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PREFACE

The purpose of this book is to explain the most important physical concepts and
mathematical methods commonly used 1n predicting the behavior of neutrons
in nuclear reactors An effort has been made to avoid mathematical complexity
that does not lead to a sigmificant increase 1n physical understanding or 1s not
used 1n actual reactor design studies In a few instances, therefore, where 1t
appears justified, lengthy derivations have been omitted and only the conclusion
given, with references to the relevant hterature

The book 1s more or less self-contained and could serve as an introduction to
reactor theory for physicists, mathematicians, and engineers We have assumed,
however, that the reader 1s familiar with such topics as the fission process,
neutron cross sections, and the moderation and diffusion of neutrons Thus,
one of the more elementary texts on nuclear reactor theory would provide the
necessary background An adequate knowledge of mathematics s, of course, a
requirement Previous experience with vector analysis, partial differential
equations, eigenvalue problems, and Laplace and Fourier transforms 1s desir-
able, although not necessary for an understanding of the basic principles Some
of the special mathematical procedures used in the text are explained in an
Appendix and, 1n other cases, references are given to standard works

Many people have helped us in one way or another in the preparation of this
book, and we take this opportunity to express our indebtedness to them We
offer our thanks to Milton Edlund for his participation 1n the planning phase
and to Robert Pigeon, AEC Division of Technical Information, for obtaining
reviews of the draft manuscript In this connection, we are grateful to Noel
Corngold, Kent Hansen, William Hendry, Kaye Lathrop, Norman McCormick,
Lothar Nordheim, and Paul Zweifel for their helpful comments John Lamarsh
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also assisted us by a careful reading of the draft, and we have profited greatly
from suggestions based on his extensive experience in teaching nuclear reactor
theory. Finally, we are happy to acknowledge the competence of Ruth Beaty
and Margo Lang in typing a difficult manuscript.

GEORGE I. BELL
SAMUEL GLASSTONE

October 1970
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1. THE NEUTRON
TRANSPORT EQUATION

1.1 DERIVATION OF THE TRANSPORT EQUATION

1.1a Introduction

The behavior of a nuclear reactor i1s governed by the distribution in space,
energy, and time of the neutrons in the system, and one of the central problems
of reactor theory 1s to predict this distribution. In principle, this can be done by
solving the neutron transport equation, often called the Boltzmann equation
because of i1ts similarity to the expression obtained by L. Boltzmann in con-
nection with the kinetic theory of gases. In this chapter, various versions of the
neutron transport equation are derived, and some general properties of its
solution are discussed.

The neutron distribution problem could be solved by inserting into the
transport equation a complete set of the appropriate cross sections, which
represent the neutron interaction probabilities, together with the geometrical
arrangement of the materials in the system. Numerical solutions could then be
obtained by suitable computation procedures, e.g., by Monte Carlo methods. In
practice, however, this proves not to be possible. First, the cross sections and
their variation with neutron energy are very complicated and not completely
known, and second, the geometrical arrangement of the materials 1n a reactor 1s
so complex that the transport equation cannot be solved 1n a reasonable time
even with a computer. In any event, solution of the neutron transport equation
1s so difficult that, except in the simplest cases, approximate forms of the
equation must be used. These approximations are outlined at the end of this
chapter and they are treated 1n detail in the book.



2 THE NEUTRON TRANSPORT EQUATION

Before proceeding to the derivation of the transport equation, certain
quantities required to describe the neutron transport problem will be defined,
and a consistent notation will be presented. It will be seen that this notation
differs in some respects from that employed in elementary reactor theory, but
this is often a consequence of the introduction of extra variables in neutron
transport theory. No great difficulty should be experienced, however, in
adjustment to the notation used here.

1.1b Definitions and Notation
Neutron as a Point Particle

In transport theory, a neutron is considered to be a point particle in the sense
that it can be described completely by its position and velocity. The point
description would appear to be reasonable because the reduced wavelength of a
neutron is small in comparison with macroscopic dimensions and neutron mean
free paths.

According to the de Broglie equation, the reduced wavelength, A of a particle
is given by

A==

where # is Planck’s constant divided by 2= and p is the momentum of the
particle. For a neutron this takes the form

_455x 1070
- VE ’

where E is the neutron energy in electron volts. Even for a neutron with 0.01 eV
energy, A is 4.55 x 10-® cm, which is almost an order of magnitude less than
the distances between atoms in a solid and several orders of magnitude less than
macroscopic dimensions and mean free paths. Thus, it is reasonable to regard
the position of a neutron as a quantity which can be specified accurately.

It is possible, in fact, to choose the position and velocity (or momentum) of
a neutron with sufficient precision and not violate the Heisenberg uncertainty
relationship Ax Ap ~ 4. If an uncertainty Ax in position of 10~* cm can be
tolerated, the momentum uncertainty corresponds to a negligible uncertainty
in the energy, i.e.,

A

AE ~ 107°VE,

where AE and F are in electron volts.!

