight road, and since the
stick is always pointing straight in front of your car, you would certainly say
that the stick is being held parallel to itself at all moments. However, if someone
were looking down at you from outer space, the stick would not appear to be
kept parallel to itself, since as you drive around Earth the direction of the stick
in space changes. We need to be able to see things from the point of view of a
person on the surface.

Let us rephrase this idea in terms of vector fields. When does it happen
that from the point of view of a creature on the surface, a vector field along a
curve on the surface appears as if it remains parallel to itself along the curve?
Given that we consider all vectors as being translated so as to start at the origin,
what we want is a vector field that appears constant to a creature on the surface.
Consider the fact that when we stand at a particular spot on Earth, the plane we
think of as Earth is really just the tangent plane to Earth at the point in question.
To calculate the rate of change of a vector field along a curve in a surface from
the point of view of a creature on the surface, we thus only want to consider
the component in the tangent plane of the rate of change of the vector field.
This is precisely what Z- was defined for in Section 5.6. Let M C R3 be a
smooth surface, let c: (a, b) -+ M be a smooth curve and let Z: (a, b) -+ R3
be a smooth vector field along c that is tangent to M along c. The vector field
Z appears to be constant from the point of view of a creature on the surface if
°z = 0 at all points t E (a, b).
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Rather than considering all vector fields along a curve c in a surface, we
are really interested in the one vector field along c that best tells us about the
way in which c is bending, namely c' (which is necessarily a tangent vector
field). A curve c will appear not to be bending to the right or left to someone
travelling along the curve precisely if the vector field c' appears to be parallel
to itself along c; hence the following definition.

Definition. Let M C R3 be a smooth surface, and let c: (a, b) -+ M be a
smooth curve. The curve c is a geodesic if

Dc'(t)
dt

for all t E (a, b). 0

Example 7.2.1. (1) We want find all geodesics in the plane R2. As mentioned
in Example 5.4.1 (1), the tangent plane at each point of R2 is simply R2 itself.
Thus a tangent vector field along a curve in R2 is simply a vector field in R2
along the curve; the derivative d of such a tangent vector field must also be a
vector field in R2, thus for tangent vector fields along a curve in R2 the covariant
derivative ° equals the regular derivative A. Therefore a geodesic in the plane
will be a curve c: (a, b) -+ R2 such that

dc'(r) = c"(t) = 0
dt

for all t. It follows that c has the form

c(t)=(nt+q), (7.2.1)

and thus c is a straight line. Conversely, any straight line in the plane can be
parametrized as in Equation 7.2.1, and is therefore a geodesic.

(2) We show that every great circle on the unit sphere S2, when parametrized
correctly, is a geodesic. By the symmetry of the sphere it will suffice to show
that the equator of S2, which we parametrize as c: (-n, n) S2 given by

Cost

c(t) = sin t
0

is a geodesic. It is straightforward to compute that
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dc'(t) -cost
- sin t - (t )

dt
0

= c .

Recall that S2 has the property that the normal vector at each point p E S2 is
simply p (or -p). It follows that the projection of !L onto the tangent plane
Tc(,)S2 is always zero, and hence dr` = 0.

Contrary to our intuition, in which the image of a curve should either
be a geodesic or not, according to our definition a geodesic is a particular
parametrization of a curve. For example, a careful examination of Example
7.2.1 (1) reveals that it was only certain parametrizations of straight lines that
were shown to be geodesics, namely the linear parametrizations. By contrast,

consider the curve c: (-oo, oo) -+ R2 given by c(t) = I r' ). The image of
0

this curve is clearly a straight line. However, computing as we did in Example
7.2.1 (1), we see that

Dc'(t) _ dc'(t) (3t2

dt - dt - 3t2
0

which is not zero when t 0 0. Thus the choice of parametrization really
does matter in determining whether a given curve is a geodesic or not. The
following lemma, which will be used in Chapter VIII, shows the extent to
which reparametrizations of geodesics are still geodesics.

Lemma 7.2.2. Let M C R3 be a surface and let c: (a, b) -+ M be a non-
constant geodesic. Then the following hold.

(i) The curve c has constant non-zero speed; that is, I1c'(t)JI is a non-zero
constant for all t E (a, b).

(ii) Let g: (d, e) --). (a, b) be a smooth map for some open interval (d, e).
Then cog is a geodesic ifg has the form g(s) = ms + n for some real
numbers nt and n.

(iii) Suppose that c is a homeomorphism from (a, b) onto c((a, b)). If
c: (d, e) M is a curve with "c((d, e)) C c((a, b)), thencisageodesic
f it has constant speed.

Proof. (i). Using Lemma 5.6.8 (iii) and the definition of a geodesic we compute
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d IIc'(t)II2 =
d

(c'(t), c'(t)) =
2(Dc'(t),

c'(t)) = 0.
dt dt dt

Thus IIc'(t)II is a constant. Since we are assuming that c is not constant, we see
that IIc'(t)II 0.

(ii). Let c = c o g. Suppose first that g(s) = ms + n for some real numbers m
and n. If we let t = g(s), we now have F(s) = m c'(t). Hence

Dc'(s) _ Dc'(s) dt Dmc'(t) 2 Dc'(t)

ds dt ds dt m = m dt =
0,

where the last equality holds because c is a geodesic. Hence c is a geodesic as
well.

Now suppose that c is a geodesic. By part (i) both c and c have constant
speed; say IIc'(t)II = p for all I E (a, b) and IIc'(s)II = q for all s E (d, e),
where p and q are constants. By hypothesis on c and part (1) we know p # 0.
By the definition of c we have

q = IIF'(s)II = III (t)II Ig'(s)I = plg'(s)I

for all s E (d, e). It now follows from the smoothness of g that g'(s) is either
constantly v or constantly - p, and therefore g has the desired form.

(iii). If c does not have constant speed then it clearly cannot be a geodesic by
part (i). Now assume that -Chas constant speed. If c has constant speed zero
the result is trivial, so assume otherwise. Let so E (d, e) be fixed. We need to
show that °d (s (so) = 0. We now proceed similarly to the start of the proof of
Proposition 5.2.5 (i). By the injectivity of c it follows that there is a unique point
q E (a, b) such that c(q) = "c(so). By part (i) of this lemma c'(q) 96 0. Using
Exercise 4.2.1 there is a number S > 0, an open subset V C R3 containing
c(q) and a smooth map G: V -+ R3 such that G(V) is open in R3, that G is a
diffeomorphism from V onto G(V), that c((q - S, q + S)) C V and that

t
G o c(t) = 0

0

for all t E (q - S, q + 8). For convenience, let J = (q - S, q + S). Let

7r1: R3 -+ R be projection onto the first coordinate, that is trI ((r)) = x for
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all C Y /
E R3. The map n, is continuous, as seen in Example 1.3.1. Observe

that n, o G(c(J) o cIJ = 1 j, and since cl J is bijective it is straightforward to
verify that (cIJ)-' = n, o GIc(J).

Since c is a homeomorphism onto its image, it follows that c(J) is open
in c((a, b)). We can view c as a map (d, e) -+ c((a, b)), and hence by the
continuity of c there is some number ,< > 0 such that

(so - E, so + E) C (C(J)).

For convenience let c. denote the restriction of c to (so - E, so + E). We now
define a map h: (so - E, so + E) -+ J by letting It = n, o G o c.. The map It is
smooth since it is the composition of smooth maps. We now compute

coh=clJoh=clJo(7r, oGoc.)
=cIJo ljo(n, oGlc(J))oc.
= cIJ o (7r, o Glc(J) o cIJ)-' o (n, o Glc(J)) o c.

= c11o (cIJ)-' o (7r, o GIc(J))-' o (n, o Glc(J)) o c. = c..

It now follows that c.'(s) = c'(h(s)) h'(s) for all s E (so - E, so + E), and thus
IIc.'(s)II = Ilc'(h(s))II Ih'(s)l. Since both c and c. have constant speed, and
since c has non-zero speed, it follows that Ih'(s)l is a constant. Since It is a
smooth function, it follows that h' must be continuous; hence h'(s) is a constant,
say h'(s) = m. Thus h(s) = ms + it for some real number n. It follows from
part (ii) that c. is a geodesic. Hence

s)
(so) = D (s) (so) = 0. O

Ds
dsd

For later use we need the following definition and lemma.

Definition. Let M C J3 be a smooth surface and let A C M be an arc (as
defined in Section 2.2). The arc A is a regular arc (respectively a geodesic
arc) if there is a regular curve (respectively a geodesic) c: (a, b) -* M such
that A = c([x. y]) for some closed interval [x. y] C (a. b). 0

Lemma 7.2.3. Let M C JR3 be a smooth surface and let A C M be a regular
arc. If c: (a, b) - M is a regular curve such that A = c([x. y]) for some
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closed interval [x, y) C (a, b), then cI [x, y] is injective, and c maps x and y to
the endpoints of A.

Proof. Exercise 7.2.6.

We have gone about as far as we can without using coordinate patches. The
following lemma shows that the criterion for a curve being a geodesic becomes a
system of differential equations when expressed in terms of a coordinate patch.
We will then be able to use standard results about the existence and uniqueness
of solutions of differential equations (summarized in Section 4.2) to determine
the existence and uniqueness of geodesics in certain situations. Let c, ci and c2
be as in Section 5.2.

Proposition 7.2.4. Let M C R3 be a smooth surface, let x: U --> M be a
coordinate patch and let c: (a, b) -+ x(U) be a smooth curve. Then c is a
geodesic iff

Cl" + I, (CI 1)2 + 2r12c,'c2 + 1722 (C21)2 = o,
, 2 2 , , 2 , 2= (7.2.2)

C211 + r 2r,2cI c2 + r22(c2) o,

where the c; and their derivatives are evaluated at t, and the r are evaluated
at c(t).

Proof. We did all the work for this proof when we discussed covariant deriva-
tives using coordinate patches. Consider c' = cI'x1 + c2'x2 as a vector field
along c which is tangent to M along c; applying Proposition 5.7.5 to this vector
field we see that c is a geodesic if

Dc' 2 22r2o(dCk
+L:L:rc;c;xk.

dt
dtk=1 i=1 j=1

Since IX I, x2} is a basis for the tangent plane, this last equation is equivalent to

2

22`

ark
=o

1=1 i=1

for k = 1, 2. The desired result now follows. 0

The following result is a nice application of the above proposition.
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Proposition 7.2.5. Let M C R3 be a surface of revolution with unit speed
profile curve d (t) = (). Then the following hold.

z(r)

(i) Every meridian of M can be parametrized as a geodesic.
(ii) A circle of latitude of M can be parametrized as a geodesic if the

tangent vector to the profile curve at its point of intersection with the
circle of latitude is parallel to the axis of revolution.

Figure 7.2.1

Proof. Since the profile curve is unit speed we know from Exercise 5.7.3 that
I'22 = -rr', i'12 = r2, = r'/r and all other q are 0. We will write t(s) and
0(s) instead of c, and c2 respectively; Equation 7.2.2 thus becomes

t" - rr'(0,)2 = 0, (7.2.3)

0" + 2
-r'0'

= 0,
r

(7.2.4)

where t, 0 and their derivatives are evaluated at s, and r and its derivative are
evaluated at t(s).
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(i) A meridian on a surface of revolution is a curve obtained by holding 0
constant and varying t; such a curve can be parametrized by c(s) =
for some constant 00. We thus take t (s) = s and 8(s) = 00. Hence t" = 0 and
0" = 0' = 0. This parametrization c of a typical meridian therefore satisfies
Equations 7.2.3 and 7.2.4, which proves the desired result.

(ii) A circle of latitude on a surface of revolution is a curve obtained by holding

t constant and varying 0; such a curve has the form c(s) = x((Bto )) for some

constant to. Since t (s) = to it follows that t" = t' = 0. Suppose that this
circle of latitude c is a geodesic. The velocity vector of the circle of latitude is
c'(s) = 0'(s)x2, where for convenience we drop the arguments in x2. Hence
IIc'(s)II = I0'(s)IIIx211. Since c(s) is a geodesic it must have constant speed,
so I0'(s)IIIx211 is a constant. It can be verified that IIx211 = r(t(s)) = r(lo).
Thus I0'(s)I is a non-zero constant. By smoothness it follows that 0'(s) is a
non-zero constant. The curve c must satisfy Equation 7.2.3, so rr' = 0. Since
we always assume that r(to) > 0 for any surface of revolution, it follows that
r'(to) = 0, and this latter condition implies that the tangent vector to the profile
curve at its point of intersection with the circle of latitude is parallel to the axis
of revolution.

Now suppose that the tangent vector to the profile curve at its point of
intersection with the circle of latitude c(s) is parallel to the axis of revolution.
It follows that r'(to) = 0. Since t" = 0, we see that c satisfies Equation
7.2.3. Since we are only claiming that there is some parametrization of the
circle of latitude that is a geodesic, let us choose 0(s) = s. It then follows that
0" = 0, and since t' = 0 we deduce that c satisfies Equation 7.2.4. Hence c is
a geodesic. 0

The reason that we can only prove that some parametrizations of meridians
and appropriate circles of latitude are geodesics is that in general not every
reparametrization of a geodesic is still a geodesic. Also, note that the above
proposition does not claim to characterize all geodesics on surfaces of revolution,
only those geodesics that are meridians or circles of latitude. This proposition
can be used to show that any smooth, injective, unit speed planar curve, with the
property that it does not intersect some straight line in the plane, is actually a
geodesic on some surface. Simply rotate the curve about the line that it does not
intersect, and the curve is then a meridian on the resulting surface of revolution,
which is a geodesic by the above proposition. It turns out that in general any
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smooth, injective, unit-speed curve is a geodesic on some surface, though the
proof is not as simple; see Exercise 7.2.4 for details.

Can any two points on a smooth surface be joined by a geodesic arc? If
so, then geodesics would satisfy the analog of property (1) of Section 7.3.
The example of great circles on the sphere, mentioned in the previous section,
shows that in general we cannot hope to find a unique geodesic arc joining any
two distinct points. Can we always find at least one? Consider the surface
M=R 2 - {O2 ). The geodesics in any subset of the plane are still straight lines
(the same argument used for the whole plane still works here); hence there can
be no geodesic arc in M from (o) to (o), since the line segment from one point
to the other would have to pass though the origin, which is not in the surface.

The Hopf-Rinow Theorem (stated in Section 8.5) says that if a surface has
no "holes" (as in the previous example) then any two distinct points lie on some
geodesic, which furthermore has the shortest length of any curve joining the
two points. The question of what constitutes a hole is subtle, however. An
infinite circular cylinder certainly has a "hole" in a straightforward geometric
sense, but any two points on the cylinder can in fact be joined by a length-
minimizing geodesic. The infinite circular cylinder and a plane with a point
removed are homeomorphic, so whatever is meant by a "hole" from the point
of view of geodesics is not a topological invariant. See see [KL] or [DO1] for
more details.

Instead of trying to join two points by a geodesic, which is tricky, we think
of starting from a point and heading in a given direction. It seems reasonable,
based on our experience on Earth, that, from any starting point, there is one and
only one way to move forward in a given direction if we do not want to feel as
if we are turning to the right or the left as we go forward. We cannot always
expect to continue very far in this manner, since there might be an obstacle in
our path. The following theorem gives the analog of this idea for all surfaces.
For the concept of "direction" we use tangent vectors. The fact that we may run
into an obstacle (such as a hole) is taken into account by the fact that the length
of the geodesic depends upon the starting point and direction.

Theorem 7.2.6. Let M C R3 be a smooth surface, let p be a point in M and
let v E TTM be a vector. Then there exists a number E > 0 and a geodesic
c: (-E, c) -+ M such that c(0) = p and c'(0) = v. The geodesic c is unique
in the following sense: If for some number S > 0 the curve c (-S, S) -+ M is
another geodesic such that F(0) = p and 2F'(0) = v, then F(t) = c(t) for all t
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in the intersection of the domains of the two curves.

Proof. Let x: U -+ M be a coordinate patch such that p E x(U). The proof
consists of applying the existence and uniqueness theorem for the solutions of
ordinary differential equations with initial conditions to Equation 7.2.2. These
differential equations are second order equations, but if we introduce the two
new variables dl = c1' and d2 = c2' we can rewrite the equation as the following
system of first order differential equations:

Cl' = d,

c2' = d2
(7.2.5)di' = -I , (d1)2 - 2r 2dAd2 - r22(d2)2

d2' = -r?1(di)2 - 2I'12did2 - r 2(d2)2,

where the I'
1

are functions of Cl and c2. Rather than thinking of this system
as four equations in four unknowns we can think of it as a single vector-valued
differential equation, the domain of which is

Cl

l
{

di

(d2 l
The initial conditions for our vector-valued differential equation are

c' (0) pi

c2(0) P2

d1(0) VI

d2(0) V2

where x-gy(p) = p = (P) and v = v1xi(p) + v2x2(p). Applying Theorem
4.2.4 to our differential equation and initial condition, we deduce that there is a
number c > 0 and a smooth function C: (-E, E) -+ U x R2, written

fci (t)
C(t) = c2(t)

di(t)
d2(t)

such that the functions Cl (t), C2(t), dl (t) and d2(t) satisfy our system of differ-
ential equations and initial condition. Tracing through our construction we see
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that the curve c: (-E, E) -> U defined by c(t) = x((`'t`) will be a geodesic

with c(O) = p and c'(0) = v. The uniqueness condition in Theorem 4.2.4
guarantees the uniqueness of c. 0

Example 7.2.7. We will show that the only geodesics on the surface S2 are great
circles (or pieces of them). We saw in Example 7.2.1 (2) that all great circles are
geodesics. However, given any point p E S2 and any tangent vector v E TPS2
it is not hard to show that there is a parametrization c: (-oo, oo) -+ S2 of a
great circle such that c(O) = p and c'(0) = v. Theorem 7.2.6 now implies that
any other geodesic d: (-E, c) -- S2 with d(O) = p and d'(0) = v must agree
with c on (-E, c). 0

For later use we need the following definition and lemma.

Definition. Let M C 1R3 be a smooth surface, let p E M be a point and let
v E TPM be a vector. The number p is defined to be

p = lub {r E IR I there is a geodesic c: (-r, r) --* M

such that c(O) = p and c'(0) = v)

if the set is bounded (so that the least upper bound exists), and p = oo if the
set is not bounded. 0

Lemma 7.2.8. Let M C 183 be a smooth surface, let p E M be a point and let
v E TPM be a vector. Then the following hold.

(i)
(ii) There exists a geodesic c: (-p,,, M such that c(0) = p and

c'(0) = v.
(iii) Ifs E 18 - {0} then p,,, = A; ifs = 0 then ps = oo.

Proof. Exercise 7.2.7.

Exercises

7.2.1. Which circles of latitude of the torus, parametrized as a surface of
revolution as in Section 5.3, are geodesics?
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7.2.2. Let c: (a, b) -* R2 be an injective unit-speed curve, and let M C R3
be the right cylinder with cross section the image of the curve c; as mentioned
in Section 5.3 the surface M can be parametrized as the rectifying developable
surface generated by c. Describe the geodesics on M.

7.2.3*. Suppose that a coordinate patch has giI = 1, $12 = 0 and g22 = G for
some smooth function G. Show that the equations for geodesics in this case are

Cl" -
2 au

(c21)2 = 0, (7.2.6)

1 ac i ac (c2,)2

C2 + G au 1 c1 c2 + 2G au2
= 0. (7.2.7)

7.2.4*. Let c: (a, b) -* R3 be a smooth, injective, unit-speed curve. Show
that c is a geodesic on the rectifying developable surface generated by it.

7.2.5*. Let M C R3 be a smooth surface, let p be a point in M, let v E TTM
be a vector and let c: (-e, e) -+ M be a geodesic such that c(O) = p and
c'(0) = v. If A > 0 is any number, define the curve c: (-e/1, E/A) > M
by c(t) = c(At). Show that c is the unique geodesic such that c(0) = p and
c'(0) = Av.

7.2.6*. The goal of this exercise is to prove Lemma 7.2.3. The proof is broken
down into steps.

(1) The map c has constant non-zero speed by Lemma 7.2.2 (i).

(2) Let h: [0, 1] A be a homeomorphism (guaranteed by the definition of an
arc). Consider the map h-1 o c: [x, y] [0, 1]. Suppose that cl[x, y] is not
injective, so that there are points u, v E [x, y] with u < v and c(u) = c(v).
Then h'1 o c(u) = h-1 o c(v). There are now two cases

Case (a): The map h-1 o cI[u, v] is a constant map. Derive a contradiction.

Case (b): The map h-1 o cl [u, v] is not a constant map. Use Exercise 1.6.10 to
find a point z e (u, v) such that h-1 oc is not injective on any open neighborhood
of z. Deduce that c is not injective on any open neighborhood of z. Use Exercise
4.2.5 to show that c is injective on some open neighborhood of z, a contradiction.
Hence cl[x, y] is not injective.

(3) Now suppose that c(x) is not an endpoint of A. Hence h-1 o c(x) is neither
0 nor 1. Use the bijectivity of cj[x, y]: [x, y] --> A and the Intermediate Value
Theorem (Theorem 1.5.4) to derive a contradiction.
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7.2.7*. Prove Lemma 7.2.8.

7.3 Shortest Paths

Though a geodesic arc need not be a shortest path, we now show that a shortest
path must be a geodesic arc. Intuitively, if a path between two points is the
shortest possible between the points, then if we travelled along the path we
would not feel ourselves veering to the right or the left, since doing so would
presumably increase the length of the path.

Theorem 7.3.1. Let M C 1R3 be a smooth surface, let p, q E M be points and
let A be a regular arc in M with endpoints p and q that has the shortest length
of all regular arcs with endpoints p and q. If c: (d, e) -> M is a regular curve
such that A = c([a, b]) for some closed interval [a, b] C (d, e), then cl(a, b)
is a geodesic.

The proof of this theorem will be given after some discussion and a lemma.
We follow [DO1]. (An alternate proof is found in Exercise 8.A1.3, making use
of some technical tools we develop in Chapter VIII.) In analogy to maximum-
minimum problems in Calculus, we will essentially characterize curves of min-
imal length by taking the derivative of the length function of all the curves
between the given endpoints, and then setting the derivative equal to zero.
The collection of all such curves cannot be parametrized by a single variable,
however, but it will suffice to consider a smaller family of curves that can be
parametrized by a single parameter. We start by constructing this family of
curves and proving a lemma.