For neutrons of very low energy, the wavelength becomes very large and the
neutron cannot, of course, be localized. The treatment of neutron transport
developed in this book is then not valid and a quantum-mechanical formulation
would be required.? The problem is of no practical significance in reactor physics,



DERIVATION OF THE TRANSPORT EQUATION 3

however, since a negligible number of neutrons have energies which are so low
that the conventional point-particle description is seriously in error. Further-
more, the transport equation is generally taken to hold even at arbitrarily low
neutron energies, although in these circumstances the relationship of the
solutions to physical reality becomes uncertain.

The neutron has a spin and a magnetic moment, which can lead to polarization
that has an effect on neutron transport. But, as will be seen in §1.4b, this effect
is small in most practical situations. If necessary, an approximate allowance can
be made by minor modifications of the scattering cross sections.

For the present, the neutron will consequently be regarded as a point particle,
with a position described by the vector r and a velocity by the vector v. The
velocity vector is often represented by

v =18,

where v (= |v|) is the neutron speed, i.e., the (scalar) magnitude of the velocity,
and & is a unit vector in the direction of motion, i.e., in the same direction as v.

It is often convenient to specify the unit vector, &, in a polar coordinate
system, i.e., by the polar angle 8 and the azimuthal angle ¢, as shown in Fig. 1.1.
Cartesian coordinates of & are then

Q, = sin 6 cos ¢ Q, = sin fsin ¢ Q, = cos 6.

a0

FIG. 1.1 POLAR COORDINATES.



4 THE NEUTRON TRANSPORT EQUATION

Neutron Density and Flux

To describe a population of neutrons a quantity, called the neutron angular
density in this book, is introduced. It is represented by

Angular density = N(r, &, E, t) (1.1)

and is defined as the probable (or expected) number of neutrons at the position
r with direction  and energy E at time ¢, per unit volume per unit solid angle
per unit energy, e.g., per cm® per steradian per MeV. Consequently,

N(r, R, E, 1) dV dQ dE

is the expected number of neutrons in the volume element 4V about r, having
directions within d€2 about § (Fig. 1.2) and energies in dE about E at time ¢.*
If  is expressed in polar coordinates, then dQ = sin 8 df dp, where the
element of solid angle dQ is defined by the ranges 8, § + df and ¢, ¢ + dp. In
later sections of this book, e.g., §1.3a, cos 6 is often represented by p, so that

AR = du dp.

In the definition of the neutron angular density given above, the expression
“probable (or expected) number of neutrons’ is meant to imply that fluctuations

a
V4
a)
dV=dxdyds
<
y
0

X
FIG. 1.2 THE VOLUME ELEMENT dV AND THE DIRECTIONAL ELEMENT dS.

* The volume element about r is sometimes represented by dr or by d®r, but dV is more
explicit.
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from the mean neutron population are not taken into account. If the neutron
population under consideration is large, then the actual population will be close
to the expected (or average) value and the fluctuations will be relatively small.
If, on the other hand, the neutron population is small, it is still important to be
able to describe the average behavior, even though the actual population at any
instant in time is unlikely to resemble the average value. These points are
discussed further in §1.4c.

The integral of the neutron angular density over all directions (or all solid
angles) is the energy-dependent neutron density, n(r, E, t); thus,

Neutron density =f N 2, FE t)dR =n(, E, ¢t), (1.2)
4n

where the symbol 4= implies integration over all directions. Hence, n(r, E, t)
is the expected number of neutrons at r, with energy E at time ¢z, per unit volume
per unit energy. If polar coordinates are used to specify £2, then the neutron
density is defined by

1 21
n, E, 1) sf lfo NG, &, E, 1) do du,

where, as above, p = cos 6.
The product of v and the neutron angular density is called the neutron angular
current or the vector flux; that is,

Vector flux = vN(r, , E, 1). (1.3)

It is a vector function of the four variables r, 2, E, and ¢ with direction . Its
magnitude, i.e., oN(r, &, E, ), is sometimes called the scalar flux. In this book,
however, it is referred to as the neutron angular flux, because of the dependence
on angle; it is represented by ®(r, £, E, ), so that

Angular flux = oN(r, R, E, 1) = O(r, Q, E, 1). (1.49)

The integral of the angular flux over all directions, which is also equal to
on(r, E, t), is called the total flux, ¢(r, E, t), i.e.,

Total flux = vn(r, E, ) = f O, , E, 1) dR = ¢(r, E, 1). (1.5
4n

The total flux is thus the same as the ordinary flux of neutrons of energy E at
the position r and time ¢ per unit energy. Both the angular flux and the total
flux are sometimes referred to as the “flux,” but the context, symbol, and
arguments of the function indicate which type of flux is intended.*

* Some writers employ the same symbol for the vector flux and the total flux; the distinc-
tion is then indicated by the argument (r, £, E, 1) or (r, E, t). By using the separate symbols
® and ¢, the distinction is clear even when the argument is omitted for simplicity of repre-
sentation. The symbols N and #n, for angular and (total) neutron density, respectively, are
used in this book for the same reason.
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e AREA g4 FIG.13 UNITVECTOR NORMALTO SURFACE ELEMENT
.oy dA.

Neutron Current

If H represents a unit vector normal to a surface, so that fi d4 1s the vector
normal to a surface element of area d4 (Fig. 1.3), then id4 vN(r, R, E, ) 15
the number of neutrons crossing the surface element per umt solid angle per
unit energy in unit time. (A crossing is counted as negative if id4d v < 0.)
Integration over all directions gives the net number of neutrons per unit energy
and time crossing d4; thus,

Net number of neutrons crossing d4 = fi d4 f YN(r, R, E, t) d2.
4n

The integral in this expression 1s called the neutron current and 1s represented
by J(r, E, t), so that

f YN, @, E, 1) dQ = uf QNG Q,E 1)dQ = I, E, 1), (1.6)
4n 4n

TABLE 1.1. COMPARISON OF SYMBOLS

This Book w.&w! D2 C.&Z3 G &E* L>

Angular Density N — N ¥ — —
Density n n n p n n
Angular flux o] f ] — F —
Total flux é o I3 — ¢ é
Current J J i J J J

1 Wemnberg, W., and E. P. Wigner, “ The Physical Theory of Neutron Chain Reactors,” University
of Chicago Press, 1958,

2 Davison, B., “Neutron Transport Theory,” Oxford University Press, 1957.

3 Case, K. M., and P. F. Zweifel, ‘* Linear Transport Theory,” Addison-Wesley Pubhishing Co.,
Inc., 1967.

4 Glasstone, S., and M. C. Edlund, *“ The Elements of Nuclear Reactor Theory, D. Van Nostrand
Co., Inc., 1952.

5 Lamarsh, J. R., “Introduction to Nuclear Reactor Theory,” Addison-Wesley Publishing Co.,
Inc., 1966.
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It is the net number of neutrons of energy F at r and time ¢ crossing unit area
per unit energy and time. The current is thus a vector having as a component
in any direction the net number of neutrons crossing a unit area perpendicular
to that direction per unit energy and time, for given values of energy, time,
and position.

A comparison of the symbols used in this book with those employed in other
familiar texts is given in Table 1.1.

Independent Sources

The independent (or extraneous) neutron sources, usually abbreviated to sources,
are neutron sources which are not dependent on the neutron density of the
system. They arise from events other than neutron collisions, i.e., not from
fission, (n, 2n), and similar neutron reactions. The sources under consideration
thus involve neutrons produced in (e, #) and spontaneous fission processes and
also by the action of cosmic-ray particles. The independent sources are repre-
sented by Q(r, &, E, t), which is the probability per unit time that a neutron of
energy E will appear at r per unit volume per unit solid angle per unit energy, i.e.,
Q dV dQ2 dE is the expected rate at which neutrons appear in volume dV with
direction in 2 and energy in dE.

Cross Sections and Transfer Probabilities

Since microscopic cross sections are used only in some special cases in this text,
it is convenient to employ a lower case sigma (o) to represent macroscopic cross
sections, reserving capital sigma (Z) to indicate summation. The quantity
o(r, E) is defined as the total collision (or interaction) cross section of a neutron
at position r having energy E (in the laboratory system). It is the probability
of neutron interaction per unit distance of neutron travel and has the dimensions
of a reciprocal length. The reciprocal of o 1s, of course, the neutron mean
free path.

The cross section has been taken to be a function of r and E only, but there
are a few situations in which it may depend upon £ or ¢. If there is a physically
preferred direction in a medium, which can be used to define directions, then o
may be a function of Q. For example, a direction of fluid flow or of crystal
orientation could determine a dependence of ¢ on . In most cases, this will
influence only thermal neutrons and the effects may usually be neglected. A
variation of o with ¢ may arise in fuel depletion (or burnup) calculations; it is
then so slow, however, that it is easily separable from the neutron transport
problem. More general variations of cross sections with time will be treated in
Chapters 9 and 10.

The total cross section o(r, E) is the sum of the partial cross sections for all
possible types of neutron-nucleus collisions. The partial cross sections are
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indicated, in general, by the nature of the particle emerging from a collision;
thus o,(r, E) and g,.(r, E) represent elastic and inelastic scattering cross sections,
respectively, and o,(r, E) is the cross section for radiative capture. A special
case arises in connection with the fission cross section which is indicated by
os(r, E).

In neutron transport theory, it is required to describe the probability that the
neutrons emerging from a collision have various directions and energies. A form
of differential cross section is defined for collisions, such as scattering, fission,
and (n, 2n) reactions, from which neutrons emerge, as the cross section for
neutrons of initial direction &' and energy E’ emerging from a collision in the
interval d2 about £ and energy dE about E. This quantity may be expressed, in
general for the reaction (n, x), by

Differential cross section = o.(r, E')fi(r; Q', E' - Q, E),

where o, is the cross section for a reaction of type x for neutrons of energy £’
and f.(r; Q', E' — Q, E) dQ dE is the probability that if a neutron of direction
Q' and energy E’ has a collision of type x, there will emerge from the collision
a neutron in the direction interval d& about Q with energy in dE about E. For
scattering (elastic or inelastic) collisions one neutron emerges for each neutron
colliding with a nucleus; the transfer probabilities may consequently be normal-
ized to unity. Thus, for elastic scattering, integration over all directions and
energies gives

J f6: Q) E' >, E)dQ dE = 1,

and a similar expression applies to inelastic scattering. For fission, however, the
normalization is different, as will be seen shortly. For (n, v), (1, «), and other
reactions from which neutrons do not emerge, fis, of course, zero.