Let M C R3 be a smooth surface, let x: U -- M be a coordinate patch and
let c: (d, e) --* x(U) be a unit speed curve; we let s denote the variable in c.
We may assume that c is unit speed, since every curve can be reparametrized
as a unit speed curve, and we know that if a curve is a geodesic it must have
constant speed. Let c, c( and c2 be as in Section 5.2. Next, suppose we have
two smooth functions co, icp2: [x, yJ -> R for some x, y E (d, e) with x < y
such that (pi (x) = 0 = cp; (y) for i = 1, 2; in the proof of Theorem 7.3.1 we will
choose particular functions cp(, cp2, but for now it does not matter what these
functions are. By definition (`'(f )) E U for all s E (d, e); it follows from

C (s)
Exercise 1.6.13 that there is some number E > 0 such that
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C1(s) + tcpt(s)" E U
C2(S) + tlp2(s)

for all(") E [x, y] x (-E, E). Hence the function a: [x, y] x (-E, E) -+ x(U)
given by

a( s ) = x( ci(s) +t(pi(s) ) (7.3.1)
t C24) + t(p2(s) )

is well-defined.
We can think of the function a(( )) as a parametrized family of curves,

with one curve in the variable s for each value oft; this family of curves forms
a variation of the restriction of the original curve c(s) to [x, y). Observe that
a((")) = c(s) for all s e [x, y], and that a(( )) = c(x) and a((1)) = c(y)
for all t E (-E, e). See Figure 7.3.1. For later use also note that

as as as

as
I:=o = c '(s) and at 1:=: = 0 = at IS-Y. (7.3.2)

Figure 7.3.1

Next, for each fixed t we can compute the length of the curve a(( )) with
respect to the variables, thus defining a length function A: --> R, where
A(t) is the length of the curve a((; )). More explicitly, we have

A(t) = J y ll all ds. (7.3.3)
as

Observe that A (0) is simply the length of cl [x, y]. The following lemma shows
how to differentiate A.
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Lemma 7.3.2. Let A: (-E, c) --> R be as above. Then there is a number S such
that 0 < S < E and the function A (t) is differentiable on (-8, S); differentiation
can be computed under the integral sign, that is

Ap(t)=J
b e Ilaallds.

at as

Proof. Since c is a unit speed curve we see that

II as It=oll = Ilc'(s)II = 1,

for all s E [x, y]. We can thus apply Exercise 1.6.7 to the continuous function
II to deduce that there are numbers M, S > 0 such that S < e and II as II ?: MII as

for all (l) E [x, y] x (-8, S). Using the infinite differentiability of a, for all t
and the differentiability of II I) away from the zero vector, we deduce that II i II
is infinitely differentiable in the variable t for all t E (-S, 8). The lemma now
follows from a standard result of advanced Calculus concerning differentiation
under the integral sign (see, for example, [BT, §23]).

We are now ready to prove our main result.

Proof of Theorem 7.3.1. Assume that cl(a, b) is not a geodesic. There is thus
some number so E (a, b) such that (so) # 0. Assume that . 2 1 ( s0 ) > 0;

the other case is similar. For later use, note that by smoothness adss > 0 for
all s close enough to so. Let x: U -+ M be a coordinate patch with c(so) E
x(U). Since x(U) is an open subset of M by Proposition 5.2.5, and since c is
continuous, there is some number rt > 0 such that (so - ri, so + ri)c-I (x(U)).
Let x = so - 2 and y = so + ?, so that c([x, y]) C x(U). If cl[a, b] is the
shortest smooth path from c(a) to c(b), then cl [x, y] must be the shortest smooth
curve from c(x) to c(y); for otherwise, find a shorter smooth curve from c(x)
to c(v) and splice it into the original curve c, yielding a smooth curve from c(a)
to c(b) that is shorter than c (we may have to "smooth out" the corners where
we splice, but that is not a serious problem). We now restrict our attention to
the interval [x, y]. Since the rest of the domain of c will have no role from now
on, for ease of notation we will simply use c to denote cl [x, y] (though it will
still make sense to take derivatives at x and y).

Let A: [x, y] --* R be a smooth function such that A(x) = A(y) = 0, that
X(so) > 0 and that A(s) > 0 for all s E [x, y] (there are many such functions,
so pick one). Note that
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x(s)I Dc'(s) I2 > 0
ds

for all s E [x, y], and

(7.3.4)

> 0 (7.3.5)(s)I Ddss)

12

on some interval containing so.
Since D"() is a tangent vector to M for all s E [x, y], then so is A(s)21.

Using an argument similar to the proof of Exercise 5.7.1, there must exist smooth
functions (pi. q: [x, y] --)- IR such that

)'(s) Ddss)
_ Wi(s) xi(e(s)) (7.3.6)

for all s E [x, y]. Observe that Vi (x) = 0 = (pi (y) for i = 1, 2 because of
the hypotheses on X. Using these particular functions tp, and (p2 we can define
the function a: [x, y] x (-E, c) -+ x(U) as in Equation 7.3.1, where c > 0
is some sufficiently small number so that a is well-defined. In addition to the
properties of a mentioned above, we note that by the definition of a, the chain
rule and Equation 7.3.6 we have

2

It-o Vi (s) Xi(C-(s)) =11(s) Ddss) (7.3.7)

We can define the length function A(t) just as before, and this function is
differentiable on some open interval (-8, 8) C (-E, c) by Lemma 7.3.2. Since
c has the minimal length of all smooth curves from c(x) to c(y) by hypothesis,
and since A(0) equals the length of c, it follows from a standard result in
Calculus that A'(0) = 0.

The remainder of the proof will be a calculation that shows that A'(0) < 0,
the desired contradiction. From Lemma 7.3.2 we have

a (as aa)
'(t) = Y a (act y

1 at as' asA'(t)
at as

,

as
ds

2 (k or, 1 /2
ds. (7.3.8)

as ' as

Applying Lemmas 5.6.8, 5.7.8 and 5.6.8 again to the numerator inside the final
integral in Equation 7.3.8, we obtain
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a act, as D clot as D act, act
at as as at as as as at as )

a

-2las (as' at)-(a as' at
By Equation 7.3.2 and the fact that c is a unit speed curve we deduce that

a« clot

as , as) W(s), (s)) = 1. (7.3.10)

Plugging the value t = 0 into the final integral in Equation 7.3.8, and then using
Equations 7.3.9, 7.3.10, 7.3.2 and 7.3.7 we compute

_ y a as as D clot clot

A,(0)= Ias as' at)I`=o-(asas' at)Ir=o}ds

as as s_v ` D as as
_ (as ' at) Ir=o is=x -

(as as ' at ) Ir=O dS
x

0 - y (Dc'(s) X(s) Dc'(s))
ds

as ds
by Equation 7.3.2 and Equation 7.3.7,

- j (s)I Dc's) I2ds < 0,
x

where the last inequality holds by Equations 7.3.4 and 7.3.5. We have thus
obtained the desired contradiction. 0

Exercises

7.3.1. Suppose that a smooth surface M C R3 contains a straight line (for
example, a saddle surface, not to mention ruled surfaces). Is the straight line a
geodesic?

Endnotes

Notes for Section 7.2

(A) The concept of a tangent vector field along a curve in a surface that stays
parallel to itself from the point of view of a creature on the surface is called
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parallel transport, and is important in differential geometry. See [DO1, §4-4]
or [M-P, §4-6].

(B) For further discussion of geodesics on surfaces of revolution, see [DO1,
pp. 255-260] or [SK3 vol. III, pp. 314-3191.

(C) The precise idea that a surface has no "holes," needed to guarantee the
existence of a length-minimizing geodesic joining any two points on the surface,
is the notion of topological completeness (also known as Cauchy completeness);
see [MU2, §7-1]. A compact surface (with no boundary, as we are always
assuming), is topologically complete.

Notes for Section 7.3

The method of proof used in this section, which is quite standard, has other uses
as well; see [DO1, §5-4] and [OS 1].



CHAPTER VIII

The Gauss-Bonnet Theorem

8.1 Introduction

Smooth surfaces can be analyzed geometrically (as in Chapters 6 and 7) and
topologically (since they are also topological surfaces). The Gauss-Bonnet
Theorem, essentially the point toward which this entire book has been aimed,
shows that these two approaches are deeply related. The simplicial Gauss-
Bonnet Theorem (Theorem 3.7.2) has already shown us one connection between
a topological invariant (the Euler characteristic) and a geometric quantity (the
angle defect in simplicial surfaces). Although the statement of this theorem was
somewhat surprising, the proof was not difficult, since both angle defect and
the Euler characteristic were defined in terms of triangulations; indeed, the real
surprise was that the Euler characteristic turns out to be a topological invariant,
that is, it does not depend upon the choice of triangulation of a given surface.

The statement of the Gauss-Bonnet Theorem (which always refers to the
smooth case when unadorned with any adjective such as "simplicial") is very
similar to the simplicial version: The total Gaussian curvature of a compact
smooth surface (obtained by integrating the curvature function) is related to
the Euler characteristic of the surface (thought of as a compact topological
surface). Unlike the simplicial case, Gaussian curvature was defined in a way
that has absolutely nothing to do with triangulations, so the connection between
Gaussian curvature and a triangulation of a smooth surface is much more subtle,
and much harder to prove.

The precise statement of the result we have all been waiting for is the
following.

Theorem 8.1.1 (Gauss-Bonnet Theorem). Let M C R3 be a compact smooth
surface. Then

f4f KdA = 2trX(M).

Before proceeding with the proof of the Gauss-Bonnet Theorem in Sec-
tion 8.4, we develop some admittedly technical material, which gives us a special
type of coordinate patch with nice metric coefficients.
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8.2 The Exponential Map

Consider a smooth surface M C R3 and the tangent plane T,,M at a point
p E M. Think of TTM as being translated in R3 so that its origin is at p, and
suppose that it is made out of flexible material. Then we can imagine wrapping
the tangent plane around the surface, as in Figure 8.2.1. Although this wrapping
process works nicely near the point p, we might run into trouble away from
p, where there might be a hole in the surface, or where the wrapped tangent
plane might be forced to intersect itself. The exponential map, a map from an
open neighborhood of the origin of TpM onto an open neighborhood of p in
M, is a formalization of this wrapping process. There is one exponential map
for each point in the surface. (Do not be misled by the name of this map - it
has little to do with the exponential and logarithmic functions one encounters in
high school; in one very specific case concerning spaces of matrices one does
use the power series for el applied to matrices, and the name has stuck for the
more general situation.)

Figure 8.2.1

The exponential map is cleverly defined using geodesics. We use the defi-
nition and properties of p in Section 7.2.

Definition. Let M C R3 be a smooth surface and let p E M be a point. The
set Ep C TpM is defined to be

Ep={vETpMI 1}. 0

Instead of the number I in the above definition we could have chosen
any positive number, though 1 is both convenient and quite standard. From the
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definition of p it is seen that the origin is always in Ep for any p. The following
lemma shows that Ep always contains more than the origin.

Lemma 8.2.1. Let M C R3 be a smooth surface and let p E M be a point.
Then the following hold.

(i) If v E EP ands E R is a number, then sv E Ep iff -p < s < p,,.
(ii) If U E TpM is a unit vector, then

EP n(suIsElR)=(sub-pu<s<pu).

Proof. Exercise 8.2.1. 0

It will be seen in Proposition 8.2.3 that Ep contains an open disk centered
at the origin. We cannot derive this fact just using the above lemma, since
we don't know whether p varies continuously with v E TpM. Even without
Proposition 8.2.3 we can make the following definition.

Definition. Let M C R3 be a smooth surface and let p E M be a point. The
map expp: Ep -+ M, called the exponential map at p, is defined as follows.
For each v E EP let c,,: (-p,,, M be the unique geodesic such that
c,,(0) = p and v; define expp(v) by setting expp(v) = 0

M

Figure 8.2.2

Note that expp (0) = p. The following lemma shows that geodesics in M
through p are simply the images under expp of lines through the origin in TpM.
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Lemma 8.2.2. Let M C R3 be a smooth surface, let p E M be a point,
and let v E Ep be a vector. Then the map d: (-p,,, pv) -+ M defined by
d(s) = expp(sv) is the unique geodesic with d(O) = p and d'(0) = v. The
length of the curve d from p to expp(v) equals (lull.

Proof. Let cv: (- p., pv) --+ M be the unique geodesic such that cv(0) = p and
c;,(0) = v. Let s E (-pv, pv) be a fixed non-zero number. Define the curve
c (-p./s, p./s) -> M by c(t) = cv(st). By Exercise 7.2.5 we know that c is
the unique geodesic such that c(0) = p and c'(0) = sv. We can thus use c to
compute expp(sv); thus

expp(sv) = c(1) = cv(s 1) = cv(s).

_Hence d (s) = cv(s) for all non-zero s E (-pv, pv). We also know that d (O)
p = cv (0). Therefore d = cv, and thus d is the unique geodesic with d (0) = p
and d'(0) = v.

By Lemma 7.2.2 (i) we know that d has constant speed. Since d'(0) = v
it follows that Ild'(s)II = Ild'(0)II = livil for all s. Using Equation 4.3.1 we see
that the length of d from p = d (O) to expp (v) = d (l) is

J
Ild'(s)Ilds = Ilvll. O

The exponential map need not be injective as defined. Consider, for ex-
ample, the surface S2; for each point p the set Ep is in fact all of TpS2, since
geodesics are great circles and they can be extended indefinitely. However, if
we allow arbitrarily large vectors in the domain of expp, then the map will not
be injective, since all the geodesics starting at p will go through the antipodal
point to p if extended far enough. The following proposition shows, among
other things, that if we restrict our attention to a small enough neighborhood of
the origin then expp will be injective. The proof of this result is rather long and
involved, and is in Appendix A8. 1. Observe first that any open subset of a plane
in R3 is a smooth surface in R3; hence it makes sense to discuss the smoothness
of the map expp.

Proposition 8.2.3. Let M C R3 be a smooth surface and let p E M be a point.
Then there exists an open set W C M containing p and a number SP > 0 such
that for every q E W the following properties hold:

(i) the set E. contains the open disk O8, (03. TqM);
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(ii) the set TqM)) is open in M;
(iii) the mapexpgIO,,,(03, TqM)isadiffeomorphismfromthesetOS,,(03, TqM)

onto expp(Osp (03, TqM));
(iv) eXpq(OS,,(03, TqM)) D W.

The following three results can be deduced from the statement and the proof
of Proposition 8.2.3; details are left to the reader who has read the proof of this
Proposition.

Corollary 8.2.4. Let M C R3 be a smooth surface, let p E M be a point and
let c be any number such that 0 < E < S. Then there exists an open set V C M
containing p such that the following properties hold:

(i) any two points in V can be joined by a unique geodesic arc of length
less than c;

(ii) V C expq(OS,(03, TqM)) for all q E V.

(If E = SP then V = W works.)

Proof. Exercise 8.2.3.

It is not guaranteed in the above corollary that the geodesic arc between any
two points in the set W will lie entirely in W; hence W need not be what would
reasonably be called "geodesically convex." Theorem A8.1.2 says that in fact
every point in a smooth surface does have a geodesically convex neighborhood;
we will use Corollary 8.2.4 in the proof of this stronger result.

Corollary 8.2.5. Let M C R3 be a compact smooth surface. Then there exists
a number S,y > 0 such that for each point p E M

(i) the set Ep contains the open disk OSM (03, T,,M);
(ii) the set expp(OS,, (03, TpM)) is open in M;

(iii) the map expp I 0a,,(03, TTM)isadiffeomorphismfromtheset0 (03, TpM)
onto expp(OS,,, (03, TpM));

(iv) there is an open set W C M containing p such that ex p, (OSA, (03, Tq M)) D
W forall q E W.

Proof. Exercise 8.2.5.

Corollary 8.2.6. Let M C R3 be a compact smooth surface and let SM be as
in Corollary 8.2.5. Then there is a number Eat > 0 such that for each point
p E M we have
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0,, (p, M) C expq(06,,(O3, TqM))

for every q E OEM (P. M).

Proof. Exercise 8.2.6.

Our discussion concerning the exponential map should look somewhat
familiar: The exponential map is a diffeomorphism from some open subset of a
plane (namely an open disk in the tangent plane) to a subset of the surface. This
phenomenon is very similar to a coordinate patch, which is a smooth map from
an open set U C R2 onto a subset of the surface, subject to certain conditions
(which turn out to be equivalent, via the Inverse Function Theorem, to being a
diffeomorphism). Thus, the exponential map restricted to a small enough disk
in the tangent plane is essentially as good as a coordinate patch, except that it
is from the tangent plane instead of from a subset of R2 (and the latter is really
nothing but a particular choice of a plane in R3 and a choice of coordinate axes
for this plane). We remedy this situation as follows.

Definition. Let M C R3 be a smooth surface, let p E M be a point, let SP be
as in Proposition 8.2.3 and let Tp: R2 -> TM be any choice of an orthogonal
linear map. The exponential coordinate patch at p is the map

Expp = expp o Tp: Obp (O2r R2) -+ M. 0

The choice of orthogonal map in the above definition is arbitrary; assume
that such a map has been chosen once and for all for each point in each smooth
surface. That Expp is indeed a coordinate patch follows immediately from
Exercise 5.2.10 and the fact that a non-singular linear map defined on an open
subset of a plane in R3 is a diffeomorphism from its domain onto its image. As
seen in the following lemma, the metric coefficients of Expp are nicely behaved
at the origin for any point on a surface.

Lemma 8.2.7. Let M C R3 be a smooth surface, and let p E M be a point.
The metric coefficients of Expp at 02 are E(02) = G(02) = 1 and F(02) = 0.

Proof. As usual we let (u1, u2) denote the standard basis for R2. We then
compute
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d Expp(tu;) d expp(Tp(tu;))
(Expp)j(O2) =

dt I`=o dt 11=0

d expp(tTp(u;))
= dt it=o = '11'p(ui),

where the last equality follows from Lemma 8.2.2. Since Tp is an orthogonal
map, we know that the set {T p (u i ), T p (u2) } is orthonormal, and the lemma
follows immediately.

We conclude this section with the following definition, which is seen to
make sense in light of Proposition 8.2.3.

Definition. Let M C R3 be a smooth surface, let p E M be a point, let 8 be as
in Proposition 8.2.3 and let r be a number such that 0 < r < Sp. The geodesic
circle of radius r centered at p, the open geodesic ball of radius r centered at
p and the closed geodesic ball of radius r centered at p are the images under
expp of the circle in TpM of radius r centered at the origin, of the open ball in
TpM of radius r centered at the origin, and of the closed ball in TpM of radius
r centered at the origin respectively; these three sets are denoted GSr(p, M),
GOr(p, M) and GOr(P, M). 0

It follows from Proposition 8.2.3 that GSr (p, M), G Or (p, M) and
G Or (p, M) are respectively a 1-sphere, the interior of a disk, and a disk.
Moreover, combining Proposition 8.2.3 with Theorem 7.2.6, it follows that
GSr(p, M), GOr(p, M) and GOr(p, M) consist respectively of all points in
M that can be joined to p by a geodesic arc of length r, of length less than r,
and of length less than or equal to r.

Exercises

8.2.1*. Prove Lemma 8.2.1.

8.2.2*. Let A C R2 x R2 = IEt4 be an open set, and let f : A -+ 1[82 x R2 be a
smooth map such that f (A) is open in R2 x R2 and f is a diffeomorphism from
A onto f (A). Suppose further that f has the form f ((p, 4)) = (p, h(p, 4))
for some smooth map h: A -* R2, where (p, q) E A. If p E JR2 is a point, let
JP: ]E82 -). ll82 x R2 denote the map Jp(q) q), and let P2:1[82 x 1182 ][82

denote projection onto the second factor. Suppose B C R2 is an open set
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such that Jp(B) C A. Show that P2 o f o JO(B) is open in R2 and that
P2 o f o Jp I B: B -+ R2 is a diffeomorphism from B onto P2 o f o JO(B).

8.2.3*. Prove Corollary 8.2.4 (this uses the proof of Proposition 8.2.3).

8.2.4. For the unit sphere S2, what is the largest possible value of Ss2, the
existence of which is guaranteed by Corollary 8.2.5?

8.2.5*. Prove Corollary 8.2.5 (this uses the proof of Proposition 8.2.3).

8.2.6*. Prove Corollary 8.2.6 (this uses the proof of Proposition 8.2.3).

8.3 Geodesic Polar Coordinates

We wish to introduce the idea of polar coordinates on a surface; we do this by
introducing such coordinates in R2 and then using the exponential coordinate
patch.

Definition. Let rect: R2 -s R2 be the function given by

R Rcos9
rect(

0 )=(Rsin9
If M C R3 is a smooth surface, p E M is a point and Sp is as in Proposition
8.2.3, the geodesic polar coordinate patch at p is the map

Dp = Expp o rect: (0, Sp) x (0, 2,r) -+ M. 0

The fact that the map D. is a coordinate patch follows from Lemma 5.2.6
and the facts that Expp is a coordinate patch and rectl(0, Sp) x (0, 27r) is a
diffeomorphism from (0, Sp) x (0, 2ir) onto an open subset of R2. Although
we chose (0, Sp) x (0, 2n) as the domain of D. (in order to insure that rect is
injective), we could just as well have chosen any domain of the form (0, 8p) x
(-A, 2ir - A) for X E R; we will need this flexibility in our choice of domain.
We will denote elements of the domain of Dp by (e ). Observe that by Lemma
8.2.2 the lines in (0, Sp) x (0, 2n) of the form 0 = k for any constant k are
mapped by D. to geodesics in M which converge to, but do not contain, the
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0

R=k

0=k

Figure 8.3.1

point p. Each line in (0. SP) x (0, 2n) of the form R = k for a constant k is
mapped by DP to a geodesic circle of radius k. See Figure 8.3.1.

The one major drawback of geodesic polar coordinate patches is that the
image of DP does not contain the point p and a geodesic ray starting at p. (This
problem arises from the need to keep rect, and hence DP. injective and defined
on an open set.) The choice of domain of D,, as mentioned above is equivalent
to a choice of which geodesic ray starting at p is to be excluded from the image
of D. We start our discussion of geodesic polar coordinates with the following
lemma.