For elastic scattering of neutrons from initially stationary nuclei, f, is a
function only of Q'-Q = pu,, where p, is the cosine of the (scattering) angle (8)
between the directions of motion of the neutron before and after the collision
in the laboratory system (Fig. 1.4). For scattering nuclei of mass A4 times the
mass of a neutron, the value of p, is determined uniquely by E/E’;3 thus,

po=%[(A+1) Zﬁ—(A—l)A/g]ES.

In this case, f, may be represented by
Sox; QL E"— Q, E) = fu(x; E' > E) 8(uo — S), (W)

where 6 is the Dirac delta function (see Appendix); that is, 8(u, — S) is zero
except when pg = S andJ' 8(uo — S)f(1o) duo = f(S) if the range of integration
includes the value po = S.
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FIG. 1.4 DIRECTIONS OF MOTION OF NEUTRON BEFORE AND AFTER ELASTIC
SCATTERING.

If the elastic scattering is spherically symmetric (isotropic) in the center-of-
mass system, it is known?* that

1
27(l — «)E’
=0 if E>E" or E< oF’

flr; '~ E) = if «E'< E<E

where
a=[(4 - 1D/4+ DA

For more general angular distributions, however, this simple representation is
not possible (see Chapter 4). Consideration will be given in Chapter 7 to the
effects of nuclear motion and chemical binding.

In the foregoing, it has been assumed that the transport medium consists of a
single nuclear species. If the medium is a mixture of different nuclei, however,
the f values are obtained in a manner similar to that used in deriving the overall
macroscopic cross section from the individual microscopic cross sections.®

For fission, it is a good approximation to assume that the neutrons are
emitted isotropically in the laboratory system; hence, it is possible to write

fiE, Q, B - Q, E)dQ dE = 4iﬂv(r; E'— E) dQ dE,

where v(r; E' — E) dE, referred to as the spectrum of the fission neutrons, is the
probability that a fission caused by a neutron at r with energy E’ will lead to a
neutron within dE about E. Furthermore, v(r; E' — E) is normalized so that

%” Wr; E' - E) d dE = fv(r; E'— E)dE = #(r, E'),

where #(r, E') is the average number of neutrons produced by a fission at r
caused by a neutron of energy E’. It will be noted that the spectrum of fission
neutrons is allowed to depend on the energy (E’) and the material in the
medium, through r.
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For the present, no distinction is made between prompt and delayed neutrons.
All neutrons are assumed to emerge promptly from fission, thus ignoring the
delayed neutrons; alternatively, the delayed neutrons are assumed to be included
with the prompt neutrons. In Chapter 9, however, when reactor dynamics is
discussed, allowance is made for the delayed neutrons by introducing a time
delay between the neutron-nucleus collision and neutron emission in fission.

If of(r, E’) is the total cross section for all interactions, including those from
which neutrons do not emerge, then the total probability per unit distance at r
for the transfer of a neutron from ', E’ to L, E, as a result of all interactions
can be written as

Total probability of neutron

transfer from ', E' to , E = ol E)f(r; &, £'~> @, E),

which defines the function f. This result may be expressed in an alternative
manner by considering the separate interactions x in which neutrons are
produced ; thus,

or, ENf(r; ,E' > Q, E) = Z ox(r, ENfur; @', E' — Q, E),
x
where the sum over x includes elastic and inelastic scattering (with the f’s
normalized to unity), fission (with f normalized to #(r, £’)), the (n, 2n) reaction
(with f normalized to 2), and so on, Upon integration over all directions € and
over all ﬁ{lal energies E, it is found upon rearrangement that

a,t, E') + opx, E') + oi(r, EYo(r,E') +---
a(r, E')
= ¢(r, E), (1.8)

where the subscripts #, #', f, etc., refer to elastic scattering, inelastic scattering,
fission, etc., respectively.

The right side of equation (1.8), and hence also the integral on the left, is
clearly the mean number of neutrons emerging per collision at r of neutrons of
energy E’. This quantity has been represented by the symbol c(r, E). For pure
capture collisions, e.g., (#, y) and (», «), in which no neutrons are produced,
¢ = 0, for scattering collisions ¢ = 1, and for fission ¢ = #. The quantity ¢ can
be introduced as a factor in the neutron transport equation, as will be seen in
Chapter 2.

The fission part of the total probability of neutron transfer from &', E’ to £,
E may be separated from that due to other collisions by writing

1
4z

+ D 0lr, BV R, B > 2, E),
x#f

f f; X E'>Q,E)dQdE =

o(r, ENf(r; R, E' - 8, E) = — o,(r, E'W(r; E' > E)
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where the summation over x # fis for all nonfission interactions from which
neutrons emerge.

Interaction Rates

The macroscopic cross section, a,, is the probability that a neutron will undergo
a particular reaction, indicated by x, in unit distance. If v is the speed of the
neutron, then ve, is the corresponding probability per unit time. Hence, if N is
the angular density of neutrons under consideration, the interaction rate, in
appropriate units, is given by ve,N. For unit volume and energy, the interaction
rate is obtained by integrating over all neutron directions to obtain vo,n. Thus
vo,(r, E)n(x, E, t) gives the number of interactions of type x made with nuclei
by neutrons of speed v, and corresponding energy E, at position r and time ¢
per unit volume per unit energy per unit time, The total number of interactions
(or collisions) is obtained by using o, the total macroscopic cross section, which
is the sum of all the o, values.

To determine the rate at which neutrons emerge from an interaction of type x,
the appropriate f, must be included for the interaction and the neutron param-
eters before and after interaction must be identified. The number of neutrons
per unit volume having directions within J’ about " and energies within dE’
about E'is N(r, &', E', t) dQ' dE'. The rate, in neutrons per unit volume and
time at r and ¢, at which such neutrons are transferred by interactions of type x
into final directions within d€ about £ and final energies within dE about E is
then

Vo (r, E)f(t; ', E' — Q, E)N(r, @, E', t) dQ' dE' dS dE.

The total rate at which neutrons are transferred is obtained by integrating over
all initial neutron directions and energies, i.e., over d2' and dE’, and summing
over all reactions, i.e., summing over x.

The foregoing results are used in various forms in the development of the
neutron transport equation,

1.1c Derivation of the Neutron Transport Equation

According to the definition given earlier, N(r, , E, t) dV dQ2 dE is the probable
number of neutrons at time ¢ in a volume element 4V having energies in dF about
E and directions within a narrow beam d€ about 2. Consider now what happens
to this group (or packet) of neutrons as they are followed for a time interval At.
It is assumed in the following that the cross sections are continuous functions of
position in the vicinity of position r. The special case of an interface at which
cross sections change discontinuously will be considered shortly.

Those neutrons of energy E which suffer a collision may be regarded as being
lost from the packet, whereas those which do not collide remain. The distance




12 THE NEUTRON TRANSPORT EQUATION

traveled by a neutron in time Az is v At; hence, the probability that a neutron
makes a collision in this time is o(r, E)v At to first order in At. The probability
that a neutron does not undergo a collision in time Az and remains in the packet
is consequently 1 — o(r, E)v At. It follows, therefore, that

Number of neutrons

remaining in packet = V& & B D[l = o6, EoAr] dV 42 dE.

These neutrons will arrive at the position r + S Az at time ¢ + A¢.

In addition to neutrons lost from the packet by collisions, some may enter it
as a result of collisions by neutrons outside the packet and from independent
sources. The latter two quantities are given by

Number of neutrons entering
packet as a result of collisions

- [ f f o(r, ENf(r; @, E' — Q, EWN(r, &, E', 1) d dE'] dV dQ dE At

and

Number of neutrons entering — O(r. R, E. 1) dV d dE A,
packet from sources

By adding the three terms given above and eliminating 4V d2 dE, the neutron
angular density at the position r + Qv At at time ¢ + At is found to be

N(r + QuAL R, E, t + A1) = N, &, E, 1)(1 — ovAr)

. [ f f NG, @, ', 1) dQ’ dE’] Ar + QA
(1.9)

where, to simplify the representation,
o = o(r, F),
of = o(r, EYf(r; R, E' — Q, E), frequently written as of (r; Q', E' — Q, E),
Q=00 RQE?").

Upon dividing both sides of this expression by A¢ and letting Ar — 0, the result,
after rearrangement, is

. [N(r + QuAt, Q E t +At) — N, Q, E, 1)
lim A7

Iom

] + ouN(r, R, E, 1)

At—=0
- ” o f'N(r, @, E', 1) dQ' dE' + Q. (1.10)

The first term on the left of equation (1.10) is the total time derivative of the
neutron angular density; that is to say, it is the derivative with respect to time
as it would appear to an observer moving with the packet of neutrons. It will be
denoted by dN/dt, where N represents N(r, &, E, t).
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If the term N(r, &, E, t + At) is added and subtracted from the numerator in
the square brackets in equation (1.10), two expressions are obtained which can
be readily evaluated. Thus,

. N, R, E, t + At) — N(r, , E, t)] _ON
AI:—-mo [ At - —a_t_ (1'11)
and
lim [N(r + QuAt, Q, E, ¢ +z§t) —~ N0r, Q,E, t + At)] — QYN Q, E, 1).
At—=0

(1.12)

The last result can be readily derived in Cartesian coordinates in which r has

components x, y, z, and & has components Q,, Q,, Q.. The left side of equation
(1.12) can then be written as

lim [N(x + QAL y + QuALz + QuAtL,...) - N(x,p,z,.. .)]
At—>0 At
ON ON oN
= va?}? + Uan + UQZE)_z’

where N is written for N(x, y, z,...). This expression is » times the directional
derivative of N in the direction £; it can consequently be represented by
v -VN, as in equation (1.12).

Upon inserting equations (1.10), (1.11), and (1.12) into equation (1.1), the
result is

?;_j + UR-UN + ooN = ” o f'N'dQ' dE’ + 0, (1.13)

where

N=NE R, FE, 1)
N =N, Q,E’ 1),

and o, o'f, and Q are as defined above, in order to avoid unnecessary complexity.
Equation (1.13) is the basic form of the neutron transport equation. In spite of
certain minor limitations, which have been indicated earlier and which will be
considered more fully in §1.4, the transport equation has been found to be satis-
factory for treating most problems in reactor physics.