Lemma 8.3.1. Let M C R3 be a smooth surface, let p E M be a point, and let
SP and W be as in Proposition 8.2.3. For any point q E W such that q 0 p,
there is a unique number d > O for which the following criteria all hold.

(1) The unique geodesic from p to q has length d.
(2) q E GSd(p, M).
(3) If DP is a choice of a geodesic polar coordinate patch, the image of

which contains q, then (DP) (q) = (d ) for some number 0.

Proof. Exercise 8.3.7. D

Using this lemma we can make the following definition.

Definition. Let M C 1R3 be a smooth surface, let p E M be a point, and let SP
and W be as in Proposition 8.2.3. For any point q E W such that q 0 p, the
number d as in Lemma 8.3.1 is the R-coordinate of q with respect to p. 0
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The nice feature of geodesic polar coordinate patches are their metric co-
efficients (not just at one point, as for Expp, but throughout its domain). We

will let (Dp) 1 denote aR and (Dp)2 denote 'DI,, and similarly for higher order
partial derivatives. For this section and the next we will let E, F and G denote
the metric coefficients of Dp, and we will let E, F and G denote the metric
coefficients of ExpP.

Proposition 8.3.2 (Gauss' Lemma). Let M C R3 be a smooth surface and let
p E M be a point. Then E((B )) = 1, and F((B )) = 0, and G((e )) > 0

for all (B) E (0, SP) x (0, 27r).

Proof. The proof follows [Doll. At times we will drop the arguments in
the metric coefficients E, F and G. We start out by defining two types of
curves in the image of D. For fixed 9 E (0, 27r), let yo: (0, Sp) -+ M be
defined by yo (s) = DP((B )) for all s E (0, SP); for fixed R E (0, SP), let

aR: (0, 2n) -+ M be defined by aR(t) = Dp((R)) for all t E (0, 27r). As
mentioned above ye is a geodesic and aR is a geodesic circle of radius R.
Observe that ye(s) = (Dp)1((5 )) and aR(t) = (Dp)2((R)). The coordinate
patch D. is only defined for R > 0, and hence yo(s) is only defined as given for
s > 0, and aR(t) is only defined as given for R > 0. By extending the domain
of DP slightly (in which case DP would still be smooth, though not injective), it
can be seen that each geodesic ye (s) can be extended smoothly to include s = 0.
Note that limy. 0 ye(s) exists for all 0. Similarly, the family of geodesic circles
aR(t), one such circle for each R > 0, can be extended smoothly to include the
circle of radius R = 0, namely the constant map ao(t) = p. It can be verified
that limR_.oa'' (t) = ao(t) = 0 for all t.

Fix 0 E (0, 2n). By the above observations we note that E((B)) _

II (Dp) i ((B )) III = II Ye (s) II2 for all appropriate values of s. Observe that

and hence

ye(s) = cos0 (Expp)i + sin0 (Expp)2,

so that
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II Ye (s) 11 2 =cost 8 E + 2 sin 0 cos 0 F+ sin20-6,

where the partial derivatives (Expp)1 and the metric coefficients E, F and G are

evaluated at (s'`ng ). By Lemma 8.2.7 we see that II yo '(0) II = 1, and by Lemma
7.2.2, (i) it follows that Ilye(s)II = 1 for all s. Hence E is constantly 1.

We now show that F is independent of R, to be accomplished by showing
that F, =

aR

= 0 for all (B ). As just noted, the curve ye(s) = Dp((e )) is
a geodesic for any fixed value of 0. This geodesic has coordinate functions
cl (s) = s and c2(s) = 0. Hence c,'(s) = 1, c2'(s) = c,"(s) = c2"(s) = 0. If
we plug these coordinate functions into the second part of Equation 7.2.2, we
obtain

o+r11.1+2r12 l o+r22 0=0.
Hence r,, is constantly 0. Now, applying parts of Equation 5.5.3 to our present
situation, and using the fact that E is a constant function, we see that

1

((Dp) 11, (Dp) 1) = 2E1 = 0

((Dp) 11, (Dp) 2) = FI - I E2 = F.

Since (DA)1 and (Dp)2 are in TAM, it is not hard to see that

(8.3.1)

((Dp)11, (Dp)i) = (UTPM ((Dp)i,). (Dp)1),

and similarly for the second part of Equation 8.3.1. Using an argument similar
to the proof of Lemma 5.7.1 it can be verified that

''TAM ((Dp)IIJ = ril(Dp)1 +r21(Dp)2-

Combining the above remarks with both parts of Equation 8.3.1, and using the
definition of the metric coefficients, yields

0 = (ri 1(Dp)1 + r11(Dp)2, (Dp) 1) = ri 1 E +
1-21

F, (8.3.2)

F1 = (ril(D..)1 + r11(Dp)2, (Dp) 2) = r1 IF+r21G. (8.3.3)

Since we saw that E = 1 and r,1 = 0, it now follows from Equation 8.3.2 that
r;1 = 0 as well. Plugging these values for r 1

1
and r;1 into Equation 8.3.3 we
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deduce that F, = 0. Thus F is independent of R.
Next, we compute

Rim F(\ B )) =
R

o(y (R), aR(0)) = (lim yy(R), Ri ma'' (O)) = 0,

for any 0 E (0, 27r). Since F is independent of R, it follows that F is constantly
0. Finally, since EG - F2 is never zero, and G is always non-negative (for any
coordinate patch), using the values for E and F just computed, it follows that
G>Oforall(R,0). 0

We need two rather trivial observations. First, the coordinate system Dp
has

det(g;j) = G. (8.3.4)

Second, the change of variable map from Dp to Expp is just the map rect . The
Jacobian of rect is the matrix

cos 0 - R sin 0
D rect =

sin 0 R co . 0 (8.3.5)

Since geodesic polar coordinates are not defined for R = 0, we cannot
directly compute G at R = 0. We can, however, say something about the

behavior of the function IG(( )) for fixed 0 as R goes to zero.

Lemma 8.3.3. Let M C R3 be a smooth surface and let p E M be a point. Let
0 be a fixed number in (0, 2n). Then

l o G(( 0
))

= 0,

alim =1,Rio aR
2

lima G
= 0,

R- +O dR2

a3 IG
R o aR3 = -K (p).
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Proof. We prove the first two equalities in the lemma, leaving the other two
to the reader (Exercise 8.3.1). Using Proposition 8.3.2, Lemma 5.5.3, and
Equation 8.3.5, we see that

G = EG - F2 = FE G - F2 det
( siR -

R cos B
(8.3.6)

where E, F, and G are evaluated at (B ), and E, F, and G are evaluated at
(R scosOin0) Since E, F and j are defined at the origin of 1R2, we can think of

R sin B

E((R cos e) etc. as being extended smoothly to R = 0. It follows from Lemma
R sin B

8.2.7 that E = G = I and F = 0 at R = 0. Combining these observations
with Equation 8.3.6, we have

Rim /(("1)=
69 Rim

R EG-F20
and

lim
a I-G

= lim { FEG - FZ + R
a

1. C1
R-+o BR R-*O aR

The above lemma can be used to prove the following result.

Lemma 8.3.4. Let M C 1R3 be a smooth surface, let p E M be a point, and
let © E (0, 2n) be some fixed number. Then for each R E (0, 8t,) there is some
number CR.0 E (0, R) such that

J
R3 1 a(K o Do) CR,e 4G((R))

0
= R - 3 K(P) -

4! aR (( 0 )) R .

Proof. Exercise 8.3.2.

We need one more lemma making use of Proposition 8.3.2.

Lemma 8.3.5. Let M C R3 be a smooth surface, let p E M be a point, and
let S. and W be as in Proposition 8.2.3. Suppose that x, y E W are two points
contained in the image of a geodesic polar coordinate patch Dt,; let dx and dy
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denote the R-coordinates of x and y respectively. If C is a regular arc contained
in the image of Dp and with endpoints x and y, then Length(C) > Id" - dye.

Proof By the definition of a regular arc (in Section 7.2) there is a regular curve
c: (a, b) -- M such that C = c([u, v]) for some closed interval [u, v] C (a, b).
We may assume without loss of generality that the image of c is contained
in the image of Dp. Also, assume that c(u) = x and c(v) = y. We can
define coordinate functions R, 0: (a, b) -+ R for the curve c with respect to
the coordinate patch D, that is c(t) = D.,((R(`) for all t E (a, b). Clearly9(r)
R(u) = d, and R(v) = dy. Using Lemma 5.8.1 and Proposition 8.3.2, we
compute

Length(C) = J V (R'(t))2 + (01(t))2 G(e(t)) dt >_ J u (R'(t))2 dt
u u

J R'(t) dt = R(v) - R(u) = d, - dy.
u

By integrating in the other direction, it is similarly seen that Length(C)
dy - d, 0

As an application of geodesic polar coordinates we show that our definitions
of simplicial curvature (for simplicial surfaces) and Gaussian curvature (for
smooth surfaces) are more closely analogous than they first appear. Simplicial
curvature was defined using the angle defect; here we define an angle defect
in the smooth case and show that it equals Gaussian curvature. To see where
angles come into play in smooth surfaces (in which there are no natural triangles
to make use of), recall from planar geometry that in a circle of radius R, the
length S of an arc subtended by a central angle of 0 radians is given by the
formula S = RO. See Figure 8.3.2. Conversely, we can measure central angles
in circles by 0 = R.

Now consider a point p on a smooth surface M C R3. For all small
enough numbers of r > 0 there is a geodesic circle a,(t) of radius r. Let L,
denote the length of this geodesic circle. It would be tempting to define the
total angle around the point p to be , and the angle defect at p to be 2n - -.
Unfortunately, in arbitrary surfaces the number 1 depends upon the choice of
r, so we take the limit as r -+ 0, though we first need the following modification
to make the limit work. Recall Exercise 3.7.4, where in order to form a better
analog in the simplicial case of the smooth Gauss-Bonnet Theorem we modified
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Figure 8.3.2

the angle defect for simplicial surfaces by dividing it by one third of the area of
the star of the vertex prior; we make the analogous modification here. There is
no "star" in the smooth case, but we take as our analog the region bounded by
the geodesic circle we are using. We will use the formula nr2/3 for one third
of this area. (This formula is not quite accurate, since the surface need not be
planar, but it is close to the correct value for small enough r, and it works in
the limit.) The following proposition, due to Bertrand and Puiseux, shows that
with this modification everything works out as desired.

Proposition 8.3.6. Let M C 1183 be a smooth surface, let p E M be a point,
and let Lr be as above. Then

IT - 1
nr2 = K(p).

3

Proof. Let ar be as in the proof of Proposition 8.3.2; recall that ap(t) _

(Dp)2((" )). Hence Ilar(t)II = G((, )). Using the formula for arc-length
given in Equation 4.3.1, we compute

Lr = lim f2n-f
Ila' (t)11 dt. = lim

r2n-f
G (((I )) dt(-i0 f f-+0 f
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where the integral is from e to 21r - e since a,(t) is only defined on (0, 27r),

2x-E r3 1 a(K o DP) (C,.t )4
= E o {r - 3! K(P) - 4! aR (` t ) r } dt

f

by Lemma 8.3.4, where each is a number in (0, r),

3

= l o{r-

1o
r2ff -f

4i

(K of"
aRDp)C1.rr4dtf

3

= 27r{r - 3 K(p)} - E(r),

where

1 K o Dp) (Crt 1 4

JE(r)
E o 4! R

)r dtSolving

for K(p) in Equation 8.3.7 and rearranging a bit, we obtain

2n-- 3E(r)
K(P) _ "r:3

We now show that

7r r3

(8.3.7)

(8.3.8)

lim
E(r)

= 0; (8.3.9)
r3

the conclusion of the theorem will then follow easily, observing that K(p)
does not depend upon r. Consider the functionaa(KoRD°); we want to find a
maximal absolute value for this function for small values of R. Unfortunately,
the function as given is defined on (0, Sp) x (0, 27r), a non-compact set. Note,
however, that the definition of Dp implies that

a(K o Dp) (Rcosel (::),= V(K o Expp)(` e )

where V in this case denotes the gradient and denotes matrix multiplication.
The right hand side of this equation is defined and continuous for all (e) E
[0, S'] x [0, 27r], where S' is any number such that 0 < S' < Sp. Observing
that [0, S'] x [0, 27r] is compact, it follows from Proposition 1.6.12 that V(K o
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Expp)((Rsine )) () has an absolute maximum and an absolute minimum

on [0, 8'] x [0, 2,r]. Hence there is some number D such that 1 acK
29

nom I < D

for all (B) E (0, 6') x (0, 2n). We then compute

27"
limlC(3)I=limn

IlimlJ 18(KoDR)Cr.,l)r4dtl
r--.0 r r- O

r3
E-+0

41.

aR t
1 2n -E

1 a(K o D) Cr, 4
< lim - lim it '( )lydt

r3 E-+o
E

4. aR t
r

f
2,-E

< lim limn Ddt = lim -2nD = 0.
r-.0 4! Ego r-+o 4!

Exercises

8.3.1*. Prove the third and fourth equalities of Lemma 8.3.3.

8.3.2*. Prove Lemma 8.3.4.

8.3.3*. Let M C 1R3 be a smooth surface and let p E M be a point. Show that
p is contained in the image of Dq for some q E M.

8.3.4*. Let M C R3 be a smooth surface and let p E M be a point. Suppose
that c: (a, b) -+ M is a geodesic, the image of which is contained in the image
of D. Show that the curve (Dp)-i o c has nowhere zero speed, and that its
image is either contained in a line of the form 0 = k for some constant k or it
has no horizontal tangent vectors.

8.3.5*. Let M C R3 be a smooth surface, let p E M be a point, and let SP
be as in Proposition 8.2.3. Show that for any number S' such that 0 < S' < Sp,
there is a number D such that

aI-G
l < D

aR
for all (B) E (0, S') x (0, 2n).

8.3.6. Let M C 1E83 be a smooth surface, let p E M be a point and let Ar be the
area bounded by the geodesic circle of radius r centered at p for all sufficiently
small r > 0. Show that
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n "
lim

nr2 = K(p)r-0
12

8.3.7*. Prove Lemma 8.3.1.

8.4 Proof of the Gauss-Bonnet Theorem

To prove the Gauss-Bonnet Theorem (Theorem 8.1.1) we need to compute the
Euler characteristic of a compact smooth surface. A smooth surface is by defi-
nition a topological surface, so for any compact smooth surface we can simply
forget that it is smooth and proceed to compute the Euler characteristic as for
topological surfaces, namely by using triangulations. An arbitrary triangula-
tion of a smooth surface might ignore the smooth nature of the smooth surface,
however, and will turn out to be of no technical use to us. It turns out that
compact smooth surfaces can always be triangulated in a particularly nice way
that avoids this problem, as seen in Theorem 8.4.2 below.

Definition. Let M C R3 be a smooth surface and let x, Y. Z E M be points. A
subset T C M is a geodesic triangle with vertices x, y and z, denoted Axyz,
if it is a disk, and if 8T is the union of three geodesic arcs in M, denoted xy,
xz and yz, where Xy has endpoints x and y and similarly for the other two
geodesic arcs; these geodesic arcs are called the edges of the geodesic triangle.
We let Lx, Z y, Lz denote the angles between the edges of the geodesic triangle
(that is, the angles between the tangent vectors to the edges at their points of
intersection). See Figure 8.4.1. A triangulation t: I KI -- M of M (for some
simplicial surface K) is a geodesic triangulation if t (o) is a geodesic triangle
in M for each 2-simplex a of K. 0

A geodesic triangle is a disk, and the union of the three edges of the geodesic
triangle forms the boundary of the disk.

Example 8.4.1. A geodesic triangulation of S'- is obtained by placing a small
regular tetrahedron inside S2 so that the center of mass of the tetrahedron is at
the origin, and then projecting outward radially from the tetrahedron onto S2. It
is not hard to see that the images of the I -simplices of the tetrahedron are parts
of great circles on S2, and hence are geodesic arcs. See Figure 3.4.2. 0
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z
xz

Figure 8.4.1

Do all compact smooth surfaces have geodesic triangulations, and if so are
these triangulations unique (up to subdivision)? The following theorem answers
the first part of this question.

Theorem 8.4.2. Let M C R3 be a compact smooth surface. For every number
e > 0 there is a geodesic triangulation t : 1K I ---> M for some simplicial surface
K such that for each 2-simplex a of K the geodesic triangle t(a) is contained
in an open ball of the form Of (p, M) for some point p E M.

The proof of this theorem is rather lengthy, and is given in Appendix A8.2.
The second part of the question is easy to settle. Since compact smooth surfaces
are compact topological surfaces and geodesic triangulations are triangulations,
it follows from Theorem 3.4.5 that if a smooth surface can be geodesically
triangulated by two different simplicial complexes K1 and K2, then K1 and K2
have simplicially isomorphic subdivisions.

Now to the proof of the Gauss-Bonnet Theorem. We need to compute a
certain integral over a surface. Rather than attempting to evaluate the whole
integral at once it is much easier to break up the surface into geodesic triangles,
evaluate the integral over each geodesic triangle, and then piece the results
together. The following theorem, in which the Gaussian curvature is integrated
over a single geodesic triangle, is due to Gauss. Though we are stating this
theorem as a preliminary to the Gauss-Bonnet theorem for convenience, the
proof of this theorem contains the essence (as well as the difficulties) of the
matter. We use the notation of the previous section.

Theorem 8.4.3. Let M C R3 be a smooth surface. If Oxyz is a geodesic
triangle in M contained in the set exp, (Os, (O3. T,Y M)), then
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Jtx
Proof. We follow (with minor modification) the proof in [SK3 vol. II], which
is a modernized version of Gauss' original proof. The initial setup may appear
somewhat unmotivated until the end of the proof. In the construction of the
exponential coordinate patch Expx from the map exp, an arbitrary orthogonal
linear map Tx: R2 --> TxM is chosen. In the present case we choose the map
Tx so that the image of the positive x-axis under Tx contains line segment
(expx)-'(xy), which is possible since Axyz C expx(Oaj(O3, TIM)) by hy-
pothesis and xy is a geodesic. We now define a geodesic polar coordinate patch
Dx: (0, Sx) x (-A, 2n - A) -). M, where A > 0 is some small enough number
so that Axyz - {x} is contained in the image of D. Observe that using the
interval (-A, 23r - A) instead of (0, 27r) changes none of the properties of Dx
that were discussed in the previous section. Let y = Ds t (y) and i = D; t (z).
Observe that y has R-6 coordinates (o ), where y, = Length(xy), and z" has
R-8 coordinates ( fix ), where z, = Length xz . Also,

1 0 < R < y l } and Dxt xz ={(R) I0<R_zt}.
\

See Figure 8.4.2.

e

<x z
-----------------

D,-,'(.H)

y
L l

D; ' (ii) R

D.

Figure 8.4.2

Since yz is a geodesic arc, there is by definition a geodesic c: (p, q) -+
M such that yz = c([m, n]) for some closed interval [m, n] C (p, q). By



348 VIII. The Gauss-Bonnet Theorem

possibly choosing new values for p and q (making them very close to m and n,
respectively) we may assume that the image of c is contained in the image of
D. It follows from Lemma 7.2.3 that c(m) and c(n) are the endpoints of vz;
without loss of generality we may assume that c(m) = y and c(n) = z. We
will let F denote the curve F = (Ds)-' o c: (p. q) -+ R2. We think of the axes
of ]($2 as corresponding to the variables R and 0. Observe that since y 54 z the
image of the curve F cannot be contained in a line of the form 0 = constant.
We now use Exercises 8.3.4 and 4.2.4 to deduce that the image of F is the graph
of a function of the form R = f (0) for some smooth function f : (u, v) -+ 1(8,
where (u, v) is some open interval in R.

Let fl: (u, v) -> M be defined by X6(0) = DY((IB ))). Observe that f
is injective and is a parametrization of the image of c. It can be verified that
fl-'(y) = 0 and f-1 (z) = Lx. Further, we see that

8'(0) = f'(0)(DX)t (( fee) )) + (Dx)2((f O ))
Using Proposition 8.3.2, a simple computation shows that 11,0'(0)11 54 0 for all
0. Thus $ is a regular curve.

By Proposition 4.3.4 there exists a diffeomorphism h: (u', v') --> (it, v) for
some open interval (u', v') such that fi o h is unit speed. We write 0 = h (s).
Using Exercise 4.3.3 we may assume without loss of generality that h'(s) > 0
for all s E (it', v'). Since y z, it follows from Lemma 7.2.2 (i) that c has non-
zero constant speed. From Lemma 7.2.3 we deduce that cl[m, n] is injective.
By Exercise 4.3.10 we can find a number c > 0 such that cl(ni - E. it + E)
is a homeomorphism from (m - E, it + E) to c((m - E, n + E)). To avoid
cumbersome notation we will simply assume that p and q are m - E and it + E
respectively. Using Lemma 7.2.2 (iii) we deduce that f o h is a geodesic. Note
that the coordinate functions of fi o h with respect to the coordinate patch Dr
are (f o h), = f o It and (P o h)2 = h. Proposition 8.3.2 and Exercise 7.2.3
together allow us to apply Equation 7.2.6 to P o h, which yields

1 8G
(f o !t),.(s) _

2 dR
(h'(s))2 = 0. (8.4.1)

c`» ).where G is evaluated at (f chh CS)

We now define an angle function 0: (u, v) --> IR along the curve f as
follows. For each 0 E (u, v), define 0 (0) to be the angle from the tangent vector

(D,,) I ((f ©' )) to the tangent vector f'(0); observe that both these vectors are
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in Tp(B). See Figure 8.4.3. It is seen that

0(0) = n - Ly and 4,(Lx) = Lz. (8.4.2)

Figure 8.4.3

The function 0 o h is the angle from the vector (D,.)I((f(h(s)))) to the
h (s)

vector fl'(h(s)). This last vector is a positive multiple of the vector (f o h)'(s)

by the chain rule, so 0 o h is also the angle from the vector (D,,) (((f (h(s)) )) toh(s)

the vector (fi o h)'(s); these two vectors are both unit vectors. Note that

(f o h)'(s) = (f o h)'(s)(DD)I + h'(s)(Dx)2,

where the partial derivatives of D. are evaluated at (f (h(')) ). Hence
h(s)

cos(4, o h(s)) = ((D,,)t, (f o h)'(s))

= ((D.)1, (f o h)'(s)(D.)l + h'(s)(Dx)2) _ (f o h)'(s),
(8.4.3)

where the last equality holds by Proposition 8.3.2. If we use the cross product
instead of the inner product, we obtain
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sin(i o h(s)) = II(D.)1 x (f o h)'(s) 11

=1I(D.t)I x {(f oh)'(s)(D.r)I +h'(s)(Dr)2}II

= Ih'(s)I II(D,), X (D.02II = Ih'(s)I G((f/l(s)))1).