Before proceeding further, it is of interest to consider the physical significance
of the first two terms on the left side of equation (1.13) which together are equal
to the first term on the left of equation (1.10). The quantity dN/o¢ is the time
rate of change of the neutron angular density at the fixed position r; this differs
from dN/dt, the rate of change within the packet which is moving with the
neutron velocity v = 0v§2. The difference, —v§2-VN, represents the rate of
change of the neutron angular density at the position r due to streaming of the
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neutrons, i.e., motion of the neutrons in a straight line without any collisions.
The rate of change computed by an observer moving with the neutron packet is
dN/dt, with no contribution from streaming, whereas if it is determined by a
stationary observer at r the result is 6N/d¢t which includes the change due to
neutron streaming. The term v - VN is consequently sometimes referred to as
the streaming term in the neutron transport equation.

That this term does indeed represent the effect of streaming may be seen by
deriving the rate at which neutrons stream through a small volume element.
Let this element be bounded by planes having the coordinates x, x + Ax;
vy, ¥ + Ay; and z, z + Az, so that the volume dV = Ax Ay Az (Fig. 1.5). The
number of neutrons in the volume element that are moving in the direction £
is then N(x,y,z, &, E, t)dV. The rate at which neutrons enter the volume
element as a result of motion across the two faces perpendicular to the x
direction, i.e., the faces with coordinates x and x + Ax, is then

Number of neutrons entering
volume element per unit time = v,N(x, y, z) Ay Az,
(across face at x)

Number of neutrons leaving
volume element per unit time = v,N(x + Ax, y, z) Ay Az,
(across face at x + Ax)

where v, 1s the x component of the velocity; the arguments (82, E, ¢) have been
omitted for simplicity. The difference between these two numbers gives the x
component of the streaming rate of the neutrons, i.e., the rate of change of the
neutron angular flux in 4V due to neutrons crossing the two faces of the volume
element for which x is constant. It follows, therefore, that

Streaming rate (x coordinate) = —uv, 68_1_;/ dV = —(v-VN), dV,

FIG. 1.6 CALCULATION OF STREAMING
X X+Ax TERM.
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and hence the net rate at which neutrons enter the small volume element due to
streaming is then —v-VN per unit volume. This quantity is equal to —v§2-VN;
consequently,

ON _dN

ot dt

The foregoing discussion of the streaming term could be elaborated somewhat
to provide an alternative method of deriving the neutron transport equation.®
In such a derivation, attention is fixed on a small stationary volume element at
the position r. The rate of change of the neutron angular density in the volume
element then results from both collisions and streaming. The transport equation
is obtained by adding these contributions,

The neutron transport equation (1.13) may also be expressed in terms of
the angular flux @, which is equal to vN; thus, writing

D =oN=0Q,E1!),
Q' =N = (I)(l‘, Q' E': t)’

vQ-VN.

the result is

1 00

L RVO + o = ”aqudsz'dE' + 0. (1.14)

This is the form of the transport equation that will be used most frequently in
later chapters.

1.1d Interface and Boundary Conditions

Some Interface Conditions

It was postulated in the derivation of the neutron transport equation that the
cross sections are continuous functions of position in the vicinity of r. However,
solutions to the transport equation are frequently sought in spatial regions
where there are interfaces between different materials. At such interfaces, the
cross sections are discontinuous and it is necessary to consider how the transport
equation is to be used in these circumstances.

The important point to bear in mind is that the number of neutrons in a packet
is not changed merely by crossing a physical interface. This means that the
neutron angular density must be continuous in r as the interface is crossed or,
more formally, N(r + s, &, E, t + s/v) must be a continuous function of s,
where s is a distance along €. Hence, the neutron transport equation is to be
regarded as applying on either side of the interface and the continuity condition
is to be used at the interface.”*

* Although the discussion of interface and boundary conditions in this section refers in

particular to the neutron angular density, it is equally applicable to the angular flux. The
conclusions are used in the latter sense in several subsequent chapters.
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The continuity condition given above could also have been deduced in the
course of deriving the transport equation. It would only be necessary to consider
equation (1.10) in the situation where r and r + Qv At lie on opposite sides of an
interface at r,. Suppose

r=r,—4Q and r + QAt =r, + 15,

where s is a distance along §2 between the points on either side of the interface,
as represented in Fig. 1.6. It would be found that

lim [N(rs +15Q, Q. t + i) _ N(rs _ 3@, Q. E, t — -s—)] —o,

50 2v 2v
which is the same as the continuity condition.

Although in physical systems the neutron angular density is always continuous
in the sense described here, it is sometimes convenient to consider a neutron
source as being concentrated on a surface (§1.1f). At such a surface source, the
neutron angular density is not continuous, but the discontinuity can be deter-
mined, as will be seen in the next chapter. Similarly, it is sometimes desirable to
represent a thin strongly absorbing region as a surface of discontinuity in the
neutron angular density. The required discontinuity can then be derived in an
analogous manner.

Boundary Conditions

The neutron transport equation is usually regarded as describing the transport
of neutrons in a finite region of space, in which cross sections are known
functions of position and energy. Such an equation has an infinite number of
possible solutions within any spatial region and in order to determine which of
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these corresponds to the physical problem it is necessary to specify the appro-
priate conditions on the neutron angular density at the boundary of the region.*

In general, the region of interest is surrounded by a convex (or non-reentrant)
surface; that is to say, a straight line segment connecting any two points in the
region lies entirely within the region. A neutron leaving the surface of such a
region cannot intersect the surface again. If the physical surface is a reentrant
one, it can be assumed to be surrounded by a convex surface at which the
boundary conditions are imposed. If neutrons enter the region from external
sources, then the incoming neutron flux must be specified.

If no neutrons enter from external sources and if a neutron, once it leaves the
surface, cannot return, then the surface is called a free surface. The boundary
conditions on the neutron angular density at a free surface are as follows. Let
i be a unit vector in the direction of the outward normal at a position r on the
surface. Then any neutron at r having fi- Q > 0 will be crossing the surface in an
outward direction whereas a neutron for which ft-Q < 0 will be crossing in the
inward direction. Hence, the requirement that there be no incoming neutrons is
that for all positions r on the boundary surface

N@, @ E 1) =0 if A-Q <O. (1.15)

In a practical situation it is, of course, not possible to isolate a system com-
pletely from its environment. A neutron leaving the system will have a finite
probability of returning; hence, the free-surface boundary conditions are an
idealization. Nevertheless, they are very useful because (@) for many systems the
probability of neutron return is negligible, and (b) it is always possible to choose
the bounding surface far enough from the volume of interest that approximate
boundary conditions suffice, For example, small deviations from free-surface
boundary conditions imposed at the outside of a reactor shield, or even of the
reflector, have a negligible effect on the criticality.

1.1e Conservation Relations

The neutron transport equation is simply a statement of neutron conservation
as applied to an infinitesimal element of volume, direction, and energy. If it is
integrated over all directions, the result will be a statement of neutron conserva-
tion for a small element of volume and energy. Before performing the integration,
however, it should be noted that since the gradient operator involves derivatives

* In addition to conditions at the boundary of the spatial region, some conditions on the
neutron density, or alternatively on the source and cross sections, may be required at high
energies.® Normally, the energy variable is restricted to a finite range 0 < E < Enay;
neutrons of higher energy than E.,., are not considered except insofar as they may produce
some neutrons with E < Epn., which would be included in the source, Q. Furthermore,
initial conditions on the neutron angular density are required in order to determine the
solution to the transport equation, as will be seen in §1.5a.
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with respect to position coordinates only, it follows that

Q.UN = V.QN (1.16)

and hence

v| QR VNIQ=0vV.| QNdQ =V J,

4n 4n

in accordance with the definition of the neutron current, J, in equation (1.6).
Integration of equation (1.13) over all values of £ consequently gives

BV I+ oon = fa(r; E'— Ey'n' dE' + O, (1.17)

where
n=n{ Et) and n =n(r, E',t)

are the neutron densities. In this expression, also

0= 0E1) = J o, Q, E, 1)dQ

and

ot E'— E) = fa(r, Ef(r; ', E'— Q, E) dQ. (1.18)

That s, the mtegral of o'f over all final directions gives o(r; £ — E), which 1s
defined to be the cross section at r for collisions which result in a neutron of
energy L’ being replaced by one of energy F.

Integration of equation (1.17) over a fimte region of volume and energy now
yields a conservation equation for the whole population of neutrons in the
region. Thus, the result of integrating equation (1.17) over a finite volume and
over energy 1s

M +“‘V J(/VdE—I—fJLanclVdE
1 11 111
— ”f o(r; E' > Ex'n’ dE’ dVdE+f O dvdE. (1.19)
v \"

Each of the five terms in equation (1.19) has a clear physical significance, as will
now be shown,

The quantity [[ ndV dE s the total number of neutrons in the space-energy
region under conderatxon; hence, term [ 1s the time rate of change of the total
number of neutrons in thits region.
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In connection with term IT, the divergence theorem may be used to write

”v JdVdE:”J fi dA dE,
A

vV

where dA refers to an element of area, 4, on the bounding surface of the region,
V, under consideration and i 1s a unit vector normal to the surface element and
directed outward from the region By definition, J fi 1s the net number of neu-
trons crossing unit area of the surface in umit time Hence, term II 1s the net
number of neutrons flowing out of the space-energy region per unit time

Term 111 1s the rate at which neutrons are entering into collistons in the given
region, 1 ¢, the total collision rate, and 1V 1s the rate at which they emerge from
these collistons Hence, IV — III 1s the net rate at which neutrons are generated
in collisions Finally, term V gives the rate at which neutrons from independent
sources are introduced into the 1egion If equation (1 19) i1s rearranged in the
form

=V -IHI) +V —-1I,

1t does indeed represent neutron conservation in the space-energy region under
consideration, for this expression states that

Rate of change _ Net rate of generation
of neutrons ~ of neutrons 1n collistons

Rate of introduction Net 1ate of outflow

of source neutrons of neutrons

1.1f Linearity of the Transport Equation: Green's Function

It may be noted that the homogeneous (source-free) neutron transport equation

1 e b IO
5_07+szvq>+g<p=”gfcbdszd£

15 hnear, where the term ““hinear™ imphes thatif ®, and @, (or N, and N, n the
corresponding expression for o Njot) are solutions then ©; + @, (or Ny + Ny)1is
also a solution Certain (homogeneous) boundary conditions must be satisfied,
as will be seen shortly

For the inhomogeneous transport equatton, 1e for a system with a source,
the linearity has a related consequence If a solution @, corresponds to a souice
0, and a solution @, to a source Q,, then subject to certain boundary conditions,
the flux @, + @, 1s a solution for the source @, + Q, In general, it a complex
source Q can be divided into a number of simpler sources, Q,, so that

0=> 0,
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then the angular flux ® corresponding to the source Q will be

(D=2(D,,

where each @, is a solution of the transport equation for the source Q,, provided
the boundary conditions mentioned below are satisfied.