(8.4.4)
where the last equality holds by Lemma 5.5.2 (i) and Equation 8.3.4. Since
h'(s) > 0 for all s E (u', v'), we can drop the absolute value in the last term in
Equation 8.4.4. Combining Equations 8.4.1, 8.4.3, and 8.4.4 in that order, we
obtain

2 aR
(h'(s))2 = (f o h)"(s) = [cos(O o h(s))]' = - sin(O o h(s)) /'(h(s)) h'(s)

_ -h'(s) IG((f (s))))) 0'(hW) h'(s).

Cancelling, isolating b' (making use of Proposition 8.3.2), inserting the argu-
ments in the derivative of G, and substituting h(s) = 0, we deduce

I aG f(O) a -,I _G
(( f (0)

2 G((f (e) ))
(8.4.5)

A

We have one more preliminary issue, which is that the point x is not in the
image of the coordinate patch Dx (though every other point in E xyz is contained
in the image of D.r ). For small enough it > 0, let Tu c (0, S,) x (-A, 2n - A)
be the region bounded by the lines 0 = 0, 0 = Lx, and R = µ and by the curve
R = f (0). The set a, (T,,) is 6xyz with a geodesic disk of radius µ removed.
See Figure 8.4.4. As u goes to zero, the sets D.r(T,t) converge to all of Axyz.

Everything is now in place, and we compute

LYZ KdA = lim KdA = lim J K(DxRdet(g;j)dRd8
D,(TT) µ-+U T, \ 8
rr

1 a2V,/GdRd9A. 8R2
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by Exercise 6.5.1 and Equation 8.3.4,

Lx f (o) a2 y V
dR dO

aR2- io,f f/Zo

=-lim fo L aR ( 0 aR (0 J

J
[i_ (0)

o 8R 0 ) )] d9,

by taking the limit and the minus sign inside the integral

(to be justified below), and using Lemma 8.3.3,

Lx

J
[l+dIIdO

by Equation 8.4.5,

= Lx+O(Lx)-0(0) = Lx+Lz+Ly - r,

by Equation 8.4.2. To justify taking the limit under the integral sign, we note
that all the functions under consideration are continuous (hence integrable), and
we appeal to the Bounded Convergence Theorem for Riemann integrals (see
for example [BT, §22]), which can be used in our situation because of Exercise
8.3.5.

The proof of the Gauss-Bonnet Theorem is now easy.
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Proof of Theorem 8.1.1. Let SM and EM be as in Corollaries 8.2.5 and 8.2.6. By
Theorem 8.4.2 we can find a geodesic triangulation t: I K I -+ M such that for
each 2-simplex a of K the geodesic triangle t(a) is contained in an open ball
of the form OE (p, M) for some point p E M. It follows from Corollary 8.2.6
that each geodesic triangle t (a) satisfies the hypothesis of Theorem 8.4.3 with
respect to any of the vertices of t(a), and with SM replacing S, (a change that
has no effect on the outcome of Theorem 8.4.3). If a E K is a 2-simplex and v
is a vertex of a, let L(t(v), t(a)) denote the angle in t(a) at t(v). We then use
the conclusion of Theorem 8.4.3 to compute

I. KdA = E f KdA
(a)

_ E [L(t(v),t(a))_rJ
aEKt(2)) tEa

where the inner summation is over the three vertices of a.

E E L(t (v). t (a)) - E n
aEK(2)) vEa OEK11211

_ E E L(t (v), t (a)) - nf2(K)
VEKIIO)) au

E 2'r - 7rf2(K)
vEK((0))

since the sum of all the angles around a vertex is 2n,

= 2nfo(K) - nf2(K) = ... = 2irX(K) = 27r X (M),

where the = = uses the same argument as in the proof of Theorem 3.7.2, and
the final equality is by the definition of the Euler characteristic of a topological
surface. 0

A typical application of the Gauss-Bonnet Theorem is the following result.

Proposition 8.4.4. Let T C R3 be a smooth surface homeomorphic to T2.
Then the Gaussian curvature of T is positive on a non-empty open subset of T
and negative on a non-empty open subset of T.

Proof. Recall that X(T2) = 0, and hence X(T) = 0 by Exercise 3.5.3. Since
T2 is compact, so is T. By the Gauss-Bonnet Theorem (Theorem 8.1.1), we
know
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IT
KdA = 0.

Using the compactness of T and Exercise 6.4.11, it follows that K is positive on
some non-empty open subset of T. Hence K must be negative somewhere on
T, and the continuity of K implies that K must be negative on some non-empty
open subset of T. 0

Exercises

8.4.1. Find a formula for the area of a geodesic triangle contained in a
hemisphere on a sphere of radius R in terms of the angles of the geodesic
triangle.

8.4.2. Let T C lR3 be a smooth surface hoineomorphic to T2 # ... # T2,
where there are n summands. Show that if n > I then the Gaussian curvature
of T must be negative on a non-empty open subset of T.

8.5 Non-Euclidean Geometry

This last section in the book, which uses the machinery we have built up for
smooth surfaces, takes us back to the Greek origins of the rigorous study of ge-
ometry, showing how to connect the modem approach to surfaces with Euclidean
and non-Euclidean geometry. We will by necessity be somewhat sketchy; see
the various references given below for more details.

There are two fundamental approaches to Euclidean geometry: synthetic
and analytic. In the former approach we start with a few axioms concerning
undefined objects such as points and lines, and logically deduce various results
from these axioms. In the analytic approach the Euclidean plane R2 is viewed
as the set of ordered pairs of real numbers, and lines are defined to be solutions
to equations of the form y = mx + b or x = a; we then use these equations to
prove various geometrical results - the same results we would obtain by the
synthetic method, though proved quite differently. Even in the analytic method
we are making use of axioms, in this case the properties of the real numbers and
set theory, but the assumptions are pushed back out of the realm of geometry.
(A reference that incorporates both approaches is [CE]).
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Our goal here is to use differential geometry to attempt to give an analytic
approach to classical non-Euclidean geometry, which was first given syntheti-
cally, just as the Cartesian plane R2 is an analytic model for Euclidean geometry.
As we will see later, we cannot completely fulfill this goal using the tools in
this book, but we can get fairly close. For details on non-Euclidean geometry,
see [GE], [MCL], [CE] and [TU].

We start with a very brief discussion of the synthetic approach to non-
Euclidean geometry, which in turn needs a review of Euclidean geometry. Eu-
clid's system of geometry, found in [EU], was for many years taken almost
as gospel; his logic was viewed as a model of deriving absolute knowledge,
and his postulates were viewed as a necessarily true description of our physical
world. As late as the 18th Century, the philosopher Immanuel Kant said that
"the concept of [Euclidean] space is by no means of empirical origin, but is
an inevitable necessity of thought"; see [GE] for more discussion. This blind
faith in Euclid started to unravel in the early 19th Century with the discovery
of non-Euclidean geometry by Gauss, Bolyai and Lobachevsky, and even more
so with the work of Riemann, which led, among other things, to the separation
of mathematical space from physical space. See [GE] and [MCL] for a discus-
sion of the development of non-Euclidean geometry, and see [SK3, vol. II] and
[MCL] for a discussion of Riemann's work. We can now make use of much
work in the 19th and 20th Centuries, and see that there are three categories of
flaws in Euclid's work ((hough such criticisms are in no way intended to deny
the overwhelming importance of that work).

To examine Euclid's work, we start with the first four of his definitions and
his five postulates from Book I of the Elements, as stated in [EU].

Definitions:

1. A point is that which has no part.
2. A line is breadthless length. A straight line is a line which lies evenly within
itself.
3. The extremities of a line are points.
4. A straight line is a line which lies evenly with the points on itself.

Postulates:

1. To draw a straight line from any point to any point.
2. To produce a finite straight line continuously in a straight line.
3. To describe a circle with any centre and distance.
4. That all right angles are equal to one another.
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5. That, if a straight line falling on two straight lines makes the interior angles
on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles less than the two right
angles.

The first problem in Euclid concerns his definitions. Consider, for example,
Definition 2 given above. Though this definition does seem to correspond to
our intuition concerning straight lines, by modem standards this definition is
utterly useless. What is a "length," breadthless or not, and what is "breadth"?
What does it mean for something to "lie evenly with itself"? The problem with
Euclid's approach is that he tried to define every concept that he was using.
What Euclid appeared to miss is that, just as it is necessary to start with some
unproved axioms, it is also necessary to start with some undefined concepts
upon which all our subsequent definitions will be based. What makes these
undefined objects behave as our intuition tells us they should are the various
properties of the objects mandated by our axioms. It is the axiomatic properties
of the objects, not the objects themselves, that count.

Another problem with Euclid's method is that his axioms do not quite
suffice for rigorous proofs of the theorems Euclid states. A simple example
is that Euclid never hypothesizes the uniqueness of a straight containing two
distinct points, though this property is needed. A more subtle issue concerns
Euclid's lack of attention to the issue of certain points on a line being between
other points; it may seem obvious from the diagrams used in classical geometry
that certain points are between others, but axioms are needed to make this notion
rigorous. see [GE, Chapter 3] for a discussion of this matter. These problems
can all be remedied, however, by more complete sets of axioms. Two such
axiom systems were given by Hilbert and Birkhoff (see [CE]).

Whereas Euclid's problem with definitions and missing axioms can be
remedied by using better axiom schemes, the third problem with Euclid, and, in
fact, the one that led to the recognition of the othertwo problems, is not so simple.
The issue here is not to find a more complete set of axioms that do rigorously that
which Euclid was trying to do, but rather to ask more fundamentally of what
planar geometry consists. More specifically, the problem concerns Euclid's
fifth postulate. Ever since Euclid, observers have been suspicious of the fifth
postulate on the grounds that it does not have the simple and obvious nature
of the first four postulates; many mathematicians have attempted to deduce the
fifth postulate from its predecessors, thus making it unnecessary. It turns out
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that the fifth postulate cannot, in fact, be derived from its predecessors, and that
it is possible to have a geometry based on the first four postulates but having an
alternative to the fifth postulate. To appreciate these alternatives, we note that it
can be shown that the fifth postulate is equivalent to the following statements:

Playfair's Axiom. Let 1 be a line on the plane, and let P be a point in the plane
not contained in 1. Then there is one and only one line containing P and parallel
to 1.

Euclidean Angle-Sum Axiom. The sum of the angles in a triangle in the plane
is 180'.

The former of these two axioms is often mistakenly thought to be Euclid's
original fifth postulate.

We define hyperbolic geometry to be the geometry derived from Euclid's
first four postulates, together with the following postulate.

Hyperbolic Axiom. Let 1 be a line on the plane, and let P be a point in the
plane not contained in 1. Then there is more than one line containing P and
parallel to 1.

Similarly, we define elliptic geometry to be the geometry derived from Euclid's
first four postulates, together with the following postulate.

Elliptic Axiom. Let I be a line on the plane, and let P be a point in the plane
not contained in 1. Then there are no lines containing P and parallel to 1.

It can be shown that the sum of the angles in a triangle is less than 180' in
hyperbolic geometry and is greater than 180' in elliptic geometry.

Euclidean and non-Euclidean geometry are both two-dimensional geome-
tries. The former can be modeled using the plane 1R2, by which we mean that
the points and straight lines in R2 (given by equations as above) satisfy all of
Euclid's postulates. Since straight lines in RZ are geodesics, it would be reason-
able to try to model non-Euclidean geometry as a smooth surface in JR3, with
geodesics playing the role of lines, which must satisfy appropriate analogs of
the first four of Euclid's postulates, together with the analog of the appropriate
fifth axiom. A very thorough treatment of the analogs for smooth surfaces of
Euclid's postulates can be found in [MCLI; we proceed informally here.

We start with the useful observation about Euclidean space that any point
looks like any other point from the point of view of geometric constructions. For
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example, a circle of radius 1 centered about any one point is congruent to a circle
of the same radius centered about any other point. We want such a property to
hold for any surface that models classical geometry. The following definition
is a somewhat weaker version of this notion, stated in the more general setting
of smooth surfaces.

Definition. Let M C R3 be a smooth surface. We say M is locally homo-
geneous if for any two points p, q E M there is an isometry from an open
neighborhood of p in M to an open neighborhood of q in M. 0

Using the Theorema Egregium (Theorem 6.5.3), we see that if a smooth
surface has two points p and q with different curvature (as always Gaussian),
then the surface could not be locally homogeneous. Thus, if a surface is to
model classical geometry, it must have constant curvature.

Suppose M C R3 is a smooth surface with constant curvature Ko. If Axyz
is a small enough geodesic triangle in M, so that it satisfies the hypothesis of
Theorem 8.4.3, then

Area(Axyz) KO = J KodA = Lx + Ly + Lz - ir.
Oxyz

If Ko = 0, then it follows that Lx + Ly + Lz = r, as is the case in Euclidean
geometry; if KO > 0, then Lx + L y + Lz > n, as is the casein elliptic geometry;
if Ko < 0, then Lx + Ly + Lz < ir, as is the case in hyperbolic geometry.

Another familiar property of the Euclidean plane is that lines can be ex-
tended indefinitely. The corresponding notion for smooth surfaces is given as
property (3) in the following theorem, which is a version of the well-known
Hopf-Rinow Theorem (see [KL] or [MCL] for proofs). We mentioned in Sec-
tion 7.2 that there is a relation between extending geodesics and the existence
of "holes" in the surface. The precise notion of not having holes is known as
completeness. A precise definition is outside the scope of this book, and can
be found in [H-Y, §2-13] or [JA, Chapter IV]; intuitively the idea is that if a
sequence of points in the surface get closer and closer to one another, then the
sequence in fact converges to something in the surface. This definition depends
upon the metric used on the surface, and not just the topology of the surface; we
use the standard metric on ]R3, which the surface inherits, though an intrinsic
metric formed using lengths of curves could also be used.

Theorem 8.5.1 (Hopf-Rinow Theorem). Let M C R3 be a smooth surface.
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(i) The following are equivalent:

(1) The surface M is topologically complete.
(2) Let p E M be a point, and let v E TAM be a vector. Then there is a

geodesic c: (-oo, oo) -- M such that c(0) = p and c'(0) = v.
(3) Let c: (a, b) -+ M be a geodesic. Then there is a geodesic c: R -+ M

such that cI(a, b) = c.
(4) Let p E M be a point. The exponential map expn is defined on all of

T,, M.

(ii) Let p, q E M be distinct points. If any of the above conditions hold, then
there is a geodesic arc in M with endpoints p and q; this geodesic arc has the
shortest length of any curve joining p and q.

We can now make the following definition.

Definition. Let M c R3 be a smooth surface. We say M is geodesically
complete if any of the four properties in part (i) of the above theorem holds.

0

Putting all our observations together, we see that for a smooth surface to
model classical geometry it must at minimum be geodesically complete and
locally homogeneous, have constant curvature, and must satisfy the appropriate
analogs of Euclid's first four postulates. Then, depending upon whether the
constant curvature is zero, positive or negative, we will obtain a model for
Euclidean, elliptic or hyperbolic geometry, respectively. It turns out not to be
too hard to find surfaces; in fact, any geodesically complete smooth surface of
constant curvature is locally homogeneous and satisfies the appropriate analogs
of the first four postulates. That such a surface is locally homogeneous is
seen by the following theorem, due to Minding. A geodesically complete
surface satisfies the analogs of the first two postulates of Euclid by parts (ii) and
(i)(3) of the Hopf-Rinow Theorem (Theorem 8.5.1). The analog of the third
postulate holds using part (i)(4) of the Hopf-Rinow Theorem, which implies
that geodesic circles of any radius centered at any point can always be defined
(see Section 8.2 for the definition of geodesic circles). The analog of the fourth
postulate, which requires the existence of isometrics of the surface taking one
right angle to another, can be deduced, with one caveat, from the proof of the
following theorem, by choosing the appropriate geodesic coordinate patch for
each surface; the caveat is that we only obtain a local isometry from the theorem,
rather than a global isometry, but that is all we can do with our tools.
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Theorem 8.5.2. Let M, N C R3 be smooth surfaces with constant curvatures
KM and KN respectively. Let p E M and q E N be points. Then there is an
isometryfrom an open neighborhood of p in M to an open neighborhood of q
in N if KM = KN.

Proof. We follow [MCL]. If there is an isometry from an open neighborhood of
p in M to an open neighborhood of q in N, then it follows from the Theorema
Egregium (Theorem 6.5.3) that KM = KN. Now suppose conversely that
KM = KN. Let S,, and Sq be as in Proposition 8.2.3, and let n = min(Sp, Sq }. We
can then define geodesic polar coordinate patches Dp: (0, x (0, 2n) -+ M
and Dq: (0, q) x (0, 2n) -+ N. Let U be the image of Dp and let V be the
image of Dq. It follows from Proposition 8.2.3 that U is an open subset of M
and V is an open subset of N.

Let Expp and Expq be exponential coordinate patches (defined in Sec-
tion 8.2) for p and q respectively, though take O,,(O2, R2) as the domains of
both functions. We now define f : U -+ V to be f = Expq o (Expp)-l. It
follows straightforwardly that f o Dp = Dq. If we can show that Dp and Dq
have the same metric coefficients, then it will follow from Proposition 5.9.4 (4)
that f is a local isometry, which suffices to imply what we are trying to prove.

Recall from Proposition 8.3.2 the simple form of the metric coefficients
of Dp and Dq; let G. and Gq denote the appropriate metric coefficients, using
the notation of that proposition. It will suffice to prove that GP = Gq. Using
Exercise 6.5.1 we see that

i a2 vl"G-pKMoDp=-
Gp aR2

1 a2 vl"G-qKNoDq=-
Gq a R

2

(8.5.1)

where GP and Gq are the appropriate metric coefficients of Dp and Dq respec-
tively. The functions KM o Dp and KN o Dq are the same constant function; let
us denote this function (0, q) x (0, 27r) -* R by Z. Let 0 E (0, 22r) be fixed.
Then we can think of Gp, Gq and Z as functions of R only. By Equa-
tion 8.5.1 we then see that VI-G-p- and , 9 both satisfy the ordinary differential
equation

2

dR2+Zx=0.
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By Lemma 8.3.3 we see that rP and Gq both satisfy the initial conditions

lim and
R-0 dR

I.

By the existence and uniqueness of solutions of ordinary differential equations
(Theorem 4.2.4), we see that .J pp = vl'G-q for all small enough values of R, with
the given 9. Since the choice of 9 was arbitrary, we deduce that G. = Gq. 0

For more details concerning the analogs of the first four postulates of Euclid
for smooth surfaces, see [MCL].

To model Euclidean geometry we simply use JR2, as mentioned. To model
elliptic geometry, we simply use the unit sphere S2 in JR3. We saw in Example
6.3.1 (2) that S2 has constant curvature 1. Since the geodesics on S2 are great
circles, which can be extended indefinitely, we see that S2 is geodesically com-
plete. It can be seen directly that the postulate for elliptic surfaces is satisfied;
also, since the curvature of S2 is constantly 1, then the sum of the angle in a
geodesic triangle is always greater than 180°; for example, consider a triangle
with one vertex at the North pole, and the other two vertices on the equator. We
thus see that S2 is a model for elliptic geometry. It is easy to see from Exer-
cise 6.4.11 that any compact smooth surface in R3 with constant curvature has
positive curvature; a harder proof shows the only compact, connected smooth
surface in 1R3 with constant curvature is a sphere (see [MCL, p. 193]).

A good attempt at constructing a model for hyperbolic geometry is the
surface of revolution parametrized by the curve

c(t) _ sin t

In tan z + cos t

for t E (0, it/2). See Figure 8.5.1. The domain of c cannot be expanded to a
larger interval; the curve c is not defined at t = 0, and at t = it/2 the curve is
defined but is not regular. This curve is known as the tractrix, and it is the path
taken by a weight at the end of a taut rope pulled by a person walking in a straight
line (the weight is not initially on this straight line). The resulting surface of
revolution is called the pseudosphere; see Figure 8.5.2. Using the formula for
Gaussian curvature for surfaces of revolution given in Exercise 6.4.3, it is seen
that the pseudosphere has constant curvature -1.

The one problem with the pseudosphere is that it is not geodesically com-
plete. No geodesic can be extended above the x-y plane. Locally this surface
does behave just as hyperbolic geometry should (for example, the sum of the
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Figure 8.5.2
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angles in a geodesic triangle contained in a disk in this surface will be less than
180°); globally, however, this is not a model for hyperbolic geometry.

The following result of Hilbert shows that any attempt to model hyperbolic
geometry using a surface in 883 is doomed to fail.

Theorem 8.5.3. Let M C 883 be a smooth surface with constant negative
curvature. Then M is not geodesicaly complete.

Proofs of this theorem can be found in [SK3, vol. III Chapter 5] and [MCL,
Chapter 14]; the former reference has a very thorough discussion of complete
surfaces of constant curvature, whereas the latter reference has a more succinct
treatment of Hilbert's theorem (beware that the statement of the theorem in
this reference is missing the crucial phrase "geodesically complete;' though the
proof uses this concept). It is still possible to find a concrete model for hyperbolic
geometry, though such a model necessitates the use of abstract surfaces rather
than surfaces in 1R3. See [ST] or [MCL, Chapter 15].

Appendix A8.1 Geodesic Convexity

We start with the proof of Proposition 8.2.3.

Proof of Proposition 8.2.3. We follow [BO]. All four parts of the proposition
will be proved together. Let x: U --+ M be a coordinate patch such that p E
x(U), and as usual let (pi) = x-' (p) E U. A typical point in U x 882 will
be denoted (4, v), where q E U and v E 882. We will identify 1R2 x IR2 with IR4;

9i

if q = (Q and v = (V2 ), we will identify (4, u) E U x R2 with v E 884.