The result given above depends on the existence of boundary conditions for
the problem so that all solutions @, and also their sum, @, satisfy these condi-
tions. Such boundary conditions are often called homogeneous. For a volume
source with free-surface boundary conditions, i.e., no incoming neutrons, as
defined earlier, this is certainly the case. If the boundary conditions correspond
to an incident flux, the latter can be treated as a surface source with free-surface
boundary conditions, as will be seen below.

The additivity of the individual values of @, suggests that the solution of the
transport equation for any arbitrary complex source could be obtained by the
superposition {or integral) of the solutions for simple point (or other) sources.
The solution for the simple source is known as Green’s function for the problem,
and various special forms can be found for different geometries. The (one-speed)
Green’s function for plane geometry will be derived in Chapter 2.

As an example of the use of Green’s function, consider, first, the time-
independent neutron transport equation (1.14) for the flux, i.e., with 0®/dr = 0.
The results will be generalized later to the time-dependent situation. Let the
Green’s function G(ry, o, E; — 1, £, E) be the neutron angular flux atr, , E
due to a unit point source, i.e., a source emitting ! neutronfsec, located at
ro, R4, Eo. By definition, this satisfies the transport equation (1.14); thus, for
free-surface boundary conditions,

Q.YG + oG = f J o'fG AR dE’ + 5(r — 1) (R — Qo) S(E — Ey), (1.20)

where
G = G(ry, Ry, Eg—1, 2 E)
and
G’ = G(ry, R, Eg—1, &', E').
The other symbols have the same significance as before.

If O(r, R, E) is the solution of the transport equation for the arbitrary source
Q(r, &, E), then because of the linearity of this equation

o(r, @, E) = j [] 0teo, R0 E)Glrs, R0, Eo—> 7. 9, B) dV, df dE,. (121)

As already mentioned, Q can be either a volume source with free-surface condi-
tions or a surface source chosen to reproduce the incident flux condition, or
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some combination of the two. The magnitude of the equivalent surface source,
represented by Q(r, R, £), can be determined by supposing the incident flux at a
point r on the surface 15 ®,, (r, R, E) per umt direction and energy. Then the
number of neutrons crossing an element of area dA4 with outward normal fi will
be given by

Number of neutrons crossing = —i QO (v, Q, E)dA

per unit direction and energy. The minus sign 1s introduced because ii ts an out-
ward normal and £ 1s an inward direction, so thatt £ < 0. Hence, this incident
flux may be replaced by an equivalent surface source such that

01, R, E) = —f Qb (r, , E). (1.22)

The fact that Green’s function has been written for a time-independent problem
1s of no particular significance. A time-dependent function

G(r[)v QO» EOa t() — T, 97 E9 t)

can be obtained simply by adding the time derivative on the left of equation
(1.20) and including the factor 8(+ — #,) in the delta function representing the
point source

Some special forms of Green’s function will be derived n later sections of
this book, and relationships between various Green's functions will be indicated.

1.2 INTEGRAL EQUATION FOR NEUTRON TRANSPORT

1.2a Introduction

The neutron transport equation 1s an integro-differential equation for the
neutron angular denstty (or flux). In this section an equivalent integral equation
will be derived. This raises the question of whether there 1s or 1s not also an
equivalent purely differential expression for the neutron transport problem.
The answer 1s that there 1s not, for the following reason. In deriving the transport
equation 1t was necessary to consider the neutron angular density in the im-
medrate (space-time) vicinity only of the point under consideration, whereas the
whole range of energies and angles had to be included 1n the transport equation
for the angular density at a particular energy and angle. Hence, the formulation
1s local, involving derivatives, in space and time, but 1t 1s extended, involving
integrals, 1n energy and angle.

The physical basis of the foregoing situation 1s that, 1n a colliston, the position
and time associated with a neutron change continuously whereas the energy and
angle will change in a discontinuous manner. As a consequence, a mathematical
formulation of the neutron transport problem must contain integrals over energy
and angle. In the multigroup treatments of the transport equation, described in
Chapters 4 and 5, these integrals are approximated by sums.
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1.2b Derivation of the Integral Equation

Since the neutron transport equation is a linear first order partial differential-
integral equation, it can be converted into an integral equation by a standard
procedure known as the method of characteristics,® as will be shown below.
Two special cases of the integral equation will then be derived: one for isotropic
scattering and the other for general anisotropic scattering. The integral equation
for neutron transport can also be obtained directly from neutron conservation
considerations, as will be indicated.

For the application of the method of characteristics to the neutron transport
equation, the latter, in the form of equation (1.14), may be writt