V2

We start out similarly to the proof of Theorem 7.2.6, using the system of
ordinary differential equations given in Equation 7.2.5. However, rather than
fixing the initial conditions and using Theorem 4.2.4, we use the more powerful

Theorem 4.2.5. Let p0 E U x R2 denote the point p0 = (p, 02) = o E)1t4

0
Applying Theorem 4.2.5 to the system of differential equations in Equation 7.2.5
and the given point p0, it follows that there is a number e > 0, an open subset
Y C U x 882 containing p0 and a smooth function

C: (-E, E) X Y - U X
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written

c, (t, q, v)
q, v)

C(t, q,
v) - C2 (t,

di (t, q, u)

d2(t, q, v)
such that the functions cl (t, q, v), c2(t, q, v), di(t, q, v) and d2(t, q, u) satisfy
our system of differential equations, and

c1(0, q, v) qi
c2(0, q, v) q2

di (O, q, v)
_ (q, v) = vi

d2(0, q, v) v2

for all (q, U) E Y. Hence, for each (q, v) E Y, the curve cq,,;: (-E, E) -> M
defined by

CI

(t, q, v)1)
cq.e(t) = X(

2(t, q, v

is the unique geodesic in M with q,0(0) = x(4) and cq (0) = dxq (v) E
T,, (4) M, where the latter equality uses Exercise 5.9.7.

Applying Lemma 1.2.9 to the set Y, we see that there are numbers Ei, E2 > 0
such that

OE1 (Y , V) X OE2 (02, 12) C Y.

For each q E OE, (p, U) and i3 E OEE2/2(O2, R2) (note the change in the radius
of the second ball) we can define the function q,5:2, 2) -+ M by

ct (( C,
f' 2(2) CA

El 2U

2 E

Using Exercise 7.2.5 we know that Fq,;, is a geodesic, and it is straightforward
to verify that Fq, 6 (0) = x (q) and c9 5 (0) = dxq (v). By the definition of the
exponential map we have

expx(q) (dxq(v)) = Fq,u(1). (A8.1.1)

We now define a number of useful maps. Let

c: OE, (p, U) X OEE2/2(02, R2) U X U
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be defined by

d'(4, o = (4. x-1(Cy.6(I))).

It can be verified that 4) is a smooth map from an open subset of R2 x 1R2 into
1R4. It can be further seen that the 4'(po) = 4'((p, 02)) Further, it is
shown in Exercise A8. 1.1 that the Jacobian matrix DO(po) is non-singular.

Next, let Tx(U) and %P: U x 1R2 --+ Tx(U) C R6 be defined as in Exercise
5.9.5; note that 'V is a homeomorphism. Let i: U x U -+ M x M C 1R3 x R3
be defined by O(a, b) = (x(a), x(h)). Itcan be verified that O(U x U) is open
in M, and that 0 is a homeomorphism from U x U onto O(U x U). For each
point q E x(U), define 1q: TqM -+ 1R3 x R3 by Iq(v) _ (q, v), and we define
J4: R2 - U x R by J4(w) = (q, w), where as usual 4 = x-1(q). Finally,
let P2: R2 x R2 --+ IR2 and P3: R3 x R3 --+ R3 both be projections onto the
second factor.

The non-singularity of the Jacobian matrix D4'(po) allows us to apply the
Inverse Function Theorem (Theorem 4.2.1) to conclude that there is an open set

Z C OE, (/5, U) X OEE,12(02, R2) C U x 1R2 (A8.1.2)

containing po such that 4'(Z) is open in U x U (and hence in R4) and 4' is a
diffeomorphism from Z onto 45(Z). From Exercise 5.9.5 we know that %V(Z)
is an open subset of Tx(U) C I3 x k$3 = 1R6. Note that W(po) _ (p, 03). By
Lemma 1.2.5 there is an open subset Q C JR6 such that WY(Z) = Q fl Tx(U).
Applying Lemma 1.2.9 to the set Q we see that there are numbers E3, S,, > 0
such that

0', (p, R3) X O8P(O3, 1R3) C Q.

Hence

{OE,(p,1R3) x Osp(O3.1R3)} fl Tx(U) C IV (Z). (A8.1.3)

Since 10,, (p, R3) x 05p (03, 1R3)} fl Tx(U) is an open subset of Tx(U). and
since WV, 4' Z and A are homeomorphisms, it follows that

A 0 (D I Z o 1V-I({OE,(p, R3) x 06,(O3, IR3)I flTx(U))

is an open subset of M x M that contains the point (p, p). The reader is asked
to verify that an open set W c M containing p can be found such that
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W X W C 0 0 01Z o WY-' ({OE,(p, R3) x 03,(03, R) } n Tx(U)). (A8.1.4)

We observe that for (q, v) E {0E, (p, R3) x 08, (O3, R3)) n Tx(U) we have
A o 4>I Z o 11-' (q, v) = (q, w) for some appropriate w; the same property holds
for the map tl1 o ((PIZ)-' o A-'. It follows that

A 0 BIZ 0'-'({q} x 08,(03, TqM)) D (q) X W (A8.1.5)

for all q E W.
We can now verify that the set W and number Sn are what we are looking for.

Let q E W be fixed, and let q = x-' (q). To prove part (i) of the proposition, let
v E O311 (03, Tq M) be a vector, and let v = (dx4)-' (v). Since (q, q) E W x W,
it follows from Equation A8.1.4 that

W o ((PIZ)-' o A-1(q, q) E {0,,(p, R) x 08,(03. R3)} nTx(U).

Using the remark made right after Equation A8.1.4 we deduce that (q, w) E
1 0,,, (p, R3) x 0 (03, R3)) n Tx(U) for some appropriate w; it then follows
that q E OE, (p, M). Since V E Oar (03, Tq M) by hypothesis, it follows that
(q, v) E {0(,(p, R3) x 03,(03, R3)} n Tx(U). Using Equations A8.1.3 and
A8.1.2 we deduce that

(q, v) = *-' (q, v) E OF, (p, U) x 0((,/2(02, R2).

Hence the geodesic c4,i,: (-2, 2) - M is defined, and it has the properties
cy,6(0) = x(q) = q and F,. (0) = dxy(v) = v. It follows that p > 2, so
V E Eq. We have thus proved that 08,(03, TqM) C Eq, which is part (i) of the
proposition.

Now define a map

Fq = P3 0 A 0 (PIZ 0'I1 0 IgIO6o(03, TqM): Oap(03, TqM) --> M.

Tracing through the effect of this map on the vector v, we see that

'P-1 (V AvH(q, v)i >(4, v)M>(q

Thus Fq (v) = cy,;, (1). Using Equation A8.1.1 it follows that
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Fq(v) = expx(4)(dxq(v)) = expq(v).

To prove parts (ii)-(iv) of the proposition we need to verify that the set
Fq (OS, (03,
TqM)) is open in M, that Fq is a diffeomorphism from Os,(O3, TqM) onto
Fq(Oao(03, T, M)), and that Fq(Oap(03, TqM)) D W. First, we can rewrite
Fq as

Fq=xoP2o4IZ0J40P2oW-'oIgIOap(O3,TgM);

to see that the right hand side equals Fq simply see what it does to any vec-
tor v E 08,, (03, TqM). It can be verified that the composition P2 o W-I o
Iq IOap (03, Tq M) is simply the map (dx4)-' restricted to an open subset of
TqM. Thus we deduce that the set P2 o W-1 0 Iq (Oop (O3, TqM)) is open in
R2 and P2 0 %P-1 o Iq I Oao (O3, TqM) is a diffeomorphism from its domain
onto its image. Next, by using Exercise 8.2.2 and the choice of Z, it is
seen that P2 0 (PIZ o J4(P2 o W-1 o /q(08,(03, TqM))) is open in R2 and
P2 0 4 I Z o J41 P2 0 %P-1 o Iq (Osp (O3, TqM)) is a diffeomorphism from its do-
main onto its image. By Proposition 5.2.5 (i), it follows that x(P2 o d jZ o J4 o
P2 0 W -' 0 Iq (Oa, (O3, TqM))) is open in M, and from Exercise 5.2.9 it follows
that xI P2 o W1Z o Jy o P2 o W-1 o Iq(Oo (03, TqM)) is a diffeomorphism from
its domain onto its image. Putting these three observations together it follows
that the image of Fq is open in M and that Fq is a diffeomorphism from its
domain onto its image. Finally, we have

Fq(06,(O3,TgM)) = P30A0WIZ0W-' 0Iq(08,(O3,TgM))
= P3oAo(PIZoW-'((q} x O8,(O3,TgM))

DP3({q}xW)=W.

The following lemma, which uses the ideas of the above proof, is necessary
for the proof of Theorem A8.1.2. The analog of this lemma for straight lines in
the plane is straightforwardly true.

Lemma A8.1.1. Let M c J3 be a smooth surface and let p E M be a point.
Then there is some number p > O for which the following property holds. Let
r be a number such that 0 < r < ir and suppose that c: (-S, S) --* M is a
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geodesic such c(0) E GS,(p, M) and c'(0) is tangent to GS,(p, M); then there
is some number > 0 such that c(t) 0 G O, (p, M) for all t E (-17, 0) U (0, ii).

Proof. See Figure A8.1.1 for an illustration of the lemma. Let W be as
in Proposition 8.2.3. To begin with let r be any positive number such that
GOr(p, M) C W; we will choose the number ,rp later. Without loss of gener-
ality we may assume that 8 is small enough so that the image of c is contained in
W. Let c: (-8, 8) -+ TpM be defined by c = (expp)-' o c. If we let C, denote
the circle in TpM of radius r centered at the origin, then F(0) E Cr and F'(0) is
tangent to Cr. We now define a function D: (-8, 8) -> R by D(t) = II-C(t)112.

Observe that the function D is smooth, and that D(O) = r2. Suppose we could
show that D'(0) = 0 and D"(0) > 0. It would then follow from standard
results in Calculus that there is some number ri > 0 such that D(t) > r2 for all
t E (-ri, 0) U (0, q); in other words, we would know is outside the disk
bounded by Cr for all t E (-17, 0) U (0, ri), and the lemma would then follow
by looking at the image of Cr and' under the map expp.

GSr(p, M)

Figure A8.1.1

From the definition of D it follows that D'(t) = 2(c(t), F'(t)). Since C, is
a circle, and since F'(0) is tangent to Cr, it follows from Euclidean geometry that
F'(0) is perpendicular to c(0). Thus D'(0) = 0. We now show that D"(0) > 0
for small enough values of r (which is where the number tp in the statement
of the lemma shows up). We will make use of the notation of the first two
paragraphs of the proof of Proposition 8.2.3.

Let x: U -* M be a coordinate patch such that p E x(U). By shrinking the
set U if necessary we may assume without loss of generality that x (U) C W. By
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choosing r small enough we may assume that GO, (p, M) C W. Let a = c(0),
and let a = x-1 (a). Further, let p, po, Y, cy,;,(t), Et and E2 be as in the proof of
Proposition 8.2.3. Let i E OE: (02, IR2) be a non-zero vector which is a multiple
of (dxa)-I (c'(0)); it does not matter which such vector is chosen. Thinking of
dxy (u) as a function of 4, it follows from Exercise 5.9.5 that this function is
continuous. Hence, if r is chosen small enough then dxn(u) will be non-zero.
We will assume that r is so chosen.

We now define a function

L: (-E, E) x OE, (p. U) -+ R

by

L(t, 4) = II(eXpP)-' (c4.r,(t))I12.

Next define a function H: OE, (p, U) -+ R by

H(9) =
d28t2 4)

l,=o.

As discussed in the proof of Proposition 8.2.3, the curve cn.;,(t) is the unique
geodesic in M with c,,,;(0) = p and c';,(0) = dxfi(u). Using Lemma 8.2.2
we see that (expP)-' (cp,u(t)) = t dx,3(u) for small values of t. Thus L(t, p) =
t2 Ildx,,(u)112. A simple calculation shows that H(p) = 211d fi(ft)II2, and this
vector is strictly positive by hypothesis on r, as mentioned in the previous
paragraph. The function H is certainly continuous, thus H(q) > 0 for all 4
sufficiently near p.

We now return to our proof that D"(0) > 0. Observe that by construction
ca.;, (0) = c(0) and c.., (0) is a non-zero multiple of c'(0); hence by the unique-
ness of geodesics we know that ca,,, is just a reparametrization of our original
geodesic c. Since we are only interested in the image of c we might as well
assume that in fact c(t) = ca.,(t) for all small values of t. We thus see that
L(t, a) = D(t), and hence H(a) = D"(0). It follows from the final sentence
of the previous paragraph that if r is small enough then D"(0) > 0. Combining
all the places where we required r to be small yields the desired fit, as in the
statement of the lemma. 0

The following theorem, which is stronger than Proposition 8.2.3, shows the
existence of geodesically convex neighborhoods.
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Theorem A8.1.2. Let M C R3 be a smooth surface, and let p E M be a point.
Then there is some number yp with 0 < yp < Sp such that for all numbers r
such that 0 < r < yp the set G Or (p, M) has the following properties:

(i) for any two points in x, y E G Or (p, M) there is a unique geodesic arc
contained in G Or (p, M) with endpoints x and y, and this geodesic arc
has the minimal length of all regular arcs in M with endpoints x and

Y;
(ii) GO,(p, M) C expq(Osp(O3, TqM)) for all q E GO,(p, M).

Proof. Let Cp be as in Lemma A8.1.1. Choose some number E such that 0 <
E < (1 /2) min(Sp, Cp ). Let V be as in Corollary 8.2.4 using this E. We define
yp to be some positive number small enough so that GOy,(p, M) C V (using
the fact that V is open in M) and so that yp < E.

(ii). This part follows immediately from Corollary 8.2.4.

(i). Let r be any number such that 0 < r < yp. Let x, y E GO,(p, M) be any
two points. It follows from property (i) of Corollary 8.2.4 that there is a unique
geodesic arc A of length less than c in M joining x and y. Suppose that A is
not contained in GO, (p, M). Take the geodesic arc from p to x, and combine
it end-to-end with the arc A, yielding an arc A' from p to y. The arc A' has
length less than 2E; it is not necessarily smooth at the point x, but it can be
smoothed off at x by some modification in an arbitrarily small neighborhood
of x (we will omit the details). It now follows from Exercise 8.3.7 that A' is
contained in GO2E (p, M). Thus the original arc A is contained in GO2, (p, M),
except possibly for a small neighborhood of the point x (since we had to modify
A' to make it smooth). However, since x E GO2,(p, M) by hypothesis on
x, it follows that some small neighborhood of x is contained in GO2,(p, M).
Hence A is entirely contained in GO2, (p, M). From the definition of f we
deduce that A is contained in GOc (p, M). Since we are assuming that A is not
contained in GO,(p, M), and since both its endpoints are in GO,(p, M), by
the compactness of A there must be some point z in the interior of A that has
maximal distance from p. It is then seen that the geodesic circle centered at p
and passing through z bounds a closed geodesic ball that entirely contains A.
See Figure A8.1.2. Observing that the geodesic arc A must be tangent at z to
this geodesic circle, we obtain a contradiction to Lemma A8.1.1.

We now show that A has the minimal length of all regular arcs in M with
endpoints x and y. Let C be any other regular arc in M with endpoints x and
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Figure A8.1.2

y. Suppose that A has length d, where d < e. By Lemma 8.3.1 we know that
y E GSd(x, M). There are now two cases to consider.

Case 1: The arc C is contained in GOd(x, M). It thus follows from part (ii) of
this theorem that C C expr(Osp(O;, T, M)). Observe that y has R-coordinate
d with respect to x. The desired result now follows from an argument whose
outline, is as follows (details are left to the reader): By the compactness of C
we see that, except for some arbitrarily small neighborhood of x, the arc C can
be broken up into small subarcs each of which is contained in the image of a
single geodesic polar coordinate patch Dx; by applying Lemma 8.3.5 to each
subarc and adding the resulting inequalities (dropping the absolute value signs),
it is seen that the length of C is at least d.

Case 2. The arc C is not contained in GOd(x, M). See Figure A8.1.3. It must
be the case that C intersects GSd(x, M) at some point in the interior of C. Let
z E C be the point in C that intersects GSd(x, M) closest to x; such a point
must exist by the least upper bound property. Observe that the geodesic arc
from x to z has length d, and that the subarc of C from x to z is contained in
GOd(x, M). By Case 1 we know that the length of the subarc of C from x to
z is at least d, and hence so is the length of all of C. O

Exercises

A8.1.1*. Prove that the Jacobian matrix D(D(po) used in the proof of Propo-
sition 8.2.3 is given by
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Figure A8.1.3

11 0 0 0

DO(po) _ to 1 0 0

1 0 1 0

0 1 0 1

A8.1.2*. Let M C R3 be a smooth surface, let p, q E M be points, let A be a
regular arc in M with endpoints p and q, and let Sp be as in Proposition 8.2.3.
If the length of A is d for some d < Sp, show that A C GOd(p, M).

A8.1.3. Use the ideas in the proof of Theorem A8.1.2 to give an alternative proof
of Theorem 7.3.1. More specifically, let so E (a, b) be any point. Let q = c(so),
and choose some number q > 0 small enough so that c((so - 17, so + ri)) C
GOyq(q, M). Show that the regular arc c([so - ri, so + q]) is a geodesic arc,
and thus ..2 S) 0.

Appendix A8.2 Geodesic Triangulations

This section is devoted to a proof of Theorem 8.4.2. We start with two defini-
tions. Let yp be as in Theorem A8.1.2.

Definition. Let M C R3 be a smooth surface. A convex geodesic ball in M
is any set of the form GO, (p, M) for some point p E M and some number r
such that 0 < r < yp. 0
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Definition. Let M C R3 be a smooth surface. A geodesic polygonal arc in
M is an arc A in M such that A = At U . . U A,,, where the Ai are geodesic
arcs, and A, n A;+t is an endpoint of both Ai and Ai+t for all i; a geodesic
polygon in M is a I-sphere in M that is similarly the union of a finite number
of geodesic arcs in M; a geodesic polygonal disk in M is a disk in M such that
the boundary of the disk is a geodesic polygon. 0

Observe that a geodesic triangle is an example of a geodesic polygonal disk.
We now have four lemmas, which show that in certain respects geodesics inside
geodesically convex balls behave very much like straight lines in the plane.

Lemma A8.2.1. Let M C R3 be a smooth surface, let U C M be a convex
geodesic ball and let C C U be a geodesic polygon. Then there is a geodesic
polygonal disk B C U such that a B = C.

Proof. Exercise A8.2.1.

Lemma A8.2.2. Let M C R3 be a smooth surface, let p E M be a point and
let r be a number such that 0 < r < yp. Then there is a geodesic polygonal
disk B C GO, (p, M) such that p E int B.

Proof. Let r' be a number such that 0 < r' < r. Choose a collection of equally
spaced points xt, ... , x E GS,, (p, M) for some large positive integer n. Since
the points xt, ... , x are contained in the convex geodesic ball GOr(p, M), it
follows from Theorem A8.1.2 that for each i E 11. ... , n) there is a unique,
length-minimizing geodesic arc li contained in G Or (p, M) that joins .ri to xi+t
(where addition is mod n). If it is chosen large enough, then each pair of points
xi and xi+t will be so close that the geodesic arc li will lie entirely between
the two geodesic rays originating at p and containing xi and xi+t respectively.
See Figure A8.2.1. (This assertion follows from the fact that the geodesic arc
li can intersect each geodesic ray originating at p in at most one point, and if it
is large enough then li will not contain p; hence li must be entirely contained
in one of the two regions into which the geodesic rays containing xi and xi+t
divide GO,(p, M), and if t is large enough li will be contained in the smaller
region.) The set 11 U ... U 1,, is now seen to be a geodesic polygon contained
in GO,(p, M). The desired result now follows by applying Lemma A8.2.1 to
this geodesic polygon.

Lemma A8.2.3. Let M C R3 be a smooth surface and let Axyz be a geodesic
triangle contained in a convex geodesic ball. If t E z is any point, then the
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Figure A8.2.1

unique geodesic arc (in the convex geodesic ball) joining x and t is contained
in Axyz.

Proof. We start with the exact same notation and construction as in the second
and third paragraphs of the proof of Theorem 8.4.3, which we will not repeat
here. The lemma is now proved as follows. Let to = (Ds)-' (t), which is a point
on the image of the curve F. Since this curve is the graph of some function of
the form R = f (0), we see that the vertical line through to intersects the graph
off only at to. Tracing through all our definitions it is seen that the vertical line
segment from the B-axis to the point to is contained in (DL)-'(Axyz) and is
mapped by Dx to the geodesic arc in M from x tot, which proves the lemma. 0

Lemma A8.2.4. Let M C R3 be a smooth surface and let B C M be a geodesic
polygonal disk contained in a convex geodesic ball C. Then B can be written as
the union of finitely many geodesic triangles such that if any two of the geodesic
triangles intersect, then their intersection is either a common edge or a common
vertex.

Proof. The proof proceeds by induction on the number n of geodesic arcs in
the boundary of B. If n = 3 then B is a geodesic triangle, and there is nothing
to prove. Now suppose that n > 3, and that a B consists of n geodesic arcs. We
assume that the result holds for all geodesic polygonal disks contained in convex
balls with fewer than n geodesic arcs in their boundaries. Let y, x and z be
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consecutive vertices in a B. By definition C = G Or (p, M) for some appropriate
p and r; by Theorem A8.1.2 we know that C c exp.,(Oao(O3, TIM)). Observe
that (exp.,)-'(x) is the origin; let Y = (exp.,)-'(y) and Z = (exp.,)-'(z).
Consider the set J = (exp,,)-' (a B). This set is a 1-sphere contained in the
open disk Oao (O1, TI M)) that passes through the origin; the disk bounded by J
is just (exp,)-I (B). We can think of J as the union of arcs (namely the inverse
images of the geodesic arcs that make up aB, and any two of these arcs intersect
in at most the inverse image of one of the vertices of dB. In general, these arcs
need not be line segments, though the two arcs containing the origin must be
the line segments from the origin to Y and from the origin to Z (since these line
segments are the inverse images under exp., of the geodesic arcs Yy and xz).
See Figure A8.2.2. Of the two arcs in J that join Y and Z, let L denote the arc
that does not contain the origin.

L

0

Figure A8.2.2

We now consider all the rays in T, M that start at the origin and that intersect
the interior of (exp.,)-1 (B) near the origin. Each such ray must intersect the arc
L at some point; if a ray intersects L in more than one point, consider the point
of intersection closest to the origin. See Figure A8.2.3. There are now two
possibilities: Either some such ray intersects L in the inverse image of a vertex
of 8B, or not. If we assume the former case, let V denote the inverse image of
the appropriate vertex of a B (there may be more than one such vertex, so choose
one; in any case note that V cannot be either Y or Z). Then the image under
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expx of the line segment from the origin to V will be a geodesic arc that cuts B
into two geodesic polygonal disks, each of which has fewer than n geodesic arcs
in its boundary; we can then finish the proof by using the inductive hypothesis.

0

Figure A8.2.3

The other case to be considered is when no ray as discussed in the previous
paragraph intersects L in the inverse image of a vertex of a B (at the intersection
point nearest the origin). In that case it is not hard to see that all such rays
must intersect L in the interior of a single arc in L; call this arc a. See Figure
A8.2.4. We now have a few subcases. If the arc a does not have either Y or
Z as one of its endpoints, then choose the point of intersection of any one of
the rays under discussion with a; call this point V; see Figure A8.2.4. Then
once again the image under expx of the line segment from the origin to V will
be a geodesic arc that cuts B into two geodesic polygonal disks, each of which
has fewer than n geodesic arcs in its boundary, and the proof can be finished
by using the inductive hypothesis. If a has both Y and Z as endpoints, then
B is a geodesic triangle, contradicting our assumption that n > 3, so the only
remaining case is when a contains precisely one of Y and Z. Assume without
loss of generality that a contains Y but not Z; see Figure A8.2.5. Here B can
be cut up into pieces by extending the line segment from the origin to Z until
it hits a (which it must do, since all the rays converging to this ray intersect a,
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and an arc is a closed set); let V denote the point of intersection of the ray from
the origin through Z with a. This time we use the image under expt of the line
segment from Z to V, also a geodesic arc, to cut B into two geodesic polygonal
disks, each of which has fewer than n geodesic arcs in its boundary (except in
the case when it = 4, which we leave to the reader).

0

Figure A8.2.4

L

0

Figure 8A.2.5
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We are now ready for the proof of our main result. Our proof is modeled
after the construction of triangulations for topological surfaces given in [TH].
Note that any two geodesic arcs in a convex geodesic ball can intersect in at
most one point (by the uniqueness of geodesics joining any two points in such
a ball).

Proof of Theorem 8.4.2. For each point p E M, let rp be some number such
that 0 < rp < min(yp, E). By Lemma A8.2.2 there is a geodesic polygonal
disk Bp C GO,,(p, M) such that p E int Bp. Let Cp = aBp. The collection
of sets { int Bp }peM is an open cover of M, and by the compactness of M there
must be a finite collection of sets (int Bp,, ... , int Bp,) that cover M for some
positive integer k. It certainly follows that the disks (Bp,, ... , Bp,) cover M.
We may assume without loss of generality that no Bp, is contained entirely in
another Bp, (for in that case simply throw out the former set).

First we verify that the union T = Cp, U U Cpl partitions M into
finitely many geodesic polygonal disks, the boundaries of which are formed
out of subarcs of the Cp,. See Figure A8.2.6. Since each Cp, is contained in
a geodesically convex set, and since any two geodesic arcs in a geodesically
convex set can intersect in at most one point, the set T can be thought of as
the union of finitely many geodesic arcs, any two of which intersect in at most
a single common endpoint. Let P E M - T be any point; then p must be
contained in int Bp, for some i. Since any two geodesic arcs in a geodesically
convex set can intersect in at most one point, we see that T n Bp, can be obtained
by taking Cp, and adding to it one at a time finitely many geodesic polygonal
arcs A,, ... , A. made up of subsets of the Cps. We start with Cp, U A,, noting
that A, intersects Cp, precisely in its two endpoints. Hence Cp, U A, is a theta-
curve, as discussed in Exercise 2.2.14. Using that exercise, and the fact that
everything is taking place inside a subset of M that is homeomorphic to R2,
it follows that Bp, - (Cp, U A,) consists of two open disks, the boundaries of
which are contained in Cp, U A, . The point p must be contained in one of these
open disks, and we restrict attention to the closure of this disk, denoted D. We
now proceed as above, using D and the arc A2. If A2 does not intersect D
then we proceed to A3; if it does intersect A2 then once again 8D U A2 forms
a theta-curve, and the point p is now contained in an even smaller open disk,
the boundary of which is contained in 8D U A2 C Cp, U A, U A2. Proceeding
in this manner until all the Aj are used up, we see that p is contained in some
open disk the boundary of which is contained in Cp, U A, U U. . . U Aq = Bp, n T.



378 VIII. The Gauss-Bonnet Theorem

Figure A8.2.6

Our claim now follows.
We can now think of M as broken up into finitely many geodesic polygonal

disks, any two of which intersect in at most some collection of geodesic arcs
in their boundaries. The next step is to apply Lemma A8.2.4 to each of these
geodesic polygonal disks one at a time. The result is that M can be written as
the union of finitely many geodesic triangles such that if any two of the geodesic
triangles intersect, then their intersection is either a common edge or a common
vertex. The desired geodesic triangulation t: I K I -- M can now be constructed
using an argument similar to the construction used in the proof of Lemma 3.3.10
(i); details are left to the reader. 0

Exercise

A8.2.1*. Prove Lemma A8.2.1.

Endnotes

Notes for Section 8.1

(A) There are higher-dimensional versions of the Gauss-Bonnet Theorem.
The original higher-dimensional formulations ([AD], [FN] and [A-WI) were
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geometric in nature; the more modern version of this theorem is formulated
in ultimate generality using such high-tech tools as bundles, cohomology and
characteristic classes (see, for example, [SK3, vol. V, Chapter 13] and [M-S,
Appendix Q.

(B) In addition to the Gauss-Bonnet Theorem there are some other very nice
results relating the Euler characteristic to certain geometric quantities defined
for smooth surfaces (and more generally smooth manifolds). Two such results
are the Poincare-Hopf Theorem concerning vector fields on manifolds (see
[MI3, §6] or [DOI, p. 282]) and the Morse inequalities (see [M12, §5], or [HR,
p. 161]).

Notes for Section 8.3

We showed that simplicial curvature and Gaussian curvature are somewhat
analogous by showing that the latter can be expressed in terms of a smooth
angle defect. Alternately, we might attempt to construct a simplicial analog of
the Gauss map, and then prove that the angle defect can be expressed in terms
of the simplicial Gauss map. This approach can be found in [BL, §§2,6,7]; the
sections referred to are elementary and can be read independently of the rest of
the paper.

Notes for Section 8.4

Our proof of the Gauss-Bonnet Theorem (the essence of which is the proof of
Theorem 8.4.3) is not very geometrically appealing. A nicer approach (which
we have not taken to avoid a number of technicalities) would be to make a
more explicit use of some version of Stokes' theorem (for example Green's
theorem, which relates an integral over a region in the plane to a line integral
over the boundary of the region - essentially a two-dimensional version of
the Fundamental Theorem of Calculus). We could then apply such a theorem
to the integral of Gaussian curvature over a polygon in the surface, where the
boundary of the polygon is made up of a number of smooth arcs glued end-
to-end. Piecing together the integrals over these polygonal regions would then
yield the Gauss-Bonnet Theorem. Such a proof can be found in [DO1 ] or [SK3,
vol. III].
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Notes for Section A8.1

Theorem A8.1.2 was first proved in [WHI]; we follow the treatment in [DO1,
§4-7].

Notes for Section A8.2

(A) Rather than using geodesic triangulations, some differential geometry
texts make do with C00 triangulations, which are essentially triangulations in
which the restriction of the triangulation map to each simplex is a smooth
map (where we think of an i-simplex as sitting in R'). See [WH2] or [MU1]
for more details. It is much easier to find C°O triangulations than geodesic
triangulations. However, to avoid the use of geodesic triangulations in the proof
of the Gauss-Bonnet Theorem (Theorem 8.1.1), other technicalities (which we
have not discussed) are needed as compensation.

(B) In those books that do make use of geodesic triangulations, the reader will
be hard-pressed to find a proof of the fact that all compact smooth surfaces have
geodesic triangulations, or even a reference for a proof. This result is what is
known as a "folk-theorem"; everyone knows that it is true, but it is hard to find
a detailed proof. The only relevant reference the author could find is [PI], in
German, which proves that any topological triangulation of a smooth surface
can be approximated by a triangulation with edges that are piecewise geodesics;
the result that we need could then be deduced from this theorem.



Appendix

Affine Linear Algebra

We assume that the reader is familiar with the fundamentals of linear algebra
(at least insofar as it applies to R"), including bases, linear maps, matrices,
determinants and eigenvalues; see for example [LAI] or [FR] for more details.
Because we will be working not only with subspaces of R" but with translates
of subspaces (such as lines and planes in R3 that do not contain the origin),
we need the variant of linear algebra called affine linear algebra. In linear
algebra the fundamental construction is that of a linear combination of vectors;
subspaces are closed under linear combinations, and linear maps preserve linear
combinations. Because all the coefficients in a linear combination can be zero,
the zero vector is contained in any subspace. To obtain translates of subspaces we
restrict our attention to linear combinations in which the sum of the coefficients
equals 1. The material in this section is analogous to standard results in linear
algebra; we leave it to the reader to provide examples and most of the proofs.
We start with the analogs of linear independence and span.

Definition. Let xo, ... , xk E ]R" be points. An affine combination of these
points is a linear combination E=o t; x; where to, ... , tk E R are numbers such
that t, = I. The affine span of these points, denoted aspan{xo, ... , xk },
is the set of all affine combinations of the points. The set {xo, ... , xk } is affinely
independent if the conditions F_k-o t;x; = O" and Ek=o t; = 0 for numbers
to,... ,rk e 1Rimplythatt; =0foralli E {0,... ,k}. 0

A geometric characterization of affinely independent sets is given in the
first part of the following lemma.

Lemma Al. .Let xo, ... , xk E IR" be points.

(i) The set {xo, ... , xk } is affinely independent ifthe set {xi -xo, ... , xk -
xo) is linearly independent.

(ii) tf (xo, ... , xk ) isaffinely independent, then each x E aspan{xo, ... , xk }

is uniquely expressible as x = Ek_o tjx; for some numbers to, ... , tk E
R such that F_iao t; = 1.
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Proof. (i). Suppose (xo, ... , xk } is not affinely independent, so that there exist
numbers to, ... , tk E R that are not all zero such that Fk=o tix; = O" and

k ti = 0. By the last equality it cannot be the case that only one of the ti isEki=o
non-zero; hence one of t1, ... , tk is non-zero. We now have

k k k k

O" = L tiXi = Ltixi - (Lti).YO = Lti(xi -x0),
i=0 i=0 i=0 i=1

and hence the set (xI - xo, ... , xk - xo) is linearly dependent.
Conversely, suppose that (x1-xo, ... , xk -xo ) is linearly dependent, so that

there exist numbers ti, ... , tk E R that are not all zero such that Ei=1 ti (xi -
xo) = 0,,. If we let to = - y1=1 ti, then rk=o t; = 0 and

k k k k k

I tixi = 10x0 +Llixi = Eri(xi -xo) = O,,.
i=0 i=1 1=1 i=I i=1

Hence (xo, ... , xk) is affinely independent.

(ii). The existence of the numbers to, ... , tk with the desired properties follows
immediately from the definition of affine span, and the uniqueness follows from
a standard argument that we leave to the reader. 0

It is now straightforward to see that a collection consisting of a single
point is always affinely independent; two points are affinely independent if they
are distinct; three points are affinely independent if they are not collinear; four
points are affinely independent if they are not coplanar. Observe that a collection
of more than n + I points in R" cannot be affinely independent. Next, we have
the analogs of subspaces.

Definition. A subset X C R" is an affine subspace if it is closed under affine
combinations, that is, if x0, ... , xk E X are points and to,... , tk c- R are
numbers such that Ei=o ti = 1, then Ek=o tixi E X. An affine basis for an
affine subspace X C R" is an affinely independent set of points (xo.... , xk) C
X such that aspan(xo, ... , xk } = X. 0

The following lemma is analogous to a standard result in linear algebra.

Lemma A.2. Every affine subspace of R" has an affine basis, and all such affine
bases have the same number of elements (which is finite).

Proof. Let X C R" be an affine subspace. If X = 0 then the result holds
vacuously, so assume that X 0 0. Choose any point p E X, and let Y =
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(x - p I X E X I. We start by showing that Y is a vector subspace of R". Let
v, w c= Y and a, b E R. Then v + p, w + p E X. Further, let c= I - (a + b).
Hence a + b + c = 1, so a(v + p) + b(w + p) + cp E X by the definition of
affine subspaces. Since a (v + p) + b(w + p) + cp = (av + bw) + p, it follows
that av + bw E Y. Thus Y is a vector subspace.

Any vector subspace of R" has a finite basis, so let (v, , ... , vk } C Y be a
basis for Y. We will show that the set (p, v, + p, ... , vk + p) is an affine basis
for X. First, suppose that top + t, (vi + p) + + tk (vk + p) = O" for some
numbers to, ... , tk E R such that t, = 0. It follows that Ek 1 t;v, = O",
and by linear independence we deduce that t; = 0 for all i E (1, ... , k}. It then
follows that to = 0, so (p, v, + p. ... , vk + p) is affinely independent. Next,
let x E X be a point. Then x - p E Y, so there are numbers t,, ... , tk E R
such that x - p = E1=1 t; v; . If we let to = I - E; 1 t;, then it is seen
that x = tap + t, (v, + p) + - + tk (vk + p) and Eko t; = 1. Hence
x E aspan(p, v, + p, .... vk + p).

The fact that all affine bases of X have the same number of elements follows
from a similar argument, using the fact that all bases for Y have the same number
of elements. 0

By the above lemma we can make the following definition.

Definition. An affine subspace of R" has dimension k if it has an affine basis
with k + I points. A k-dimensional affine subspace of R' is called a k-plane.

0

A k-plane in R" need not be a vector subspace of R", though ak-dimensional
vector subspace is a k-plane. The precise relation between vector subspaces and
k-planes is given in the following lemma; the proof of this lemma is just like
the proof of Lemma A.2.

Lemma A.3. If N C R" is a k-dimensional vector subspace of R" and p E R"
is a point, then the set (x + p I x E N) is a k-plane; conversely, any k-plane in
R" has this form.

We see, for example, that a 1-plane in R" is just a straight line and a 2-plane
is just a plane. The only n-plane in R" is R" itself. The following lemma is
once again as expected.

Lemma A.4. Let xo,... , xk E R" be points. Then aspan(xo,... , xk} is an
affine subspace of R". Suppose the set (x0, ... , xk) is affinely independent.
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Then aspan(xo, ... , xk } is a k-plane, and it is the unique k-plane containing
these points.

We now turn to the analog of linear maps.

Definition. Let X C IR" be an affine subspace. A map F: X -> 1R' is affine
linear if it preserves affine combinations, that is, if xo, ... , xk E X are points
and to, ... , tk E R are numbers such that Fk_o t; = 1, then F(E'_o tjxj) _

;`_ot1F(xj) 0

The following lemma shows the relation of affine linear maps R" -+ RI
to linear maps.

Lemma A.S. Let F: IR" - IR"' be an affine linear map. Then there is a linear
map L: R" - 1R'" and a vector p E lR' such that F(x) = L(x) + p for all
X E R".

Proof. Define the map L: R" --> 1R"' by L(x) = F(x) - F(O") for all x E R",
and let p = F(O"). To prove the lemma it suffices to show that the map L so
defined is linear. Let v, w E 1R" and a, b E R. If we let c = I - (a + b) then
a + b + c = 1, and by the definition of affine linearity we have

L(av + bw) = F(av + bu)) - F(O") = F(av + bw + cO") - F(O")
= aF(v) +bF(w) +cF(O") - F(O,,)
= a(F(v) - F(O,,)) + b(F(w) -

aL(v) + bL(w). 0

An affine linear map need not be a linear map. If X C R" is an affine
subspace, and if F: X --i- RI is an affine linear map, then F is the restriction
to X of an affine linear map R" -+ 1R'°; this claim follows from Lemma A.7
below and the fact that any affinely independent set can be extended to an affine
basis. Hence F is also the restriction of a linear map followed by a translation.

The following lemma is analogous to another standard result in linear al-
gebra.

Lemma A.6. Let X C IR" be an affine subspace. and let F: X -- R"' be an
affine linear map.

(i) The image of F is an affine subspace of R. If F is injective then the
dimension of F(X) equals the dimension of X.
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(ii) If F is injective, then the inverse map F-1: F(X) -- X is affine linear.

We see from this lemma that an injective affine linear map takes straight
lines to straight lines. Just as a linear map is determined by what it does to an
appropriate number of linearly independent vectors, affine linear maps behave
similarly to an appropriate number of affinely independent points, as seen in the
following lemma.

Lemma A.7. Let X C R" be a k-plane, let (xo,... , xk) C X be an affine
basis of X, and let yo, ... , yk E R' be any points (not necessarily affinely
independent). Then there is a unique affine linear map F: X -+ R"' such
that F (xi) = yi f o r all i E { 1, ... , k). The map F is injective if the points
yo, ... , yk are affinely independent.



Further Study

The material in this book is merely an introduction to a number of branches
of mathematics, and here we recommend some books for each topic. This list
is certainly not exhaustive.

1. Collateral Reading

A number of books can be used as supplements to the present text. A classic
expository work on geometry, which includes some nice illustrations in differ-
ential geometry, is [H-CV]. Of more recent vintage is the highly recommended
[WE], which gives an intuitive treatment of the geometry and topology of sur-
faces and 3-manifolds (very much inspired by the work of Weeks' adviser, W.
Thurston). The first few chapters are particularly germane to our topic, though
for our purposes one need not pay attention to the emphasis on hyperbolic ge-
ometry. This is also the only book I know that includes tic-tac-toe on the torus
and the Klein bottle.

To do [WE] correctly, read the classic [AB] first. This little volume, written
by a Victorian schoolmaster, was as much a satire of Victorian society as a
mathematics text, but it has served as an inspiration to many mathematicians
and non-mathematicians alike in thinking about higher-dimensional space. A
more recent sequel to [AB] is [BU], which contains some nice mathematical
topics, but which does not have the satirical style of its predecessor. Another
book on higher dimensions for a popular audience is [RU], although some of
the more speculative parts of this book should be taken with many grains of salt.
A very nice recent book on higher dimensions, of interest to mathematicians
and non-mathematicians alike, is [BA4].

On a more standard note, a textbook that might make a nice complement to
the present book is [NA]. This book, like the present text, focuses on geometric
questions concerning subsets of Euclidean spaces, but it covers topics we do not,
such as the fundamental group, simplicial homology, and differential topology.
A nice little volume that not only discusses the topology of surfaces but also
gives many historical references to the development of the subject is [F-F]. Two
very recent books that discuss a number of topics concerning surfaces that we
have skipped (such as group actions and covering spaces) are [ST] and [KY].
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The recent book [FO] treats a variety of topics, including some differen-
tial geometry and geometric topology of surfaces, and supplements rigor with
remarkable drawings. Another phenomenal source of drawings of surfaces in
various stages of deformation, with accompanying explanations, is [FC]. The
text [MCL] nicely puts the differential geometry of surfaces in the context of
the development of non-Euclidean geometry, in much more detail than our brief
discussion in Section 8.5. Another text that expands upon our treatment of
smooth surfaces in R3 is [MG], which gives a very concrete introduction to
Riemannian geometry via surfaces in R", discussing general relativity in the
process.

2. Point Set Topology (also known as General Topology)

For more advanced work it is necessary to discuss topological properties of
sets that do not naturally sit in any Euclidean space. The most general setting
for such study is the notion of a topological space; the study of the axiomatic
properties of such spaces is called point set topology. Point set topology is
both the foundational material for all branches of topology and a good place to
practice proof techniques. An excellent text on point set topology is [MU2]; it
would suffice to read Chapters 2-4, although the reader familiar with groups
should definitely read Chapter 8 about the fundamental group. Another nice
text is [AR], which may not quite match [MU2] for pure expository style, but
which has the advantage of moving as quickly as possible to geometric topics.
Another such text is [JA], although its lack of exercises is a serious drawback. A
classic point set textbook often recommended by authors of an earlier generation
is [KE]. This book covers important material and is considered to have good
problems; on the other hand, it does not have a single figure.

3. Algebraic Topology

Algebraic topology is the study of topological problems using tools from abstract
algebra such as groups and rings. The basic idea is to associate with each
topological space various algebraic objects that reflect the properties of the
original space. The first topics usually studied in algebraic topology are the
fundamental group, covering spaces, homology groups and homotopy groups.
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Even someone primarily interested in geometric questions will need these tools
for advanced work. Algebraic topology has become a subject in its own right
as well as a tool for other branches of mathematics. A classic text on the
fundamental group and covering spaces (as well as surfaces) is [MS 1]. Other
introductory texts covering simplicial homology and the fundamental group
(among other things) are [NA], [AR] and [CR]. Of the many advanced texts on
algebraic topology, two of the more accessible are [MU3], and [MS2]. The text
[MU3] is particularly recommended for its geometric approach, including a nice
treatment of simplicial cohomology. A slightly older book that covers point set
and algebraic topology from a geometric point of view is [H-Y]. The ultimate
reference book for algebraic topology is [SP], though as a first exposure to the
subject one should proceed at one's own risk.

4. Geometric Topology

Geometric topology focuses primarily on the study of manifolds, which are the
higher-dimensional analog of surfaces. The restriction to manifolds, as opposed
to general topological spaces, allows for a more geometric flavor (of the "rubber-
sheet" variety) than in point set topology. Manifolds come in three varieties:
topological; piecewise linear (abbreviated PL), which generalize what we have
been calling simplicial surfaces; and differential (also known as smooth). In the
two-dimensional case (that is, surfaces) these three categories essentially coin-
cide, in that any surface of one type is homeomorphic to a surface of any of the
other two types. In higher dimensions the three categories of manifolds behave
quite differently from one another; for example, there are topological mani-
folds that are not homeomorphic to any differential manifold. The topological
properties of differential manifolds are the subject of differential topology and
will be discussed in Item 6 below. Geometric topology focusses on topological
and PL manifolds. One needs to learn about general topological spaces and the
fundamental group (at least) before attempting the books mentioned here on
topological and PL manifolds.

A very nice text, and one upon which the current book draws fairly heavily,
is [MO], dedicated to surfaces and 3-manifolds. The book contains proofs
of the triangulability of 2-manifolds and 3-manifolds, the latter being quite
difficult (and which was first proved by Moise). Also discussed are things
such as wild spheres and wild arcs. Another book on geometric topology that
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maintains a low-dimensional, geometric point of view is [BI]. (Moise and Bing
were classmates at the University of Texas, working under R.L. Moore.) Some
standard texts on PL topology, all at the graduate level, are [ZE], [R-S], [HU],
and [GL]. PL topology often appears quite formal at first encounter, especially
[HU]. The text [ZE] is quite nice, and served as an inspiration for later texts on
the subject, but is only available as unpublished lecture notes.

One very pretty geometric topic is knot theory, a branch of geometric
topology but with a flavor all its own. Not only is this subject geometrically
appealing, but there have recently been found some connections between it and
such applied fields as quantum mechanics and DNA. Some books on the subject
are [RO], [B-Z], and [KA].

Though closer to geometry and combinatorics than geometric topology,
the study of polyhedra is both of inherent geometric interest and of use in
applications. A nice discussion of the history of the study of polyhedra, which
goes back to the ancient world, is given in [S-F, §4]. The combinatorial approach
to polyhedra is taken in [GR I], [GR2] and [BD]. Applications to optimization
can be found in [Y-K-K].

5. Differential Geometry

Differential geometry is an older subject than topology, having received a major
impetus from the work of Gauss and Riemann. For historical comments see
the appendix of [M-P]. Classical differential geometry is concerned with curves
and surfaces in R3, as discussed in the present text. Three books taking the
classical point of view, which contain material not covered here and upon which
the current text has relied, are [M-P], [KL] and [DO1 ]. The last is particularly
recommended; the text [M-P] is the most elementary, though not always elegant;
there is much nice material in [KL], but the discussion is often rather terse.

Two main changes occur when moving beyond classical differential geome-
try: higher-dimensional manifolds are treated, and more advanced technologies
(such as moving frames, differential forms, lie groups and vector bundles) are
used. Although these more advanced techniques may be applied to surfaces,
the advanced techniques are crucial in higher dimensions, where there are com-
plications that do not arise in the case of surfaces in R3. Three undergraduate
texts, slightly more advanced than the three mentioned above, are [ON], [S-T]
and [TR]. The first of these two books treats moving frames, and the second
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discusses point set and algebraic topology as well as differential geometry, and
includes the famous deRham Theorem. Some graduate level differential ge-
ometry texts are [D02], [HI], [BO] and [K-N]. The ultimate introduction to
differential geometry is the five volume opus [SK3 vols. I- V]. The coverage
in this work is as follows: vol. I - the basics of smooth manifolds, differential
forms, etc.; vol. II - an extremely thorough treatment of curvature and con-
nections, in which the same topic is discussed via a sequence of approaches
that roughly follows historical development, starting with the work of Gauss
and Riemann; vol. III - classical surface theory (although one needs tools
from the first two volumes); vol. IV - higher-dimensional manifolds; vol. V
- advanced topics, including the generalized Gauss-Bonnet Theorem. The
bibliography in vol. V is quite thorough. The five volumes [SK3 vols. I-V] are
known for their exploratory and sometimes humorous style.

6. Differential Topology

This area is at the intersection of the various parts of the current text: the study of
the topological properties of differential manifolds. Though certainly serving as
foundational material for advanced differential geometry, differential topology
has become a subject area distinct from either geometric topology or differential
geometry and has seen major advances in the past 40 years. To study differential
topology, advanced Calculus is definitely needed; see, for example, the classic
[SKI] or the recent [MU4]. Some point set topology is also needed, and basic
algebraic topology is necessary for the more advanced texts. An excellent place
to start is the beautiful little book [M13]. Two other introductory texts are [WA]
and [B-J]. There is also some introductory material on differential topology in
[NA]. Other books to look at, all at the graduate level, are [BO], [HR], [MU I],
[WR] and [SK3 vol. 1].

Finally, two books to which any student interested in the study of smooth
manifolds should aspire are [MI2] and [M-S]. Both these books are influential
graduate level texts, covering beautiful material and written in a style many
mathematicians seek to emulate. Both books are based on notes taken during
lectures by J. Milnor, one of the most important topologists of the last 40 years;
one of the note-takers for [MI2] was M. Spivak, author of [SK3].
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Hints for Selected Exercises

Section 1.2

1.2.2. Take a well-chosen nested family of open intervals in R.

1.2.12. The goal is to show that U = R" - A is open in R". Let P E U be a
point; show that OD,2(p, R") contains at most one member of A. Now find a
number r > 0 such that Or (p, R") C U.

1.2.17. Let x = lub S, and suppose that x V S; obtain a contradiction by
showing that R - S.

Section 1.3

1.3.7. Look for a function f : (0, 1) --+ R with slope that goes to infinity.

1.3.8. Divide R into two parts, one on which f (x) > g(x), and one on which

g(x) ? f (x)
1.3.9. Use Condition (3) of Proposition 1.3.3. Let p 0 be a real number;
first, find numbers m, 81 > 0 such that m < Ixpi for all Ix - pI < 8; now find
the desired S.

1.3.10. Using Lemmas A.5 and 1.3.8, and writing F out in coordinates with
respect to the standard basis of R", it suffices to show that any function f : R" -+

I,

R of the form f ( : ) = ajxi + +a"x" +d (where a,,... , a", d E R are
X

any numbers) is continuous; the proof that f is continuous is similar to Example
1.3.4.

1.3.11. For each possible combination of continuous, open, and closed, an ex-
ample is given, and sometimes a hint on how to prove that the desired properties
are satisfied.

(1) Continuous, open and closed: The identity map 1 R: R --i- R.

(2) Open, closed and not continuous: The map f : [0, 2] -+ [0, 11 U (2, 3] given
by
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f (x) =
x, ifxE[0,1];

{ x + 1, if x E (1, 2].

For non-continuity, consider the subset U = (1, 1] of the codomain [0, 1] U
(2, 3]. For openness, consider separately the open subset of [0, 2] that contains
the point I and those that do not. For closedness, use the bijectivity of f and
Exercise 1.3.5.

(3) Continuous, closed and not open: Any constant map f : R -+ R.

(4) Continuous, open and not closed: The projection map rrl: R2 -+ R, given by

r1((y)) =
X.

For closedness, consider the subset C C R2 that is the sequence

), ... }.C ='t 22), ('33),

1/4

Use Exercise 1.2.12.

(5) Open, not continuous and not closed: The map f : R2 -+ R given by

f((y)={x,
xx+1, ifyO;

ify<0.
This is similar to part (4).

(6) Closed, not continuous and not open: The map f : R - * R given by

f (x) =
1, ifx>0;

{ -1, ifx <0,
For non-continuity look at f -I ((z, 1)).

(7) Continuous, not open and not closed: The inclusion map i: [0, 1) -+ R.

(8) Not continous, not open and not closed: The map f : R -+ R given by

{ 2, ifx=0;
f (x)

X. ifx # 0.
For non-continuity look at f -I ((1, 3)). For non-openness look at f ((-1, 1)).
For non-closedness look at f ([0, 1]).

Section 1.4

1.4.8. Use equivalence relations if you are familiar with the concept; otherwise,
show directly that for any x, y E X, if [x] and [y] have non-empty intersection
then they are in fact equal sets.
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Section 1.5

1.5.3. It suffices to prove that the product of two connected subsets of Euclidean
space is connected; the result for products of more than two connected sets would
then follow by induction on the number of factors in the product; let A C IR"
and B C 1R1 be connected; choose a point (a, b) E A x B; for each x E A
let Tx = (A x {b}) U ({x} x B); show that each TX is connected (use Exercise
1.5.2); observe that A x B = UXEA T, and deduce that A x B is connected.

1.5.4. The tricky part is showing that components are closed subsets; let C be a
component and let x E A - C be a point; conclude that C U [x) is not connected,
and deduce that there is some number e > 0 such that OE (x, A) C A - C.

1.5.6. Use the Intermediate Value Theorem, though you need to decide what
to apply it to.

1.5.8. For the first part, let r > 0 be a number such that Or(x, IR2) C U; if
y, z r= U are any two points, then by hypothesis there is a path in U from y to z;
if the path does not contain x there is nothing to prove; if the path does contain
x, then show how to modify the path inside Or (x, R2) so that it misses x.

1.5.11. Let x, y E U be points for which there is no path from x to y in
U - {a }; by hypothesis there must be a path from x to y in U, and hence this
path must contain a; use openness find points x' and y' with the same properties
as x and y but contained in V; now suppose that V - {a} is path connected, and
obtain a contradiction.

1.5.13. Suppose to the contrary that there is a component of A that intersects
both B and A - B.

Section 1.6

1.6.4. This is a tricky problem; one possibility is to let A = R C 1R2, to define
an injective continuous map f : A -o- R" with the desired properties, and to let

B = f (A).

1.6.7. Cover the set [a, b] x (0) with open squares (rather than open disks)
such that the function f is positive on each square.

1.6.8. To find a maximal element, consider the collection of all sets of the
form (-oo, a) for a E A.
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1.6.10. Use the Extreme Value Theorem to find a point x E (a, b) at which f
has a maximal or minimal value and f (x) # f (a); use the Intermediate Value
Theorem to prove the desired result.

1.6.11. Consider the function d: A x B -> R defined by d(a, b) = Ila - bll.

1.6.12. Pick any finite subcover of A by compactness; let U;, be any element
of the finite subcover that contains p; if U;, contains q we are finished, so
assume otherwise; use connectivity to show that there is some set in the finite
subcover that intersects U;,, and call this set U;2; keep going until one of these
sets contains q.

Section 2.2

2.2.5. For part (i), use the Schonflies Theorem to show that R2 - C has
precisely two components; show that at least one of these components must be
unbounded, since R2 is unbounded and C is compact; show that not both of the
components are unbounded, again using the compactness of C; for part (ii) use
the hint for Exercise 2.2.6.

2.2.6. First reduce to the case where B, = D2; then, by definition, there is some
homeomorphism g: D2 --> B; observe that g(S1) = aB; using the compactness
of D2 show that [R2 - aB] - g(int D2) is open in R2 - aB; use Invariance
of Domain to show that g(int D2) is open in R2 - aB; use the connectivity of
int D2 and Exercise 1.5.13 to deduce that g(int D2) is precisely one of the two
components of R2 - aB; use the compactness of int D2 to show that g(int D2)
is the bounded component of R2 - d B; use a similar (though simpler) argument
to show that h(int D2) is also the bounded component of R2 - aB; deduce the
desired result.

2.2.8. The set B cannot be just the origin, so pick some point z E B other
than the origin; show that the intersection of B with the line containing 02
and z is a compact set; use Exercise 1.5.8 to find a point x in this intersection
with maximal distance from the origin; use Invariance of Domain to show that
x E aB; show that x is as desired; to show that there are at least two such points
x, use Invariance of Domain to show that B is not contained in a single line.

2.2.9. Reduce to the situation where B, = D2; use Exercise 2.2.8 to find two
points x, y c- a B2 satisfying the conclusion of that exercise; breakup D2 -int B2
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into two disks by forming two I -spheres using the points x and y and then using
Corollary 2.2.5; use these disks to construct a homeomorphism from A onto
D2 - int B2.

2.2.10. First suppose that n > m, and derive a contradiction to Invariance of
Domain by thinking of R'" as a subset of R" as usual; next assume it < m, and
that A is open in RI; let x E A be a point, so that there exists some number
E > 0 such that OE (x, R"') C A; hence R' contains a subset homeomorphic to
OE (x, RI); think of I8" as a subset of R as usual; derive a contradiction using
Invariance of Domain.

2.2.12. First show that for each point in aJ there is a point arbitrarily close to
it in int J; then show that if a point is in int B then there is a minimal positive
distance from it to all points in a B.

2.2.13. Let A C SI be a proper subset homeomorphic to S'; show that S'
with a point removed is homeomorphic to R, and hence a homeomorphic copy
of A sits in R; using the compactness and connectivity of A show that A must
be a closed interval; show that a closed interval cannot be homeomorphic to S' ,

yielding a contradiction.

Section 2.3

2.3.3. Let V C Q be an open set containing p that is homeomorphic to int D2,
and let h: int D2 -). V be a homeomorphism; consider the set h-' (OE (p, Q)),
and find appropriate disks there.

2.3.4. Let p E U be a point, and let V C Q be an open subset containing Q
that is homeomorphic to int D2; consider U fl V, and use Invariance of Domain.

2.3.9. Let H: Q, - int B, -+ Q2 - int B2 be a homeomorphism; show that
H(8B,) = 8B2; extend H over B, so that H(BI) = B2.

Section 2.4

2.4.2. The "obvious" thing you might try, namely cutting the rectangle in
Figure 2.4.9 (i) in two with a horizontal line half-way up, does not work; a more
judicious cut is needed.
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Section 2.5

2.5.3. In the case of planes, let p E Q be a point, and let n be a plane in R"
which contains an open neighborhood of p in Q; consider the set T= n fl Q;
use the definition of relative closedness to show that T is closed in Q; use the
hypothesis on Q to show that T is open in Q, the crucial observation being that
a non-empty open subset of a plane in R" cannot simultaneously be an open
subset of a different plane in R"; conclude that T = Q.

Section 2.6

2.6.1. Use Lemma 2.4.5.

Appendix A2.2

A2.2.1. It suffices to show that the surfaces Q and Q, in the proof of parts (i)
and (ii) of the proposition are homeomorphic under the hypothesis that at least
one of QI and Q2 is disk-reversible; assume without loss of generality that Q2
is disk-reversible; the goal is to apply Exercise 1.4.9 to the maps f and r' o f';
let H: Q2 - Q2 be a homeomorphism such that H(T2) = TT and HI8T2 is an
orientation reversing homeomorphism, which exists by Exercise 2.5.3; consider
the map

d = r' o f' o (f')-I o (HIaT2)-': 3T2 -+ 8T2,

and proceed as in the proof of parts (i) and (ii) of the proposition.

A2.2.3. Transfer everything to D2 using Corollary 2.2.6 and Exercise 2.2.6,
and use the method of Lemma A2.2.2.

A2.2.5. Find a homeomorphism g: S' -+ SI such that f2 = fI o g; then use
Exercise A2.2.4.

A2.2.6. Pick any pair of antipodal points a, b E SI; define the function
f : al - R by letting f (z) be the length of the arc from f (-z) to - f (z),
where the length is positive if the arc is counterclockwise and negative if the
arc is clockwise (note that by injectivity f (-z) 0 f (z), so that there is never
ambiguity in this definition); if f (a) and f (b) are antipodal there is nothing to
prove, so assume otherwise; show that one of f (a) and f (b) is positive and the
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other is negative; since ai is an arc, the Intermediate Value Theorem (Theorem
1.5.4) can be applied to f ; deduce the result.

A2.2.7. There are many ways to construct the map F, the simplest being as
follows: The idea is to map each horizontal slice of [-1, 1 ] x [0, 1 ] homeomor-
phically to itself, squeezing the homeomorphism f to a point as one moves up
[0, 1], fixing the endpoints and increasing amounts of [-1, 1]; graphically this
map F is suggested in Figure H. 1; find an explicit formula.

Figure H.1

A2.2.10. Use Proposition A2.2.6.

A2.2.11. Use Proposition A2.2.6.

Section 3.2

3.2.5. Linear independence.

3.2.6. Suppose n = (aa, ... , ak); translate the whole situation by ao, and
consider the issue of k-dimensional subspaces of R" containing k given vectors.

3.2.8. Use Lemmas A.6 and A.7 and Exercise 1.3.10.
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Section 3.3

403

3.3.6. The tricky part is (3) = (2); suppose (2) holds but (3) is false, so that
there exist simplices a and r of K for which there does not exist a connecting
chain of simplices as in condition (3); let C C I K I be the union of all simplices
of K that can be connected to or by a chain of simplices, and let D be the union
of the rest of the simplices of K; show that CUD = I K I, that c n D = 0 and
that both C and D are non-empty and closed in I KI.

3.3.9. Although the idea is intuitively very straightforward - one simply
chops up the polygonal disk into triangles - the proof is a bit trickier (though
not longer) than might be expected; see [HO] for a proof and discussion of some
false proofs that have been published.

Section 3.4

3.4.3. No need to repeat the proof of Theorem 3.4.1; use Exercise 3.3.10,
although you need to check what happens with the links after subdivision.

Section 3.5

3.5.2. Use the method of Example 3.5.3 (2).

3.5.4. First show that no two of S2, T2, T2 # T 2, T 2#T2 #T 2.... are homeo-
morphic by using the Euler characteristic; then show that no two of P2, P2 # P2,
P2 # P2 # P2, ... are homeomorphic; use Proposition 2.6.6 to show that no sur-
face from one of these lists is homeomorphic to a surface in the other list.

Section 3.7

3.7.2. Break up f2(K) into parts.

3.7.5. Equation 3.7.1.

3.7.6. Let K be a simplicial surface with fo(K) = VV; create new simplicial
surfaces with fo(K) any integer greater than V by subdividing K, adding one
0-simplex at a time. Observe that if and f)(K) are known, then f, (K) and
f2(K) are determined.
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Section 3.8

3.8.1. (i). Let m be the dimension of K, let r be an m-simplex of K and let
x E Int r is a point; show that x can be chosen to be in int I K 1; show that m = 2,
as in the proof of Theorem 3.4.1.

(ii) & (iii). Use the fact that R2 0 l2 (Exercise 2.2.11), and that small enough
open balls in I K I about any two points in the interior of the same simplex of K
are homeomorphic to deduce that the interior of each simplex of K is entirely
contained either in int I K I or 31 K 1, as in the proof of Theorem 3.4.1; show that

every 1-simplex of K, the interior of which is contained in int IK 1, is a face of
two 2-simplices, and the underlying space of the link of every 0-simplex of K
contained in int I K I is a 1-sphere.

Let ?l be a 1-simplex of K such that Int n C 8I K 1; using an argument similar
to that used in the proof of Theorem 3.4.1, show that n is the face of at least
one 2-simplex of K; suppose n is contained in 2-simplices aI, ... , or,, where
p > 2, let x E Int n be a point and let U C I K I be an open set containing x
that is homeomorphic to 11112; deduce that any point in U fl 8I K I has an open
neighborhood in I K I that is homeomorphic to 11]12; by an argument to Exercise
2.3.3, choose U small enough so that it is entirely contained in Int n U Int of U

U Int op; show that U fl 8 1 K I C Int n; use Exercise 1.5.12 to show that
U fl int I K I is entirely contained in one of the Int o1; deduce that U is entirely
contained in or, and derive a contradiction using Exercise 1.2.18 (ii) and an
argument similar to that found in the proof of Theorem 3.4.1; deduce that n is
contained in precisely one 2-simplex.

If w is a 0-simplex of K contained in 8 I K 1, show that I link(w, K) I is an
arc, as in the proof of Theorem 3.4.1; deduce that parts (ii) and (iii) of the
theorem will both follow, except for the fact that Bd K is a subcomplex; deduce
this remaining claim from Exercise 2.2.12.

3.8.2. Use induction on p.

3.8.5. Combine Corollary 2.2.5 (ii), Corollary A2.2.5 and Exercise 3.8.4.

Section 4.2

4.2.1. The proof is very similar to the proof of Theorem 4.2.2.

4.2.2. The proof is similar to the proofs of Proposition 5.2.5 (ii) and Lemma
7.2.2 (iii), using Exercise 4.2.1 instead of Theorem 4.2.2.
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4.2.3. Use the chain rule.

4.2.5. One first needs to show that the image of c intersects each vertical line in
R2 at most once; let cl and c2 denote the x and y coordinate functions of c; show
that c, is bijective and that its image is an open interval; then use Exercise 4.2.3
to conclude that c, is a diffeomorphism; then consider the function C2 o (c1)-I.

Section 4.3

4.3.3. First show that if h(d, e)(a, b) is any diffeomorphism (independent of
c) then h(t) 0 for all t E (d, e); hence either h'(t) > 0 for all t E (d, e) or
h'(t) < 0 for all t E (d, e); now apply Proposition 4.3.4 (i) to c; if the derivative
of h has the wrong sign, modify h.

4.3.10. First find EP > 0 such that cl(p - Ep, q] is injective as follows; use
Exercise 4.2.5 to find a number c, > 0 such that cl(p - E,, p + E,) is injective;
by compactness find the minimal distance D > 0 from c([p + E,, q]) to c(p);
find a number 3 > 0 be such that c((p - 6, p + S)) C OD/2(c(p), R3); show
that Ep = min{E,, 3) has the desired property; now use a similar argument to
find a number cq > 0 such that cl [p - Ep/2, q + Eq) is injective; let E _
I min{Ep/2, Eq/2); now use Proposition 1.6.14 (iii) and the analog for arc of
Exercise 2.2.4 applied to [p - E, q + E].

Section 4.4

4.4.2. First consider the case where the curve lies in the x-y plane, and then
reduce the general case to the first case using rotations and translations of R3.

4.4.4. Use Exercise 4.4.2.

Section 4.5

4.5.2. Rotation matrices preserve inner product and cross product.

4.5.4. Observe that c(t) = fP T (s) ds + c(p) for any fixed p E (a, b).

4.5.5. For the "if" part, for each t E (a, b) we have c(t) - xo = al(t) T (t) for
some function J.: (a, b) - R; what can you say about K(t) in this case?
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Section 4.6

4.6.1. Use a circle and a right circular helix or appropriate radii.

4.6.2. For step (1), use Equations 4.6.4 and 4.6.5; for step (3) use Theorem
4.2.6.

Section 4.7

4.7.4. Use Exercise 4.7.3.

4.7.5. Define f : (a, b) -+ R to be f (t) = (c(t), c(t)); what can you say about
f(q) and f"(q)? Use this information to show that N(q) = ±c(q)/R, and
that IK(q)I ? -n'

Section 5.2

5.2.6. Use the chain rule for partial derivatives.

5.2.8. Use Proposition 5.2.5 (ii).

Section 5.3

5.3.5. The c curve is in the x-z plane; it might help to sketch the surface.

5.3.6. Use the x-y plane as the surface, though the equation z = 0 for this
surface does not do what we want.

Section 5.4

5.4.6. If c: (-e, E) -), M is a curve in M, use the chain rule to show that
DF(c(t)) is perpendicular to c'(t) for all t e (-E, e).

5.4.7. For the case k = 0 compute the partial derivatives of (x, n) with respect
to s and t; for the case k 0 0 compute 11 x - (- k w II
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5.5.9. For step (2), show that

agjk

Section 5.5

= (xij, xk) + (xik, xj)
aui
agile

a uj
= (xij, xk} + (xjk, xi}

407

by permuting the subscripts i, j and k in the equation found in Step (1) and
using the equality of mixed partial derivatives. Now solve these two equations
together with the equation in Step (1).

Section 5.6

5.6.4. In both cases, choose a curve c: (-E, e) -+ M such that c(O) = p and
c'(0) = v; then use the chain rule on f o c.

Section 5.7

5.7.1. For part (i), at each point 4 E U one can find numbers Z' (4) and Z2 (4)
such that Z ox(4) = Z' (4)xI (4) + Z2(4)x2(4) by using linear algebra; to show
that the resulting functions Zi are smooth, use Cramer's rule.

5.7.2. Assume without loss of generality that p = 02; if {e 1, e2 } are the standard
basis vectors for R2, use the curve c: (-e, E) --> M given by c(t) = x(tei) to
compute ox; (p) Z.

5.7.8. Choose a coordinate patch, and do everything in coordinates; start off by
stating and proving an analog of Exercise 5.2.6 for functions of two variables.

Section 5.9

5.9.2. One scheme is to show (1) * (2) and (3) = (4) = (5) = (2); for (2) =
(1) show that for each point p E M there is an open subset V C M containing
p such that f (V) is open in N and f IV: V -+ f (V) is a diffeomorphism;
use Equation 5.9.1 to show that d fp is non-singular, and then use Proposition
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5.9.3; for (4) = (5) let x: U -+ M be a coordinate patch as in part (4); use
Lemma 5.8.1 to show that letting A = U works; for (5) = (2) let v E TpM be
a vector; suppose that c: (-E, c) -+ M be a smooth curve such that c(O) = p
and c'(0) = v; for each t E (-E/2, E/2) show that

f f III (s)II ds = f 11 (f o c)'(s)II ds;
E/2 E/2

deduce that IIc'(t)II = II (f o c)'(t)II for all t E (-E/2, c/2); conclude that
Ildfp(v)II = Ilvll; now use the fact that a linear map that preserves lengths of
vectors also preserves inner products (see [LA1, chapter VIII §5]).

5.9.5. First show that %P is bijective; use the Inverse Function Theorem and
Exercise 1.4.4 to show that ' is actually a homeomorphism.

5.9.9. Let y: U -+ M be a coordinate patch such that p E y(U); let v =
(dyp) (v) and similarly for w; let F: R2 -* R2 be the linear map that sends
(a) to v and (°) to w; consider the map x = y o FI F-I (U); use Exercises
5.9.7 and 5.9.8.

Section 6.1

6.1.1. For part (2), start with any coordinate patch whose image contains p,
and construct the monge patch from it.

Section 6.2

6.2.1. By symmetry it suffices to describe the Weingarten map at any one point
in the cylinder; examine the effect of the Weingarten map on a well-chosen basis
for the tangent plane at the point you choose.

7. Use the normal vector field n =
IIZII

to compute the Weingarten map.

Section 6.3

6.3.1. By symmetry, both kinds of curvature are constant.

6.3.2. One need not completely know the Weingarten map to compute Gaussian
curvature in this case. What can be said about the normal vectors along each
ruling?
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6.3.5. For part (1) use Exercises 5.4.6 and 6.2.7.

Section 6.4

6.4.5. Use the Weingarten Equations.

6.4.6. First show that the L;j are all zero; then show that n is constant, and
apply Exercise 5.4.7.

6.4.7. To show that the Weingarten map is zero at all points use K = H = 0
to compute the principle curvatures at all points; the proof of Exercise 6.4.6 can
now be used to show that if x: U -* M is a coordinate patch with connected
domain, then x(U) is contained in a plane; now use Exercise 2.5.3.

6.4.8. If the statements of each of (i)-(iii) can be proved for the image of
each coordinate patch x: U -+ M for which U is connected, then the result for
all of M can be pieced together using Exercise 2.5.3; using Exercise 6.3.4 (ii)
there must be a function d: U -* R such that n; (p) = d(P)x, (p) for all p E U
and i = 1, 2; show that the function d is smooth; show that d1(p)x2(p) _
d2 (p)xI (p) for all p, where dI and d2 denote the partial derivatives of d; deduce
that dI and d2 are constantly zero, and it follows that d is constant; now show
that x satisfies the hypotheses, and hence the conclusion, of Exercise 5.4.7.

6.4.9. First find a general criterion for a vector being an eigenvector for a 2 x 2
matrix.

Section 6.5

6.5.1. For step (1), use Equation 6.5.6 and Exercise 5.7.4. For step (2), use
step (1) together with Equation 6.4.1 and some manipulating of the expression
we are trying to derive.

Section 7.2

7.2.4. Use Exercises 5.5.6 and 7.2.3.

7.2.6. For step (3), there must be numbers p, q E (x, y] such that h-' oc(p) = 0
and h-I o c(q) = 1; show that there must be some number u between p and q
such that c(u) = c(x), a contradiction to injectivity.
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7.2.7. For part (iii) use Exercise 7.2.5.

Section 8.2

8.2.2. Write p = ( ) and q =
vZ

and consider the matrix D f ; use
Exercises 4.2.2 and 4.2.3.

8.2.5. Some parts of the corollary follow from the compactness of M and the
statement of Proposition 8.2.3, whereas other parts require looking at the proof
of Proposition 8.2.3.

8.2.6. Use the Lebesgue Covering Lemma (Theorem 1.6.9).

Section 8.3

8.3.1. Use Exercise 6.5.2.

8 3 2 D fi /G i th li iti l i i. . . e ne (())... , ng e m ng va ues g venB )) us n

Lemma 8.3.3, and use the Taylor polynomial with remainder.

8.3.4. For the second part of the exercise suppose that both cases are false;
then there is some closed interval I C (a, b), where I may be a single point,
such that I is a maximal set upon which the curve (Dp)-I o c has horizontal
tangent vectors at all points in I; see Figure H.2; consider the images under Dp
of lines of the form 0 = k and the curve (Dp)-I o c, and obtain a contradiction
to Theorem 7.2.6 by looking at one of the endpoints of I.

0

"-Z
9=k

o c

R

Figure H.2
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8.3.5. The strategy is similar to the analogous part of the proof of Proposi-

tion 8.3.6; use Equation 8.3.6 to extend the function FG((o)) smoothly over

(-SP, 8P) x (-jr, 37r); take the derivative and restrict to an appropriate compact
set.

Appendix A8.1

A8.1.1. If q = (q2) E OE, (p, U) and v = ("Z) E 06E2/2 (02, R2) are any two
V

points, then show that

2a
aqj aq2 a,,, a,,,

aq, 8q2 a,,, a,,,

DID (po) E Zu ZV E ZU E ZUac1(2,g, ,) ac,(12 4' E) aC1Qj, E) a', (2,g, E )
aq, aq2 a,,, a,,,

E E E ZU

aC2(2,q,) L ii) aC2(2,4, E) aC2(j,4, e2V)

aq, aq2 a,,, a,,,

(i).
where everything is evaluated at po = The first two rows of this matrix

0
are straightforward to compute. We discuss two of the other entries in the
matrix; the remaining ones are similar to these two.

To compute ac, (E/a2,4,20/E) 1p,), hold all the variables other than qI constant
(setting q2 = P2 and v1 V2= 0) and then taking the derivative; observe that
cI (2, (P2), 02) = qI, since any geodesic of the forrn cq,02(t) is the constant
map c4,02(t) = x(q) for all t by the uniqueness of geodesics.

To compute ac,(E/2, ,2v/E) Ip), fix qI = pi and q2 = P2 and v2 = 0, varyingau,
vI; for notational ease let t = vI, and take the derivative with respect to t at
t = 0. Show that

ac, (2, d E 2 (1))
avI

dt c1(2, P, tE 0 It=o

Use Exercise 7.2.5 to show that cq,U(ta) = cq,to(a) for any number a and
all sufficiently small values of t, and use Exercise 5.9.7 to show that cp , (0) _

dx,(v) = v,x,(n)+v2x2(ji), and hence dc,`.fi,°)I,=o = v; fori = 1,2. Put
these observations logcthcr to obtain the desired value.
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A8.1.2. Suppose the result is false; it must then be the case that A intersects
GSd(p, M); use the ideas of the proof of the length minimization part of The-
orem A8.1.2 to show that, in fact, the length of A must be greater than d, a
contradiction.

A8.1.3. First, show that c([so - r7, so + ri]) must have minimal length of
all regular arcs in M with its endpoints; assume the contrary, and deduce that
c([a, b]) could not be the regular arc of minimal length with endpoints p and
q. Use the uniqueness in Theorem A8.1.2 (i) to deduce that c([so - rj, so + q])
is a geodesic arc.

Appendix A8.2

A8.2.1. Use the Schdnflies Theorem.
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star(a, K) star of a in K, 3.3
link(a, K) link of a in K, 3.3
K I underlying space, 3.3

P(V) partition induced by an admissible partition
of vertices, 3.3

S° unit circle in R, 3.4
f, (K) number of i-faces of K, 3.5
X (K) Euler characteristic, 3.5
L(v, a) angle at v in a, 3.7
d(v) simplicial curvature at v, 3.7
Bd K simplicial boundary of asimplicial disk, 3.8
D F Jacobian matrix of F, 4.2
Length(c) length of a curve, 4.3
T (t) unit tangent vector, 4.4
N(t) unit normal vector, 4.4
B(t) unit binormal vector, 4.4
K(t) curvature of curves, 4.5
r (t) torsion of curves, 4.5
T (t) planar unit tangent vector, 4.7
N(t) planar unit normal vector, 4.7
K(t) planar curvature for curves, 4.7
x1, x2 partial derivatives of x, 5.2
c(x, y) change of coordinate function, 5.2
c(t) pull-back of c, 5.2
c1(t), c2(t) coordinate functions of c, 5.2
TTM tangent plane at p, 5.4
n normal vector to a coordinate patch, 5.4
In first fundamental form at p, 5.5
I first fundamental form, 5.5
g;j metric coefficients, 5.5

gii) matrix of metric coefficients, 5.5
V f directional derivative of f in the direction v, 5.6
V' Z directional derivative of Z in the direction v, 5.6

covariant derivative of Z with respect to v, 5.6
DZ covariant derivative along a curve, 5.6
-it

covariant derivative, 5.7
I' Christoffel symbols, 5.7
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Area(S)
dfp
Tx(U)

n

Areao(n(T))
L
IIp

II

(Lii )
(lei )
ni
K (p)
H (p)
k1, k2
S2
Vc

E, F, G
A, B, C

Pv

A(t)
Ep

expp

SP

SM

EM

Expp
GS,(p, M)
GO,(p, M)
GO,(p, M)
rect
Dp

(Dr),
E, F, G
Ye (S)

ctR(t)
L,
Yp

area of a region in a surface, 5.8
differential of f at p, 5.9
tangent space over x (U), 5.9
Gauss map, 6.1
oriented area of the image of the Gauss map, 6.1
Weingarten map, 6.2
second fundamental form at p, 6.2
second fundamental form, 6.2
matrix for Weingarten map, 6.2
matrix for second fundamental form, 6.2
partial derivative of n, 6.2
Gaussian curvature at p, 6.3
mean curvature at p, 6.3
principle curvatures, 6.3
oriented plane generated by v, 6.3
unit vector generated by S2, 6.3
metric coefficients, 6.4
matrix entries for the second fundamental form, 6.4
bound for the domain of a geodesic, 7.2
length of variation of a curve, 7.3
domain of exponential map, 8.2
exponential map, 8.2
radius of ball in the domain for the exponential map, 8.2
radius of ball in the domain for the exponential map, 8.2
radius of ball in the image of the exponential map, 8.2
orthogonal map, 8.2
exponential coordinate patch, 8.2
geodesic circle, 8.2
open geodesic ball, 8.2
closed geodesic ball, 8.2
polar to rectangular map, 8.3
geodesic coordinate patch, 8.3
partial derivative of the geodesic coordinate patch, 8.3
metric coefficients of Expp, 8.3
geodesic ray, 8.3
geodesic circle, 8.3
length of geodesic circle of radius r, 8.3
radius of convex geodesic ball, A8.2
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1-sphere, 49

Affine,
basis, 382
combination, 381
independent, 381
linear algebra, 381
linear map, 384
span,381
subspace, 382

Alexander, 108
Alexander trick, 107
Angle defect, 154, 166
Annulus Theorem, 54
Antoine horned sphere, 108
Antoine

neclace, 108
sphere, 108

Area, 252 254
Arc, 49

geodesic polygonal, 372
Attaching, 25
Axiom of choice, 46

Ball,
closed, 4
closed geodesic, 334
convex geodesic, 371
open, 3, 4
open geodesic, 334

Bertrand, 342
Bilinear form, 229, 274

induced, 274
Binormal vector,

unit, 183
Birkhoff, 355
Bolyai, 354

Boundary, 51, 115, 157
combinatorial, 115
simplicial, 157

Boundary-even, 161
Boundary-odd, 161
Bounded, 37
Bounded Convergence Theorem,

351
Brouwer, 108
Brouwer Fixed Point Theorem,

30, 157, 159, 166
one-dimensional, 30

Calculus, 201
Catenoid, 233, 262, 294
Change of coordinate function,

206
Christoffel symbols, 244, 261, 269
Circle,

geodesic, 334
Classification of Compact

Connected Surfaces, 80, 141
Classification Theorem for

Compact Connected Sur-
faces, 152

Clockwise, 199
Closed, 9

relatively, 10
Closure, 11
Codazzi-Mainardi Equations, 298
Compact, 70, 116
Completeness, 357

Cauchy, 327
topological, 327

Complex,
cell, 131, 137
simplicial, 119

Component, 29



Cone, 262
circular, 223

Connected, 28, 71, 124
Connected sum, 74
Continuous, 14

uniformly, 20
Convex, 111
Convex hull, 112
Coordinate functions, 210
Coordinate patch, 203,

exponential, 333
geodesic polar, 335

Counterclockwise, 199
Cover, 35

finite, 35
open, 35

Curvature, 270
of curves, 185, 186
Gaussian, 282, 341, 379
mean, 282, 307
planar, 271
principal, 282
simplicial, 152, 154, 341, 379
total, 154

Curve, 174
regular, 174
planar, 197, 199
profile, 214
simple closed, 49
smooth, 174
unit speed, 174, 201

Cylinder, 56, 64, 71, 261, 287
generalized right, 287
right circular, 47, 301

Deleted comb space, 32
Derivative,

covariant, 239, 240, 243
directional, 236, 238

Descartes, 154, 165
Differential, 257
Diffeomorphism, 168, 212
Dimension, 383

Index 417

Disconnected, 28
Disk, 49

geodesic polygonal, 372
polygonal, 61, 131
simplicial, 157

Dog saddle, 289

Edges, 345
Edge-sets, 62, 82
Elliptic Axiom, 356
Elliptic hyperboloid of one sheet,

219
Ellipsoid, 222, 290
Euclid, 354
Euclidean Angle-Sum Axiom, 356
Euclidean space, 2
Euler, 138, 165, 307
Euler characteristic, 138, 139,

156, 328, 345, 379
Euler's formula, 285, 307
Existence and uniqueness of solu-

tions
of ordinary differential equa-

tions,171
Existence theorems, 46
Exponential map, 330
Extreme Value Theorem, 43
Extrinsic, 72

Face, 115
proper, 115

Figure-reversing, 64
Fixed point, 158
Flat, 153
Frenet frame, 183
Frenet-Serret formulas, 189, 193
Frenet-Serret Theorem, 189, 296
Fundamental form,

first, 229, 230, 257, 261
second, 277

Fundamental Theorem of Calcu-
lus, 194, 379
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Fundamental Theorem of Curves,
193, 302

Fundamental Theorem of Sur-
faces, 296, 305

Gauss, 271, 300, 306, 307, 354
Gauss-Bonnet Theorem, 154,

328, 345, 378
simplicial, 328

Gauss equation, 298
Gauss formulas, 297
Gauss' Lemma, 337
Gauss map, 271

simplicial, 154
Geodesic, 309, 311

arc, 314
Geodesically complete, 358
Geometry,

Euclidean, 353
non-Euclidean, 353

Gluing, 59, 125
Gluing scheme, 61
Graph theory, 166
Great circle, 309

Half-plane,
closed upper, 7
open upper, 11

Half-space,
closed upper, 2

Hausdorff, 36, 44
Heine-Borel Theorem, 39
Hilbert, 46, 355, 362
Hole, 141
Homeomorphic, 21
Homeomorphism, 21
Hopf-Rinow Theorem, 318, 357
Hyperbolic Axiom, 356
Hyperboloid of one sheet, 222
Hyperbolic paraboloid, 222, 223,

290

Index

i-complex, 120
Identification space, 24
Identity map outside a disk, 52
Infinitely differentiable, 201
Inner product, 275
Integers, 2
Integral, 255
Intermediate Value Theorem, 30,

32, 157
Interval,

closed, 2
half-open, 3
infinite, 3
open, 2

Interior, 51, 115
combinatorial, 115

Interior-even, 161
Interior-odd, 161
Intrinsic, 72, 153, 261, 270
Invariance of Domain, 50, 108,

132, 165, 208, 267
Inverse Function Theorem, 167,

168, 208, 221, 264, 333
Isometry, 259

local, 259, 300

Jacobian matrix, 168
Jordan Curve Theorem, 53, 108,

165

Kant, 354
k-face, 115
Klein bottle, 66
k-plane, 383
k-simplex, 115

Latitude, 216, 316
Law of Cosines, 154
Least upper bound, 320
Least Upper Bound Property, 28,

39, 46



Lebesgue, 41
Covering Lemma, 41
number, 42

Lefschetz Fixed Point Theorem,
164

Length, 178
Lengths, 252
Level surfaces, 220
L'Hopital's rule, 293
Like-oriented, 146
Line segment, 111
Link, 120
Lobachevsky, 354
Local coordinates, 206
Locally homogeneous, 357
Logarithmic spiral, 191, 200
Longitude, 216

Manifold,
Piecewise linear, 267
smooth, 267
topological, 267

Map,
affine linear, 20, 118
closed, 19
Euclidean smooth, 210
induced, 123
open, 19
quotient, 24
simplex-wise linear, 160
simplicial, 121
smooth, 167, 210, 212
surface smooth, 210, 211

Mazur swindle, 75
Matrix, 275

Jacobian, 203
rotation, 192
symmetric, 275

Mean Value Theorem, 293
Meridian, 216, 316
Metric coefficients, 230
Milnor-Fary Theorem, 167
Minding, 358

Index 419

Mobius strip, 64, 71, 141, 218,
268

Monge Patch, 214, 227, 233, 256
280, 294

Monkey saddle, 286
Morse inequalities, 379
Morse Theory, 166

Neighborhood,
open, 7

No-Retraction Theorem, 159
Normal vector, 181, 227

planar unit, 197
unit, 181

Octahedron, 131
One-sidedness, 64
Open, 5

relatively, 7
Orientation, 200
Orientation preserving, 93
Orientation reversing, 93
Oriented, 91

clockwise, 91
counterclockwise, 91

Parallel, 216, 310
Parallel transport, 327
Parametrization, 312
Parametrized by arc-length, 201
Partition, 23

admissible, 128
induced, 62, 128

Path, 31
shortest, 309, 322

Path connected, 31, 71, 116, 124
Playfair's Axiom, 356
Polygon,

geodesic, 372
Polyhedra, 110
Poincare-Hopf Theorem, 379
Principal directions, 282
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Projective plane, 67
Pseudosphere, 360
Puiseux, 342
Pull-back, 210

R-coordinate, 336
Rational numbers, 2
Real numbers, 2
Regular arc, 314
Regular value, 222
Reparametrization, 174, 312
Riemann, 354
Right circular helix, 176, 188
Right helicoid, 218, 227, 234, 252,

253,
256, 262, 281, 292, 301

Rulings, 218

Sard's Theorem, 267
Schonflies Theorem, 52, 94, 108,

109
Self-adjoint, 275, 279
Shape operator, 307
Shellable, 157
Shelling, 157
Simplex, 113

dimension, 115
Simplicial Approximation Theo-

rem, 165
Simplicial complex, 120

dimension, 120
Simplicial isomorphism, 121
Simplicially isomorphic, 121
Simplicial quotient map, 126
Simplicial subdivision, 131
Spectral theorem, 282
Speed, 174
Sperner,

First Lemma, 161
lemmas, 157

Index

Sphere, 47
unit, 47, 204

Star, 120
Stokes' theorem, 379
Straight line, 309
Strongly regular, 182
Subcomplex, 120
Subcover, 35
Subdivides, 122
Surface, 55

disk-reversible, 102
level, 289
minimal, 307
non-compact, 136
non-orientable, 72, 152
of revolution, 214, 233, 251,

280, 294, 316, 327
orientable, 72, 78, 152, 267
polyhedral, 137, 141
rectifying developable, 219,

234, 252, 281, 306, 321
ruled, 217, 326
saddle, 231, 256, 272, 279, 326
simplicial, 134, 205, 267
smooth, 204, 205
topological, 55, 202, 205
underlying, 134

Symmetric, 229

Tractrix, 360
Tangent

plane, 224
vector, 224

Tangent vector, 180,
planar unit, 197
unit, 180

Tetrahedron, 120, 121, 134, 135,
138, 139, 154

Theta-curve, 55
Theorema egregium, 282, 296,

300,308,357



Torsion, 188
Torus, 47, 141, 217, 233, 242,

256, 280, 320
knotted, 57
unknotted, 57
punctured, 141

Topology,
algebraic, 2
geometric, 1
point set, 1

Triangle,
geodesic, 345

Triangulated, 135, 205
Triangulates, 135
Triangulation, 135

C°°, 380
geodesic, 345, 371, 380

Tychonoff Theorem, 46

Uinbilic, 289, 295
Unbounded, 38
Underlying space, 122
Unlike-oriented, 146

Vector field, 240, 310
smooth, 237
tangent, 237, 240, 243

Velocity vector, 174
vertex-sets, 62, 82
Vertex, 113

Weingarten equations, 278
Weingarten map, 276, 307
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